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Motivation

➢ Large increase in air travel expected in the following decades
➢ Supra-national calls (e.g. EU’s Flightpath 2050) for decrease of 

aircraft emissions and noise, increase of availability and safety, 
increase of multi-disciplinarity in design...

➢ DLR project Digital-X:
➢ Computer-based design and virtual flight testing
➢ Multiple disciplines (nine DLR institutes involved)
➢ Multiple fidelity levels (from conceptual to PDE-based simulations)

➢ Multi-disciplinary optimization in context of:
➢ Use of established in-house and third-party tools and

validated disciplinary methods
➢ Hands-on cooperation between DLR institutes
➢ Provision of optimization processes for in-house

aircraft design research

Keep in mind
the context!



> C. Ilic, M. Abu-Zurayk  •  Cooperative aircraft MDO > ECCOMAS 2016, June 5-10www.DLR.de  •  Chart 5

Outline

➢ Motivation
➢ Optimization problem
➢ Derivative-free optimization (DFO)
➢ Gradient-based optimization (GBO)
➢ Conclusion



> C. Ilic, M. Abu-Zurayk  •  Cooperative aircraft MDO > ECCOMAS 2016, June 5-10www.DLR.de  •  Chart 6

aerodynamics

structure

propulsion

Optimization problem

➢ Minimize mission fuel burn
of a long-range airliner

http://www.airliners.net/photo/Lufthansa/Airbus-A330-343X/2054700
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ODE integration…
...or simplified (from Breguet range equation):

➢ Using design parameters:

➢ aerodynamic: wing planform and 
sections shape

➢ structural: thicknesses of spars,
ribs, and skin sections

➢ Under constraints:

➢ aerodynamic: lift, pitching moment

➢ structural: strength and buckling 

➢ control: trim capability, stability margin

➢ performance: takeoff/landing distance, 
ferry range
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Properties of the objective and constraints

➢ What is the influence of disciplinary design parameters on cost functions?
➢ For simplicity, consider instantaneous range factor as the objective:

at optimum:

➢ If cross gradients are small, we can approximate or even ignore them,
and still reach a “sufficiently improved” design

➢ Perform similar analysis for every constraint
➢ Choose design parameters cleverly
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Properties of the objective and constraints, cont.

to aero. param.
to struct. param

to aero. param.
to struct. param

grad
L/D

grad
m

to aero. param.
to struct. param

L/D polar (global influence of struct. param.)

area of
interest
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DFO multi-level concept

isolated
components

semi-empirical
lifting line aero.
beam struct.

panel aero. (DLM), condensed FEM

steady/unsteady maneuvers, gust

PDE aero. (RANS), shell FEM w/internal struct.

static-aeroelastic perf., fully-stressed design

subplex optimizer
(simplex by subspaces)
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Optimization problem for DFO

➢ Optimize wing outer shape and wing-body-tails structure
w.r.t. mission fuel burn

➢ Wing-body-tails geometry: Airbus XRF-1 baseline, metal structure
➢ 56 critical load cases; steady, unsteady and gust
➢ 1 performance point (Ma=0.83, CL~0.50 changes with mass)
➢ 9 wing planform and section parameters:

aspect ratio, sweep, taper ×2, twist ×3, airfoil thickness ×2
➢ Wing area constant (by being independent parameter)
➢ Stability margin constant (by tail size and wing position update)
➢ Landing/takeoff distance roughly constant (by constant wing area and 

reducing structure mass)
➢ Lift matches mass (by flow solver internal iteration)
➢ 624 structural thickness parameters (wing, body, tails)
➢ Buckling and strength failure factors
➢ 56×624×2 structural constraints (by fully-stressed design)
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Implementation and execution aspects for DFO
➢ Disciplinary tools running on servers at respective DLR institutes
➢ RCE (Remote Component Environment) for assembling and running

the process over the network

RCE
workflow

➢ 28 hours single evaluation run time
➢ 80-120 evaluations needed (est.)
➢ 4 months optimization run time
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DFO results

➢ ...still running
➢ Results from the high-fidelity level alone

➢ Tested ODE- vs. Breguet-based fuel burn objective

➢ Fuel burn reduction: 3.6%
➢ 18/12 hours evaluation ODE/Breguet
➢ 45 days for optimization (clean)
➢ ODE- and Breguet-based

final designs practically identical
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GBO high-fidelity concept

Optimizer

Outer-shape design variables Outer-shape design variables

Structure thickness design variables

CFD mesh gen. CSM model gen.

Aero-structure
Analysis for 
performance

Aero-structure
Analysis for 

loads

Aero-structure
Performance

gradients

Aero-structure
Loads

gradients

Compute critical loads
and get corresponding
mass m and
failure factors σ

Compute struct-related
gradients

Compute aero-related
gradients
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Optimization problem for GBO

➢ Optimize wing w.r.t. Breguet range factor 
➢ Wing-body geometry: Airbus XRF-1 baseline, metal structure
➢ RANS for aerodynamics, FEM for structure
➢ 7 critical load cases; 2.5g, -1g 
➢ 5 performance points; 1 design + 4 near off-design (Ma=0.83, CL=0.50)
➢ 360 airfoil-shape parameters: free-form deformation (FFD) control points
➢ Planform constant (by FFD c.p. only z-coord.)
➢ LE radius constant (by linking FFD c.p.)
➢ Lift constant (by flow solver internal iteration)
➢ Pitching moment constant (by optimizer)
➢ 348 structural thickness parameters
➢ Buckling and strength failure factors
➢ 348×7×2=4872 structural constraints (by optimizer)
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GBO results

➢ Range factor reduction: 6%
➢ Optimization run time 80 hours, using 8×24 cluster cores
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Conclusion and Outlook

➢ Demonstrated employment of established disciplinary evaluation 
methods in a multi-disciplinary optimization context

➢ Demonstrated direct cooperation of experts from multiple disciplines in 
establishing and running optimization process

➢ Follow-on project: VicToria
➢ Include more subsystems (flutter-free design, active engines...)
➢ Increase cross-subsystem and cross-level consistency
➢ Reduce process run times
➢ DFO in two phases: overall aircraft design, detailed subsystem design
➢ GBO with cross-disciplinary sensitivities
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Thank you for your attention!
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DFO results, cont.

Spanwise load distribution more inwards → smaller wing mass

Shocks more forward, slightly weaker → better lift-to-drag ratio

cruise n = 2.5
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