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A new contactless technique is presented for the detection of micron-sized insulating particles in

the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends

to become entrained in the flow direction by a Lorentz force, whose reaction force on the mag-

netic-field-generating system can be measured. The presence of insulating particles suspended in

the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the par-

ticles to be counted and sized. A two-dimensional numerical model that employs a moving mesh

method demonstrates the measurement principle when such a particle is present. Two prototypes

and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force

particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers con-

tactless and on-line quantitative measurements, can be applied to an extensive range of applications.

These applications include measurements of the cleanliness of high-temperature and aggressive mol-

ten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4956842]

I. INTRODUCTION

Let us recall three techniques that enlighten our present

method of the Lorentz force particle analyzer (LFPA). The

first technique is the Coulter Principle (CP). Based on devel-

opments in electric techniques for the quantification of micro-

scopic cells,1 Coulter investigated suspensions of particles

in an electrolyte in the 1940s by forcing particles to flow

through a small aperture located in an insulating tube. Two

electrodes on each side of the aperture were connected to an

external source of electric current to form an electrical sens-

ing zone (ESZ). When a particle passed through the aperture,

whose diameter was slightly larger than the diameters of the

particles, a voltage pulse signal could be measured. This sig-

nal appeared to be proportional to the particle size. The con-

cept behind this apparatus is known as the CP.1–3

Thirty years after the CP1–3 was discovered, researchers

at McGill University made a breakthrough in the analysis of

molten metal quality by applying the ESZ approach to such

an aggressive fluid. By applying this technique via what is

now known as a liquid metal cleanliness analyzer (LiMCA),4

the number of pulses can be related to the passage of insulat-

ing particles, although the amplitude of the measured voltage

is millions of times smaller than that delivered by saline

aqueous solutions with the same electric current. Using high

amperages and high amplifications, micro-voltages were suc-

cessfully converted into clear signals above the background

noise level. Since then, LiMCA has been successfully used

at moderate temperatures to monitor the quality of molten

metals such as gallium,5 lead solders, magnesium,6–8 zinc,

and aluminum.9–11 However, the application of LiMCA to

the detection of inclusions in melts, such as liquid steel,

remains challenging due to the high temperatures that are

involved (1500–1700 �C) and to material problems, such as

thermal shock, corrosion, melting, dissolution, and blockage

of the small orifice.12 In this paper, the LFPA is presented as

a method to overcome these challenges.

Lorentz force velocimetry (LFV) is an electromagnetic

noncontact flow measurement technique that was invented in

the 1960s;13,14 it has been recently developed to the point15,16

where its application to aluminum production17 and steel-

making18 is imminent and is being extended as a universal

noncontact flow meter for liquids, even liquids with very low

electrical conductivity.19 LFV is another existing technique

that has inspired the LFPA. A permanent magnet in the vicin-

ity of a liquid metal duct or open channel flow enables the

flow rate to be derived by measuring the drag force that is

exerted on the magnet when the melt flows across the mag-

netic field.15,16 Because it is contactless, this technique can

be applied to measure the flow rate of high-temperature

melts, such as steels.18 However, to date, LFV has never been

applied to micron-scale measurement.

II. BASIC PRINCIPLE

In this paper, we present an electromagnetic method for

detecting and sizing particles that are suspended in the flow of

an electrically conducting fluid. Fig. 1 presents a sketch of

this method. When a particle-free electrically conducting fluid

moves across a magnetic field, as shown in Fig. 1(a), the mag-

netic field provided by a permanent magnet can be considered

a magnetic dipole with moment m ¼ mez, whose magnetic

field is given by20

B Rð Þ ¼ l0

4p
3

m � Rð ÞR
R5

� m

R3

� �
; (1)

where R is the space vector from the magnetic dipole,

and R ¼ jRj. Eddy currents are induced in this electrically
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conducting fluid and can be computed from Ohm’s law for a

moving electrically conducting fluid

J ¼ rð�r/þ u� BÞ; (2)

where / is the electrical potential, and u is the fluid velocity.

