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Abstract Despite the progress made in digital signal

processing during the last decades, the constraints im-

posed by high data rate communications are becoming

ever more stringent. Moreover mobile communications

raised the importance of power consumption for sophis-

ticated algorithms, such as channel equalization or de-

coding. The strong link existing between computational

speed and power consumption suggests an investigation

of signal processing with energy efficiency as a promi-

nent design choice. In this work we revisit the topic of

signal processing with analog circuits and its potential

to increase the energy efficiency. Channel equalization

is chosen as an application of nonlinear signal process-

ing, and a vector equalizer based on a recurrent neural

network structure is taken as an example to demon-

strate what can be achieved with state of the art in
VLSI design. We provide an analysis of the equalizer,

including the analog circuit design, system-level simula-

tions, and comparisons with the theoretical algorithm.
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First measurements of our analog VLSI circuit confirm

the possibility to achieve an energy requirement of a

few pJ/bit, which is an improvement factor of three to

four orders of magnitude compared with today’s most

energy efficient digital circuits.
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1 Introduction

Energy efficiency became an essential aspect in recent

years, especially for mobile devices. The most recent

Green500 [2] and Top500 [21] rankings show that the

most efficient heterogeneous supercomputers can reach
peak performance of about five GFLOPS/Watt. De-

spite the effort to increase this value, the current trend

shows an ever-growing difficulty in improving the en-

ergy efficiency of digital circuits [3]. As an example,

in [14] the authors identify both physical and architec-

tural limitations of modern processors, and predict that

those barriers may severely hamper the reduction of the

required energy per operation in the future.

We address here alternatives offered by analog cir-

cuits. Some authors of earlier work in the field of ad-

vanced analog processing concluded that analog sys-

tems have the potential to improve the efficiency sub-

stantially [12]. Moreover, depending on the application,

there might be no need for additional A/D conversion

[4]. Analog signal processing is already advantageously

used for low-power low-frequency applications [22] and

is gaining momentum for applications in the millimeter-

wave frequency range [20].

Related to our work are activities in building cir-

cuits emulating functions of natural neural networks,
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e.g. the European “Human Brain” project [13]. In this

context it is common to use the term “neuromorphic

computing”, see also the early work by Mead [15]. In

contrast to neuromorphic computing, our focus is more

on common signal processing algorithms, usually real-

ized today with digital circuits or digital processors.

To demonstrate how far the energy efficiency can

be increased with state of the art VLSI design, in this

work, a vector equalizer (VE) [11] serves as an exam-

ple of a functional block requiring nonlinear processing.

The nonlinearity offers the chance to use analog circuits

out of their conventional field of linear signal processing,

with all its disadvantages, like accumulation of noise

and inaccuracies of circuits elements. The correspond-

ing algorithms achieve results as robust as their digital

counterparts. This is no surprise, since “digital circuits”

are in essence analog circuits with strong nonlinearities.

The paper is organized as follows: in Section 2 we

explain the background of our application, while in Sec-

tion 3 we analyze the structure of the algorithm. In Sec-

tion 4 we detail the design steps and the components

needed to implement a real-valued vector equalizer in

SiGe BiCMOS technology. Section 5 expands the theory

of the transmission model, of the algorithm, and of the

design steps, in order to handle a complex-valued vector

equalization. Sections 6 and 7 discuss simulation results

of the vector equalizer. Included is the analysis of the

penalty in the BER, introduced by a finite resolution

of the equalizer’s weights. Section 8 highlights the im-

provement in the energy requirement that is achievable

with an analog circuit design, while Section 9 shows

measurements on a real chip. Conclusions in Section 10

close the paper.

2 Background

The background for our application is an uncoded dig-

ital transmission over radio channels with multiple an-

tennas (multiple-input-multiple-output, MIMO). We as-

sume a linear modulation scheme. Fig. 1 shows a model

for such a transmission, which is a discrete-time model

on a symbol basis. More about this model and its re-

lation to the continuous-time (physical) transmission

model can be found in [11]. For a real-valued trans-

mission model the quantities in Fig. 1 are defined as

follows:

– k is the discrete-time symbol interval variable;

– x(k) is the transmit symbol vector of length N at

symbol interval k. We assume binary phase shift

keying (BPSK) modulation, i.e. xi(k) ∈ {−1,+1}
and the transmit symbol alphabet Ax contains 2N

possible transmit vectors of length N ;

Fig. 1 Discrete-time transmission model on a symbol ba-
sis for an uncoded transmission with linear modulation over
MIMO channels.

