CFRP Upper Wing Cover for Natural Laminar Flow

Knowledge for Tomorrow

Sicomp 27th, Linköping, May 31th, 2016

Christian Ückert T. Bach, E. Kappel, L. Heinrich, O. Steffen

Content

- Motivation: Why natural laminar flow?
- Structural Concept for NLF Upper Wing Cover
- Manufacturing Concept
- Process induced Deformations (PID)
- Load induced Deformations (LID), Sizing Process
- Manufacturing Process of integral Wing Upper Cover
- Optical Measurement
- Resulting Waviness from PID and LID
- Summary

Why laminar flow?

- Laminar Flow can reduce friction drag significantly!
- → 5% to 8% Reduction of friction drag is possible for typical wing applications

Requirements for Laminar Wing

Aerodynamic requirements have to be achieved under typical production standards (high rate, low cost) to be beneficial on aircraft level!

Wing geometry & manufactured parts NLF wing research configuration NLF13 LaWiPro Panel (1,0m x 0,6m)

Basic Concept – DLR V6

Final Basic Design: new rib positions in Leading Edge implemented ribs perpendicular to Front Spar

Cellular Tooling Concept

- Moulding of the stiffeners is done by many similar elements/ cells
- Adress all issues and challenges on a local/ cellular level

Proof of Manufacturing Concept

Sizing of Wing Upper Cover

Process induced Deformations (PID)

- Process distortions are driven by residual stresses
- Different inducing phenomena

Semi-numerical model approach

DLF

Manufacturing of Wing Upper Cover

"CFK-Nord" – Research Facility Stade, Germany

Cellular Tooling- Validator (36 cores including 10 hollow cores)

Skin Plies Layup

Skin Plies Layup

Skin Plies Consolidation

Draping Core Plies

Positioning of Stringer-Rows

Positioning of Stringer-Rows

Integral stiffening Structure

Unite Skin and Core

Closing the Tool

Autoclave Preparation

Demoulding

Waviness Measurement

- Optical 3D-Measurement using gom ATOS
- Best-fit with CAD-model shows global deformation
- Significant influence of gravity with different support conditions

Comparison of different horizontal support conditions

Waviness Measurement

- Analysis of cross-sections
- Small waves below stringers due to unsufficient gusset filler geometry

Gusset-filler waviness

Resulting Waviness

- Outer shape during cruise flight has deformations due to manufacturing, assembly and aerodynamic loads
- The real part requires an assembly rig
- Simulation substitutes it by adequate BCs

Evaluation of selected cuts

- Ribs are NOT oriented in flight direction, but perpedicular to front spar
- Two cuts with different characteristics have been selected for more detailed analysis
- Aerodynamic assessment with "2 $^{1\!\!/_2}$ D" computational fluid dynamics

Summary of main Results

Development of integral wing design

- No rivets on aerodynamic surface
- Reduced waviness

Development of cellular tooling concept

- Tolerance management
- Efficient heat-up and cooling

Method for Process induced deformations analysis

 PID-analysis capable for complex stiffened structures

Surface Measurements on validation structures

Manufacturing of full-scale wing cover section

Assessment of resulting waviness from process- & load-induced deformations

Many thanks to our colleagues & partners from

- DLR Institute of Composite Structures and Adaptive Systems, Braunschweig & Stade
- Airbus, Bremen and Filton
- Composite Technology Center, Stade
- Premium Aerotec, Varel
- gom, Gesellschaft für optische Messtechnik, Braunschweig
- BMWi, Federal Ministry for Economic Affairs and Energy

aufgrund eines Beschlusses des Deutschen Bundestages

Tack så mycket!

Christian Ückert Composite Design

DLR

Institute of Composite Structures and Adaptive Systems Ottenbecker Damm 12 21684 Stade

Tel: ++49 531 295 3713 Email: christian.ueckert@dlr.de

Knowledge for Tomorrow