The associated Lorentz force on any unit volume of the mov-

ing fluid can be expressed as

F ¼ J � B; (3)

which tends to brake the flow and to reorganize the velocity

distribution, as explained in classic textbooks.20–22 A reac-

tion force is also exerted on the magnet itself and tends to

entrain this magnet in the flow direction. Fig. 1(a) indicates

that this global force (F0) is constant in the case of fluid

flow without insulating particles. This force can be meas-

ured with a high-resolution force sensor, such as a laser-

cantilever.23–25

Analogous to the ESZ in the CP, we introduce the con-

cept of an electromagnetic sensing zone (EMSZ) to describe

the space domain where the magnetic field B and the induced

current J are localized within an electrically conducting fluid.

Fig. 1(b) shows the case in which an insulating particle is

present within the electrically conducting fluid and passes by

the magnet. The difference between the electrical conductiv-

ities of the two materials produces a spatiotemporal redistrib-

ution of the eddy currents J0 (different from J) and generates

a significant change in the measured force (F00). The graph of

the difference DF ¼ F00 � F0 versus time exhibits a negative

pulse, as shown in Fig. 1(b), and suggests that the presence

and size of the particle can be derived from the functional de-

pendence of DF on the particle size. Consequently, a general

scaling law can be derived

DFðr; tÞ ¼ Cðr; tÞrB2u; (4)

where Cðr; tÞ is a calibrating function depending on the spa-

tial distribution of the magnetic field and the spatiotemporal

variation of the electrical conductivity when the particle

passes through the EMSZ, r is the space vector, t is the time,

r is the electric conductivity of the fluid, B is the magnetic

flux density, and u is the relative velocity between the con-

ductor and the magnetic field.

III. A TWO-DIMENSIONAL NUMERICAL MODEL

To exhibit physical insight into eddy current redistribu-

tion, we have developed a model for an electrically conduct-

ing slab that carries a small insulating particle and moves in

the presence of a localized magnetic field. For simplification,

we use two approximations: (1) instead of a straight slab, we

consider a thin rotating metallic ring and (2) we use a frame

of reference that moves with this ring. As indicated in Fig. 2,

a moving mesh numerical method — Arbitrary Lagrangian-

Eulerian (ALE)26—is applied to model the relative motion

between the magnet and the metallic slab, and the entire do-

main around this annulus is accordingly divided into two

parts: a “stator” that contains the magnet and a “rotor” that

rotates with the electrically conducting ring and the insulat-

ing particle. The origin of the moving frame is the center O

of the “rotor.”

FIG. 1. Principle sketch of the Lorentz

force particle analyzer (LFPA). (a)

Action of a small permanent magnet

(PM) on the flow of an electrically

conducting fluid: a constant force F0

aligned with the flow tends to brake

the magnetic system; (b) The eddy cur-

rents are redistributed when a particle

is present in the electromagnetic sens-

ing zone (EMSZ), which produces a

negative force pulse.

FIG. 2. Configuration of a two-dimensional electromagnetic induction nu-

merical model that demonstrates the features of the LFPA with a deforming

mesh method (ALE). 1-particle; 2-copper ring; 3-permanent magnet. The

dashed line represents the interface of a moving mesh (rotor) and a static

mesh (stator). The rotor rotates in the counterclockwise direction.
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The outer and inner radii of the ring are 25 mm and

24 mm, respectively. The lengths of the ring’s arc and

chord are 4.36332 mm and 4.357787 mm. Their difference

(0.0055 mm or less than 1:3� 10�3 of their average value) is

so small that the electromagnetic properties of this circular ge-

ometry can be considered almost identical to those of a straight

slab because the curvature is very small. As shown in Fig. 2,

this ring rotates with an angular velocity of x ¼ 4p rad=s and

contains a small insulating particle, whose radius is 200 lm.