– R(k) is the discrete-time channel matrix on a sym-

bol basis. Its size is (N × N), it is hermitian and

positive semidefinite. We assume that the channel

state is known, with this information used to ap-

propriately configure the vector equalizer;

– ne(k) is a sample function of an additive Gaussian

noise vector process with zero mean and covariance

matrix given by Φnene
(k) = N0

2 · R(k). N0 is the

single-sided noise power spectral density;

– x̃(k) = R(k) ∗ x(k) + ne(k) is the received symbol

vector. ∗ denotes matrix-vector convolution [11];

– x̂(k) ∈ Ax is the decided vector at the output of the

vector equalizer (VE).

R(k) includes the antennas at the transmit and re-

ceive sides, the transmit impulses, and the multipath

propagation on the radio channel as well. In general it

is a sequence of matrices with respect to the symbol

interval variable k. Because we assume here no inter-

ference between symbol vectors (or “blocks”), k can be

omitted and it is sufficient to consider a transmission

of isolated vectors. The model in Fig. 1 can then be de-

scribed mathematically as in Eq. (1). The non-diagonal

elements R\d of the channel matrix lead to interference

between the components of the transmitted vectors at

the receive side. Refer to [11] for more details.

x̃ = R · x+ ne,

x̃ = Rd · x︸ ︷︷ ︸
signal

+ R\d · x︸ ︷︷ ︸
interference

+ ne︸︷︷︸
additive noise

,

R = Rd︸︷︷︸
diagonal elements

+ R\d︸︷︷︸
non-diagonal elements

.

(1)

The computational complexity of the optimum vec-

tor equalization (i.e. maximum likelihood, ML) grows

exponentially with N . Because this will result in an un-

realistic number of operations per symbol vector, sub-

optimum schemes have to be used. Our approach is to

use a recurrent neural network (RNN). The VE-RNN
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does not need a general training algorithm like back-

propagation, the entries of R can be measured and di-

rectly related to the weights of the RNN.

The application of the RNN as a vector equalizer has

been discussed first in the context of multiuser detection

for code division multiple access (CDMA) transmission

systems [8,24,16], see also [23,5]. It can be shown that

this RNN tries to maximize the likelihood function of

the optimum VE. In general it converges to a local max-

imum, but in many cases this local maximum turns out

to be close to or identical with the global maximum,

see e.g. [6].

3 Continuous-Time Recurrent Neural Network

The VE-RNN discussed before relies on a discrete-time

RNN. Analog circuit design requires continuous-time

RNNs [17], which have also been known for long time.

The dynamic behavior is described by a set of first order

nonlinear differential equations as in Eq. (2), where:

– t is the continuous-time evolution time variable;

– e is the external input vector of length N , where

N is the length of the transmit symbols, and corre-

sponds to the number of neurons in the RNN;

– T is a diagonal matrix with time constants τi on its

main diagonal;

– W is a (N ×N) weights matrix with entries wii′ ;

– W0 is a diagonal matrix with entries wi0 on its main

diagonal;

– u(t) is the state vector of length N ;

– v(t) is the corresponding output vector;

– v̂(t) = HD [v(t)] is the corresponding hard decision

(HD) output vector;

– ψi(·) is the ith element-wise activation function.

T · du(t)

dt
= −u(t) +W · v(t) +W 0 · e,

v(t) = ψ [u(t)]

= [ψ1[u1(t)], ψ2[u2(t)], ..., ψN [uN (t)]]
T
,

v̂(t) = HD [v(t)]

= [HD1[v1(t)],HD2[v2(t)], ...,HDN [vN (t)]]
T
.

(2)

Fig. 2 shows a resistance-capacitance structure for

a real-valued continuous-time RNN [7]. The stability of

this RNN in the sense of Lyapunov has been intensively

investigated, e.g. in [10]. τi = Ri ·Ci is the time constant

of the i-th neuron. The weights in Eq. (2) above are

related to the resistors in Fig. 2 by normalization as

follows: wii′ = Ri

Rii′
, wi0 = Ri

Ri0
. To distinguish between

Fig. 2 Resistance-capacitance structure of a real-valued re-
current neural network in continuous-time domain.

resistors and channel matrix, the symbol for the channel

matrix is bold.

