Validation of the Driving by Visual Angle car following model

David Käthner & Diana Kuhl
Institute of Transportation Systems
DLR Braunschweig
Why modelling car following?
Examples of models

Box-and-Arrow

\[\text{Attitudes/personality} \rightarrow \text{Task demand (workload)} \]
\[\text{Driver state} \rightarrow \text{Intention} \]
\[\text{Experience} \rightarrow \text{Situation awareness} \]

Long-term
Medium-term
Short-term

Carsten (2007)
Examples of models

Cognitive architecture, production rules

\[(p \text{ decide-lc-lane1}}
\begin{align*}
=\text{goal}\rangle \\
\quad \text{isa drive} \\
\quad \text{stage decide-lc} \\
\quad \text{task lk} \\
\quad \text{lane lane1} \\
\quad v =v \\
\quad \text{fkind car} \\
\quad \text{fthw } =\text{thw} \\
\quad \text{!eval! (}< =\text{thw *thw-pass*})
\end{align*}
\]

\[=\text{subgoal}\rangle
\begin{align*}
=\text{check-lc} \\
\quad \text{lane lane1} \\
\quad v =v \\
\quad \text{result } =\text{result} \\
\quad \text{!push! } =\text{subgoal} \\
=\text{goal}\rangle \\
\quad \text{stage } =\text{result}
\end{align*}

(Salvucci, e.g. 2005)
Examples of models

Psychophysical controller for car following behavior

\[a_{t+1} = j \left(\frac{1}{\alpha_t} - \frac{1}{\alpha'} \right) + k \frac{d}{dt} \alpha_t \]

Anderson and Sauer (2007)
Some properties of driver models
Some properties of driver models

Formalization

- qualitative (verbal)
- quantitativ (computational)

Properties
Some properties of driver models

Formalization

- qualitative (verbal)
- quantitative (computational)

Properties

Scope

- micro
- macro
Some properties of driver models

- Formalization
 - qualitative (verbal)
 - quantitative (computational)

- Properties
 - micro approach
 - macro approach

- Machine learning
- Rules
- Controller (open / closed loop)
Some properties of driver models

Descriptive

Explicative

Psychological claim

Formalization

Qualitative (verbal)

Quantitative (computational)

Properties

Machine learning

Rules

Controller (open / closed loop)

Approach

Scope

Micro

Macro
Some properties of driver models

- cognition
- evaluation
 - descriptive
 - explicative
 - machine learning
 - rules
 - controller (open / closed loop)

Purpose
- Psychological claim
 - qualitative (verbal)
 - quantitative (computational)

Formalization
- approach

Scope
- micro
- macro
Some properties of driver models

- **Purpose**
 - qualitative (verbal)
 - quantitative (computational)

- **Formalization**
 - qualitative
 - quantitative

- **Psychological claim**
 - descriptive
 - explicative

- **Properties**
 - cognition
 - evaluation
 - descriptive
 - explicative
 - machine learning
 - rules
 - controller (open / closed loop)

- **Scope**
 - micro
 - macro

- **Approach**
 - open / closed loop

- **Machine learning**
Some properties of driver models

Purpose
- formalization
 - qualitative (verbal)
 - quantitative (computational)

Properties
- scope
 - micro
 - macro

Psychological claim
- descriptive
- explicative

Approach
- machine learning
- rules
- controller (open / closed loop)

Purpose
- cognition
- evaluation
Why modelling car following?

basic driving task
- essential for higher cognition driver models
- comparatively easy modelling of a driving task

extremely useful for design of assistance systems

lacking so far
- good data on individual car-following behavior
- systematic evaluation of models on this data

we contribute to close that gap
- data for individual drivers
- from real traffic with instrumented vehicle
- systematic variation of road type (city, highway, country)
Basic driving tasks

from Hakuli et al. (n.d.) according to Donges (1982)
Control level of driving

road and traffic situation

- trajectory / maneuver level
 - anticipatory open loop
 - task irrelevant steering behavior
 - compensatory closed loop

- stabilizing / control level

steering angle

vehicle dynamics

output feeds back

adapted from Donges (1978)
A very simple car following model

\[a_t = s(v_{VF_{t-T}} - v_{FF_{t-T}}) \]

with
\[a(t) = \text{acceleration at time } t, \]
\[v_{VF_{t-T}} = \text{velocity lead vehicle one timestep ago}, \]
\[v_{FF_{t-T}} = \text{velocity following vehicle one timestep ago}, \]
\[s = \text{free parameter} \]
A very simple car following model

\[a_t = s (v_{VF_{t-T}} - v_{FF_{t-T}}) \]

basic algorithm
1. choose a start parameter for \(s \)
2. take values for leading vehicle from data
3. take first value for following vehicle from data
4. compute prediction for the next time step by using the predicted \(a \)
5. do so until the end of the vector
6. compute error metric
7. test next parameter, until the error metric is at a minimum
A very simple car following model