The magnet is so small that the EMSZ occupies an angle of

only p=18 rad. The distance between the permanent magnet

and the surface of the slab is 200 lm. When the particle passes

through this EMSZ, the eddy current distribution and the elec-

tromagnetic force that act on the ring change, but the global

current remains conserved.

In the steady frame of reference, the x-axis is taken as

the direction of the magnetization and the y-axis as the direc-

tion of the ring’s motion. The electric potential therefore is

oriented in the z-direction. As shown in Fig. 2, the coordi-

nates in the moving frame become X and Y and are related to

x and y by the following relations:

x ¼ cos ðxtÞ � X � sin ðxtÞ � Y
y ¼ sin ðxtÞ � X þ cos ðxtÞ � Y:

(
(5)

The unsteady 2D magnetic field in the (X, Y) plane can

be derived from the time-dependent magnetic vector potential

A ¼ Aez, such that B ¼ r� A, which has only one nonzero

component in the z-direction. In the classical approximation

for MHD systems, where the magnetic Reynolds number is

much smaller than unity, the magnetic field induced by the

eddy current can be neglected in comparison with the applied

magnetic field. As a consequence, the basic equation for A is

r
@A

@t
þr� 1

l
r� A

� �
¼ 0: (6)

In general, such a diffusive vector field would be subject

to the skin effect in the conducting domain; however, this

effect is negligible in our case. Indeed, the typical transit

time of a given part of the ring through the EMSZ is

s ¼ L=xr � 0:013 s; the order of magnitude of the skin depth

d is significantly larger than the width (1 mm) of the ring:

d ¼ ðs=lrÞ1=2 � 0:11 m. This means that the ring motion

affects the induced current distribution only when the non-

conducting particle passes through the EMSZ and concen-

trates outside this particle to compensate the zero value inside

the particle. Consequently, the Lorentz force j � B is also dis-

turbed. The time-dependent vector potential still obeys Eq.

(3) and the classical boundary condition that requires continu-

ity at the stator-rotor interface. The actual magnetic field can

then be derived from B ¼ l0lrH þ Br where Br is the rema-

nence of the permanent magnet (Br ¼ 1:2 T).

To solve this problem, we used the COMSOL software

package with the ALE method. To guarantee that this simula-

tion is grid-independent, a mesh density was selected that

was sufficiently large and uniform, with a minimum size of

1.2 lm for any element. The total number of triangular ele-

ments was 204 126, the number of degrees of freedom was

470 781, and the time step was set to 2:5� 10�4 s. The results

in the (X, Y) frame were transferred to the (x, y) frame.

Fig. 3 shows how the global Lorentz force, which is inte-

grated over the entire EMSZ, varies with time as the particle

moves in front of the magnet. The computed relationship

between the force variation and the particle size is shown in

the inset of Fig. 3. Note that the negative pulse of the signal is

centered exactly at time t ¼ 0:375 s when the non-conducting

particle is located underneath the magnet (also see Fig. 3

inset). The solid lines are iso-values of the current density in

the z-direction, and the color scale indicates the current in

A/m2. The symmetry is clear when the particle is directly

beneath the magnet. The typical width of this signal is

approximately three times the width of the permanent magnet,

as mentioned above, this is the EMSZ.

IV. PROTOTYPES

A. Thin flow of GaInSn with water drops

A small cubic permanent magnet with a length of 1 mm

provided a static magnetic field whose spatial distribution

has an essential role. This static magnetic field was com-

puted using the commercial software COMSOL, and the

configuration is shown in Fig. 4(a). With a good accuracy, its

distribution can be simplified as Gaussian, the probability

being P½ðl� rÞ ðlþ rÞ� ¼ 68:3%, where l and r represent

the mathematical expectation value and standard deviation,

respectively. We chose the standard deviation r as the edge

of the EMSZ. By fitting the magnetic field decay curve, we

obtained r1¼ 1.02 and r2¼ 0.65 in the y- and x-axis direc-

tions, respectively. Therefore, the EMSZ has a length of

2.3 mm (0.65 mm� 2þ 1 mm) and a height of 1.02 mm. As

depicted in Fig. 4(b), the size of the EMSZ is 2.30 mm

� 2.30 mm� 1.02 mm.