3.1 Equalization based on Continuous-Time Recurrent

Neural Networks

The vector equalizer discussed in Section 2 works on a

symbol basis and is discrete in time. This means that

the clock for the VE is kTs, with k being the discrete

time variable and Ts the symbol interval for the digital

transmission. The RNN in Fig. 2 works equally with

the parallel input of a symbol vector, but is continu-

ous in time. In order to connect the vector equalizer of

Fig. 1 with the network of Fig. 2, the following condi-

tions must be fulfilled, cf. Eqs. (1), (2):

– The continuous-time RNN requires a minimum in-

terval of time to perform the equalization of a vec-

tor. This time slot is here defined as the total equal-

ization time tequ. It follows that the symbol interval

Ts for the digital transmission is constrained by the

equalization time, i.e. Ts ≥ tequ;

– e = x̃: the external input vector of the RNN repre-

sents the received symbol vector;

– v̂(tequ) = x̂: the output vector of the RNN – after

an equalization is performed and after the hard de-

cision – is coincident with the decided vector of the

discrete-time VE;
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– W 0 = R−1d : the weights for the external inputs of

the RNN are computed from the diagonal elements

of the channel matrix. In the following we consider

only normalized channel matrices, i.e. calling I the

identity matrix, R−1d = Rd = I;

– W = I −R−1d ·R: feedback paths between the dif-

ferent neurons are related to the intersymbol inter-

ference and are taken from the channel matrix. Un-

der the hypothesis of normalized channel matrices,

W = −R\d, i.e. the weight matrix corresponds to

the additive inversion of the non-diagonal elements

of the channel matrix, with zeros on the main diag-

onal (neurons with no self feedback);

– τ1, τ2, · · · , τN = τ : all time constants have the same

value;

– ψ1[(·)1], ψ2[(·)2], · · ·ψN [(·)N ] = ψ[(·)i]: all neurons

possess the same activation function. The activation

function applied to a generic element of the state

vector is defined as a hyperbolic tangent: ψ[ui(t)] =

α ·tanh(β ·ui(t)). Here, α = 1 V gives the dimension

of Volts to the activation function, while β [V−1]

is a positive variable which must be optimized for

achieving best performance. From our simulations,

the condition to fulfill is β ≥ 3 V−1;

– HD[vi(t)] = sign(vi(t)): the hard decision applied to

a vector element has the codomain {−1,+1}.

With those assumptions, and applying the update

rule of the first Euler method, Eq. (2) can be simulated

on a digital computer:

u(l + 1) =

{
1− ∆t

τ

}
u(l) +

∆t

τ
{W · v(l) + e} ,

v(l) = ψ[u(l)].

(3)

l is now a discrete time variable, connected to the tem-

poral evolution of the network. ∆t is the sampling step,

which should be as small as possible. For our simula-

tions we assume τ/∆t = 10. Since the RNN is Lyapunov

stable, v̂(t) reaches an equilibrium state after the evolu-

tion time, i.e. for l = tequ. The above stated conditions

are valid for BPSK, but can be generalized by combin-

ing the results of [10,18,19].

3.2 Scaling

The dynamic systems of Eqs. (2) and (3) must fit the

limited voltage swings that an analog circuit can han-

dle. It is thus convenient to introduce a dimensionless

scaling factor S:

u′(t) = S · u(t), v′(t) = S · v(t), e′ = S · e. (4)

The scaled set of equations, describing the dynamical

behavior of the continuous-time RNN, can finally be
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Fig. 3 System-level view of a real-valued equalizer, com-
posed by N = 4 neurons.

written as:

T · du′(t)

dt
= −u′(t) +W · v′(t) + e′,

v′(t) = S ·ψ
[
u′(t)

S

]
.

(5)

4 Real-Valued Equalizer

Potential implementations of a RNN cover a wide vari-

ety of solutions, from a discrete-time RNN implemented

with field programmable gate arrays (FPGA) – as in

[23] – to continuous-time analog hardware – as in [1] and

[9]. Since here we focus on speed of operation and power

efficiency, analog VLSI design and the continuous-time

RNN will be the topic.

The resistance-capacitance model of Sec. 3 offers a

very compact and descriptive view of a continuous-time

RNN. It is useful for the stability analysis and for the

algorithm definition, but is not of practical realization,

the main issue being the presence of tunable resistors

that must cover both a positive and a negative range

with very fine resolution, according to the weights con-

figuration.

4.1 Circuit Design

The system-level view of the actual equalizer is pre-

sented in Fig. 3. It refers to a real-valued vector equal-

izer with N = 4 neurons, designed in IHP 0.25 µm

SiGe BiCMOS technology (SG25H3). Fig. 4 shows the

functional view of one single neuron, with Fig. 5 finally

presenting the schematic circuit. For each neuron the

input/output ports are expressed in Volts. The circuit
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Fig. 4 Functional blocks of the ith neuron for a real-valued
equalizer. Req and Ceq are an equivalent parasitic impedance
between node u′i,tot and ground.

is fully differential and the bipolar junction transistors

(BJTs) are assumed ideally matched.