empirical vs predicted velocity, s = 1

predicted velocity vs lead car, s = 1
A very simple car following model

all together, $s = 1$

all together, $s = 9.22$
The Gipps model

\[\nu_{t+\tau} = b^{max} \]

\[+ \sqrt{(b^{max})^2 \cdot \tau^2 - b^{max} \cdot (2 \cdot [d_t + d^{min}] - \nu_{FF_t} \cdot \tau - \frac{\nu_{V_{FF_t}}^2}{b^{est}}) } \]

with

- \(b^{max} \) = most severe braking of the driver,
- \(b^{est} \) = estimated braking of the leading vehicle,
- \(d^{min} \) = safety distance,
- \(d_t \) = velocity of leading vehicle at time \(t \),
- \(\tau \) = apparent reaction time, a constant for all vehicles,
- \(\nu_{V_{FF_t-\tau}} \) = velocity lead vehicle one timestep ago,
- \(\nu_{FF_{t-\tau}} \) = velocity following vehicle one timestep ago

Gipps (1981)
The Helly model

\[a_t = j \cdot (d_{t-T} - d'_t) + k \cdot (v_{VF_{t-T}} - v_{FF_{t-T}}) \]

with

\[d'_t = s + r \cdot v_{FF_t}, \]
\[s = \text{safety distance}, \]
\[v_{VF_{t-T}} = \text{velocity lead vehicle one timestep ago}, \]
\[v_{FF_{t-T}} = \text{velocity following vehicle one timestep ago}, \]
\[r = \text{weight factor}, \]
\[T = \text{time step} \]

Helly (1959)
The Driving-by-Visual-Angle model

\[a_{t+1} = j \cdot \left(\frac{1}{\alpha_t} - \frac{1}{\alpha'} \right) + k \cdot \frac{d}{dt} a \]

with

\[\alpha' = 2 \cdot \arctan \left(\frac{w}{THW \cdot v_{FF_t}} \right) \]

and

\[\alpha_t = \text{visual angle}, \]
\[\alpha' = \text{desired visual angle}, \]
\[w = \text{width of lead car}, \]
\[THW = \text{timegap}, \]
\[v_{FF_t} = \text{velocity lead car} \]
The Driving-by-Visual-Angle model

\[
\alpha = 2 \times \arctan \left(\frac{\text{width}}{2 \times \text{distance}} \right) \approx \frac{\text{width}}{\text{distance}}
\]
Helly’s model vs. DVA

Helly

\[a_{t+1} = j(d_t - d'_t) + k(v_{LV_t} - v_{FV_t}) \]

DVA

\[a_{t+1} = j \left(\frac{1}{\alpha_t} - \frac{1}{\alpha'_t} \right) + k \frac{d}{dt} \alpha \]

\[= j \frac{1}{w} (d_t - d'_t) + (-k)(w \left(\frac{d_{t-1} - d_t}{d_t^2} \right)) \]
Validation methods

driving simulator: often sinusoidal speed profiles
 • disadvantage: might be too artificial
real driving data: cameras, induction loops etc.
 • disadvantage: dirty data, absolutely no control over situation
Methods

12 participants over 8 weeks, on Sundays / public holidays only

road types:
• highway
• city (straight and curved road)
• country

70 km, 2 hours drive
Methods
Predictions unoptimized

DVA unoptimized, subj 2, city ring

DVA is unstable!
Predictions unoptimized

Gipps unoptimized, subj 2, city ring

- empirical
- predicted
- lead car

RMSD = 1.8152
Predictions unoptimized

Helly unoptimized, subj 2, city ring

- empirical
- predicted
- lead car

RMSD = 0.7337
Results constrained, distance

DVA

Gipps

<table>
<thead>
<tr>
<th>Region</th>
<th>DVA</th>
<th>Gipps</th>
</tr>
</thead>
<tbody>
<tr>
<td>hway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>city</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cityRing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cityStrt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RmSD [m/s]

RMSD [m/s]
Results constrained, distance

DVA

- Region: hway, ctry, city, cityRing, cityStrt
- RMSE [m/s]

Helly

- Region: hway, ctry, city, cityRing, cityStrt
- RMSE [m/s]
Results unconstrained, speed

DVA

Gipps

RMSD [m/s]

region

hway cty city cityRing cityStrt

region

hway cty city cityRing cityStrt
Results unconstrained, speed

DVA

Helly

RMSD [m/s]

region

hway cty city cityRing cityStrt

hway cty city cityRing cityStrt

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0
Discussion

DVA does not hold its promises
• a few psychophysical additions doesn’t make it psychologically plausible!
• unstable controller?

degree of psychology in car following controllers
• non-trivial question
• depends a lot on handling of parameters

interaction of parameters and optimization algorithm
• some algorithms are more sensitive to starting parameters than others
Outlook and Lessons Learned

systematic evaluation
• more models
• different driving simulators
• possibly new data collection in the field with better sensors

parameter
• other optimization algorithms
• windowing
• maximum likelihood methods
• bootstrapping
• grid search

more computational power / less precision
• more efficient code
• cluster
• less optimized parameters
Literature