The first embodiment of this basic principle is shown in

Fig. 5(a). The conducting medium is GaInSn alloy, which is

in a liquid state at room temperature. Two automated medi-

cal syringes containing GaInSn and water generate a single

FIG. 3. Graphs of the variation of the Lorentz force (DF) when the insulat-

ing particle passes in front of the PM. The inset magnifies the graph, and the

contours indicate the equipotential lines of the eddy current when the parti-

cle is beneath the PM.
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stream of diameter 1.93 mm; the stream is composed of dis-

continuous GaInSn flows interspersed with short water seg-

ments. The electrical conductivities of these two liquids differ

by several orders of magnitude, the electrical conductivity of

GaInSn being 3.2� 106S/m whereas that of water is of the order

of 10�3 S/m. These fluid segments mimic well-insulating par-

ticles transported by an electrically conducting liquid. The flow

rates of GaInSn and water from the syringes were 38.9 mm3=s

and 3.2 mm3=s, respectively. The lengths of the two fluid seg-

ments were adjusted to simulate the presence of realistic non-

conducting particles in a small-diameter liquid metal duct flow.

The reaction of the Lorentz force that acted upon

the magnetic-generating-system was measured by a laser-

cantilever system, which operates with a principle similar to

that of an atomic force microscope.23–25 The displacement re-

solution of the laser sensor was 7 lm. The cantilever was com-

posed of an alloy (12CrNi77) and had a length of 1.5 mm, a

width of 1.5 mm, and a thickness of 0.3 mm. The reaction of

the Lorentz force yielded a deflection (DL) that was recorded

by a laser sensor.

Because GaInSn is opaque and water is transparent, the

above system can be checked with another apparatus to

obtain comparative information. This apparatus uses a sec-

ond laser sensor at the same location to record the variations

in the lengths of the GaInSn and water segments. Signal 2 in

Fig. 5(b) shows the information delivered by the calibrating

laser sensor, where low values correspond to water segments

and high values correspond to GaInSn segments. Signal 1 in

Fig. 5(b) shows the information delivered by the LFPA. The

two measurements are remarkably consistent, which demon-

strates the feasibility and reliability of the LFPA. As shown

in Fig. 5(b), 11 pulse signals appeared within 4 s, and the av-

erage radius of the mimicking particles of water drops can be

computed (632 lm). This experiment also reveals that gas

bubble can be sized and counted with the present method.

B. “Dry” prototype compared with a 3d numerical
model

To mimic liquid metal flow, Fig. 6 shows another proto-

type of the LFPA in which a rotating copper wheel with a di-

ameter of 110 mm, a thickness of 8 mm, and an angular

velocity of 17.3 rad/s was located in the vicinity of a small

cubic NdFeB permanent magnet of length 1 mm, whose

FIG. 4. A cubic permanent magnet with

1 mm sides and its surrounding magnetic

field. (a). A gap of 0.2 mm between the

PM and the conductor is necessary

for measurements. (b). An EMSZ of

a cuboid space of 2.3 mm� 2.3 mm

� 1.02 mm in which more than 68.3%

of the magnetic field intensity has accu-

mulated. Therefore, our method is

referred to as the “1 mm-scale scope

story.”