The first set of inputs that the ith neuron takes

is represented by the feedback inner state elements u′k
from all other neurons in the RNN (k ∈ [1, ..., N ], k 6=
i). The activation function (ϕ in Fig. 4) is realized with

a differential transconductance (TC) stage (transistors

Q1 and Q2 in Fig. 5), biased with a tail current It,

generated through a current mirror. This results in a

large-signal output current as follows:

Ik = ϕ [u′k] ∈ [-It, It]

≈ It · tanh

(
u′k

2 · Vt

)
(6)

Using a four quadrant analog multiplier (Gilbert

cell), each feedback current Ik is multiplied by a weight

wik in the range [−1,+1]. The value of wik is set to the

corresponding entry of the channel matrix. The Gilbert

cell (TC stage f in Fig. 4, quartet of transistors Q3-Q6

in Fig. 5) is controlled by the voltage Vik and a constant

reference voltage Vref. An attenuator – in the form of a

common emitter amplifier with gain lower than unity –

allows each individual feedback current Iik to be tuned

with fine resolution:

Iik = f [Vik] ∈ [-Ik, Ik]

= wik · Ik
(7)

Connecting the output branches of the Gilbert cells,

the total weighted feedback current for the ith neuron

Ii,tot is obtained by applying Kirchhoff’s current law:

Ii,tot =

N∑
k=1
k 6=i

wik · Iik (8)

Two common collector transistors (Q8, Q9), biased

by the same current Ii,tot used for the summation of the

feedback currents, create an additional differential volt-

age drop on u′i,tot, proportional to the correspondent

-

R'

Q1 Q2

Q3 Q4 Q5 Q6

I k
(+)

V ik

uk

-

I ik
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Current 
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I t
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'
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(d)

+

-

Q10

Q11

Fig. 5 Circuit schematic for the ith neuron: (a) Differen-
tial pair for the generation of the activation function ϕ(·),
and Gilbert cell used as four quadrant analog multiplier; (b)
MOSFET switch used as a sequencer; (c) Common collector
stage for the external input; (d) Buffers.

external input e′i. Two additional buffer stages repli-

cate the differential voltage u′i,tot into u′i. The circuit is

provided with an integrated metal-oxide-semiconductor

field-effect transistor (MOSFET) switch. This switch

acts as a sequencer. Its importance will be clarified in

Sec. 4.2.

Considering the MOSFET switch in off state, we

make the assumption of an equivalent low-pass behav-

ior with time constant τ = Req ·Ceq, where Req and Ceq

mainly include the combination of the output impedance

of the Gilbert cells, of the load resistor R′, of the input

impedance of the buffer stages loaded by the subsequent

differential pairs, and of the parasitic capacitors of the

MOSFET switch. Layout losses of the interconnections

also play a role. In other words, to fully exploit the

speed of the BJTs, in this architecture an equivalent

low-pass filter, lumped at node u′i, is used in lieu of an

external low-pass filter. This allows for the minimiza-

tion of the the time constant τ – that is the basis for

scaling of the evolution time t. The validation of this

hypothesis, both in a simulation environment and in a
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Table 1 Summary of Main Circuit Parameters

Parameter Value Unit Note

R′ 900 Ω Load resistor

It 222 µA Tail current

S 0.2 Scaling factor

β 3.87 V−1 Hyperbolic tangent’s slope
at the origin

τ 42 ps Equivalent time constant

Achip 0.68 mm2 Chip area

Aact 0.087 mm2 Active area

Cnt 171 Transistor count

Wst 35 mW VE power consumption

measurement setup on the real chip, is presented in Sec.

9.

The nodal analysis on u′i(t) gives:

τ · du′i(t)

dt
= −u′i(t)−Req ·

N∑
k=1
k 6=i

wik · Ii + e′i (9)

u′i(t) represents the inner state that will be dis-

tributed to the other N − 1 neurons in the network.

Note also that – according to Eq. (2) – the sign of u

coincides with the sign of v, and can thus be used to

perform a hard decision at the end of an equalization.

Generalizing, the dynamics of the analog neural net-

work can be finally written in vector form:

T · du′(t)

dt
= −u′(t) +W · v′(t) + e′,

v′(t) ≈ Req · It · tanh
(
u′(t)

2 · Vt

)
.

(10)

The correspondence between the circuit model of

Fig. 3 and the resistance-capacitance model of Fig. 2 is

validated, if the following positions hold:

S = (Req · It)/α,
β = S/(2 · Vt).