FIG. 5. (a) Two syringes that contain liquid GaInSn and water are used to

generate two-phase particle-laden fluid flow composed of intermittent seg-

ments of GaInSn and water. The water mimics insulating particles in an

electrically conducting flow. (b) A Lorentz force particle analyzer (LFPA)

system was employed to identify and size the water segments (signal 1). An

accompanying laser sensor was placed at the same abscissa, perpendicular to

the LFPA system, to verify the LFPA results (signal 2). The high correlation

of the pulses of the two signals demonstrates the performance of the LFPA

in the case in which the diameters of the particles are equivalent to the diam-

eters of the duct. Vertical grid-lines are 400 ms apart. The average radius of

the mimicking particles is 632 lm.
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magnetization was perpendicular to the side-edge of the

wheel. The other experimental parameters are listed in

Table I. A series of cylindrical holes with diameters of 0.5,

1, 2, 3, and 4 mm and a depth of 0.5 mm were drilled into the

side-edge of the wheel. The magnet and laser-cantilever sys-

tem were identical to the system shown in Fig. 5.

As shown in Fig. 7, the deflection (DF) due to the

Lorentz force acting on the magnet was recorded by the laser

sensor; the deflection appears to be dependent on the hole

volume V. Again, this prototype experiment demonstrates

that the LFPA is suitable for detecting and sizing insulating

particles or defects in a moving electrical conductor.

Additionally, to verify the results derived with this proto-

type, we developed a three-dimensional numerical model

using the software package COMSOL Multiphysics in the sit-

uation shown in Fig. 6. In this simulation, the electrical con-

ductor is drilled with a cylinder that mimics the insulating

particle and moves with a constant velocity v in the vicinity

of the magnet; the eddy currents are calculated with Ohm’s

law (Eq. (2)). The origin of the frame is shown in Fig. 6. The

results that represent the motion of the non-conducting cylin-

der through the EMSZ are easily obtained.

In this three-dimensional numerical model, the magnet-

ization direction of the permanent magnet, the direction of

motion of the plate, and its velocity were the same as in the

experiment shown in Fig. 7. A vibration numerical model

was employed to determine the relationship between the

force acting upon the magnetic-generating-system and the

deflection of the laser-cantilever used in the present experi-

ments. For conciseness, we do not discuss details on this

technique here; they will be presented in a future paper.27

Fig. 7 shows the eddy current redistribution evolution for

a cross-section through z ¼ 24:9 mm (see Fig. 6) when a par-

ticle passes through the EMSZ due to the presence of a per-

manent magnet. The arrows indicate the eddy current vectors.

In the absence of the particle, the eddy currents should form a

pair of vortices with the opposite directions. We denote the

time of the moving wheel at the point just beneath the vertical

center of the PM (see Fig. 6) by T0. The results of the eddy

current redistribution influenced by the particle are illustrated

in Figs. 7(a)–7(e) at five typical times. The arrows indicate

the eddy current vectors, and the color scale indicates the cur-

rent in A/m3. The times shown in Figs. 7(a)–7(e) are t¼ ðT0

�1:5Þms, t¼ ðT0� 0:5Þms, t¼ T0 ms, t¼ ðT0þ 0:5Þms,

and t¼ ðT0þ 1:5Þms, respectively. Small asymmetries in the

current distribution when the particle enters and exits the

EMSZ are shown in Figs. 7(a) and 7(e), respectively.

Conversely, the symmetry is clear when the particle is directly

beneath the magnet, as shown in Fig. 7(c). Figs. 7(b) and 7(d)

show both a significant asymmetry and an increase in jz in the

immediate vicinity of the particle, which is necessary to com-

pensate its zero value within the particle. The entire process is

similar to solar and lunar eclipses. Additionally, the images

span 3ms; with a velocity of 0.95m/s, the equivalent distance

is 2.85mm, which is approximately 3 times the length of the

PM, validating the typical length of the EMSZ shown in Fig. 4.

The maximum eddy current density reaches 3:53� 106 A=m3.

Comparisons of the experimental and numerical results

for the variation of DF versus the particle volume V are

shown in Fig. 8(a) and Table II. The amplitude of the nega-

tive pulse DF is an important ingredient in the measuring

process of the LFPA despite its small size: the amplitude of

DF is 10�7–10�4 N for micron-sized particles. The force var-

iation DF decreases substantially with particle volume.

In Eq. (4), the constant C(r, t) can be written

Cðr; tÞ � pr2hĈðtÞ; (7)

where h is the depth of the cylinder, pr2h is the volume of

the small hole, and ĈðtÞ denotes a type of pulse function,

analogous to the probability density of a normal distribution.

To verify this relationship, we have conducted appropriate

experiments allowing a comparison with the results in Table

II, also shown in Fig. 8(a). The corresponding experimental

FIG. 6. A rotary copper wheel proto-

type experiment and its magnified

view. A series of holes drilled radially

into the edge of a copper wheel to sim-

ulate particles in a conducting fluid.

The distance between the PM and

the edge of the rotating copper wheel is

h ¼ 200 lm: 1-laser sensor, 2-cantilever,

3-PM.

TABLE I. Parameters in the prototype (Fig. 6).

Parameter Values

Dimensions of the permanent magnet (mm) 1� 1� 1

Velocity of the copper wheel (m/s) 0.95

Electrical conductivity of the copper wheel (S/m) 5.792� 107

Dimension of the cylindrical mimicking particle (mm) UD� 0.5

Dimension of the copper wheel (mm) U50� 5

Remanence of the permanent magnet (T) 1.2

Distance between the permanent magnet and plate (mm) 0.2
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parameters are identical to the parameters of the numerical

simulation. As shown in Fig. 8(a), the experimental data and

the three-dimensional numerical results are in fair agreement

and confirm the feasibility of LFPA.

Therefore, this three-dimensional numerical model dem-

onstrates the ability to simulate this problem. Though the

drilling of such small holes to mimic the insulating particles

was difficult, this experiment demonstrates the possibility to

FIG. 7. Eddy current redistribution evo-

lution for a cross-section at z ¼ 24:9 mm

(see Fig. 6) when a particle passes

through the EMSZ due to a permanent

magnet. The arrows indicate the eddy

current. We denote the time of the mov-

ing wheel at the point just beneath the

vertical center of the PM (see Fig. 6) by

T0. The five images span 3 ms: (a)

ðT0 � 1:5Þms, (b) ðT0 � 0:5Þms, (c)

T0 ms, (d) ðT0 þ 0:5Þms, and (e)

ðT0 þ 1:5Þms.
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simulate this problem physically. Indeed, we have been able

to investigate the functional variation of DF versus V in the

range from 10 lm to 200 lm using this three-dimensional nu-

merical model; the results are shown in Fig. 8(b). This find-

ing reveals that with the distribution of the magnetic field as

previously discussed in Section IV, and in the range of

particle size from 10 lm to 200 lm, the relationship is

approximately linear. Note the extremely low forces to be

measured, of the order of 10�7 N for a particle of 10 lm.

This requires a difficult and sensitive measurement, requiring

special techniques such as the AFM.23–25

V. DISCUSSION AND CONCLUSION

We have presented the principle of LFPA, a contactless

electromagnetic diagnostic method, two prototype experi-

ments, and two numerical simulations to verify the feasibil-

ity of the method at various scales. As demonstrated above,

LFPA possesses the ability to measure a small force. The

experiment depicted in Figure 4 demonstrates the detection

of 200 lm particles in a metal whose electrical conductivity

and force to be measured are on the order of 107 S=m and

10�4 N, respectively. This challenge appears straightfor-

ward when using a laser-cantilever system.23–25 Because

this force is proportional to the melt electrical conductiv-

ity,15,16,22 the technique should also be effective in semi-

conducting materials whose conductivity is of the order of

106 S=m. The force in that case, however, is of the order of

10�8 N in electrolytes where conductivity is approximately

105 times smaller than the conductivity of metals; this hin-

ders measurement.

The LFPA presented in this paper is a new application

of this type of electromagnetic device. It might suggest suc-

cessful improvements of existing technologies that require

significant purity of liquid or solid metallic alloys. For exam-

ple, in aluminum and steel continuous casting devices, any

inclusion of oxide should be detected and sized online, with-

out any contact, at the entry into the mold.
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