(11)

The scaling factor of the circuit depends on the tail cur-

rent and on the equivalent resistive load. It also influ-

ences the slope of the hyperbolic tangent at the origin,

i.e. for a null differential voltage u′ = 0. Using the val-

ues provided in Table 1, Eq. (10) is linked to Eq. (5),

with scaling factor S = 0.2 and slope of the hyperbolic

tangent β = 3.87 1/V.

t

Low
High

Rst

e

u

t

t

uvalid

tev,min tRst,min

tev tRst

'

'

'

Fig. 6 Time domain evolution of an equalization. Because of
the iterative nature of the algorithm, the outputs are “valid”
after a minimum evolution time. A minimum reset time is
also necessary before a new equalization.

4.2 The Reset (Rst) Function

The VE-RNN is a dynamic system, where the network

evolves from an initial state (a saddle equilibrium point)

to a stable state, following a non-monotonic trajectory

in the state-space according to the set of equations in

Eq. (10). Given a sequence of input vectors e′, Fig. 6

details how the VE reaches stability (and consequently

when the output vector can be considered “valid”) and

how it is possible to discard the memory of a previous

equalization.

The evolution time tev is defined as the time slot

granted to the circuit, necessary to reach a stable state.

External inputs are applied only during this time slot.

Before the next input is applied, it is crucial that the

network returns – and stays pinned – to a predefined
initial state.

A reset time tRst can be defined as the time granted

to the circuit to return to the initial state after a vector

equalization. In our implementation the inner state u′

is forced to return to zero, an unbiased starting point,

equidistant from the 2N possible stable states. From the

circuit point of view this effect can be compared to a

capacitor which must be fully discharged at the begin-

ning of the equalization, in order to avoid a “memory”

of the previous equalization.

Rst is the reset signal, indicating if either an equal-

ization is running or the circuit is resetting. Rst acts on

the gate port of a MOSFET switch (the sequencer, in

Fig. 4 and 5). When high, Rst switches the two NMOS

FETs into a low channel resistance state, short circuit-

ing the differential internal state u′. The width of the

MOSFETs is chosen as a tradeoff between the para-

sitic capacitance seen with the switch in off state (to be

minimized, since it strongly contributes to the increase

of the equivalent τ) and the equivalent resistance seen
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in on-state (to be minimized, since it represents the

“goodness” of the short circuit).

For best performance, i.e. highest throughput, both

tev and tRst can be adjusted and minimized for each

channel matrix. This is translated in the statistical op-

timization of the evolution time tev,min and of the reset

time tRst,min, as shown in Sec. 6.

5 Complex-Valued Equalization

5.1 Theory of operation

The background and the dynamical behavior of a VE-

RNN can be extended to include quadrature phase shift

keying (QPSK) modulation. We introduce subscripts

“p” and “q” to refer to in-phase and quadrature com-

ponents of the symbols, of the noise, and of the matri-

ces. The discrete-time model of Fig. 1 and Eq. (1) still

holds with the following assumptions:

– xc = xp + jxq is the complex-valued transmit sym-

bol vector. xc,i ∈ {±1± j} and the transmit symbol

alphabet Axc
contains 4N possible transmit vectors.

The same complex notation is applied to the re-

ceived symbol vector x̃c and to the decided vector

at the output of the equalizer x̂c;

– Rc = Rp + jRq is the complex-valued discrete-time

channel matrix on symbol basis;

– nc,e is the complex-valued additive Gaussian noise.

A complex-valued continuous-time RNN is still de-

scribed by a set of first order nonlinear differential equa-

tions – cf. Eq. (2) – with the following modifications:

– ec = ep + jeq is the complex-valued external input

vector. Using the same notation, uc(t), vc(t), and

v̂c(t) are the complex-valued state vector, output

vector, and hard-decision vector, respectively.

– the weight matrix is now W c and has complex-

valued entries wc,ii′ = wp,ii′ + jwq,ii′ ;

– ψc[uc] = ψ[up] + jψ[uq]: the complex-valued ac-

tivation function is obtained by independently ap-

plying the real-valued activation function ψ to the

in-phase and quadrature components of the state

vector. The same procedure is valid for the complex-

valued hard decision function on the output vector:

HDc[vc] = HD[vp] + jHD[vq].

The resistance-capacitance model of Fig. 2 must be

extended to handle complex-valued quantities. If all the

variables are expanded in terms of their real and imag-

inary part, and considering the scaling of the system,

the set of equations in (5) can finally be separated as

follows:

Fig. 7 Equivalence between a complex-valued recurrent neu-
ral network withN neurons (a) and the interconnection of two
real-valued neural sub-networks (b).

T
du′p(t)

dt
= −u′p(t) +

[
Wpv

′
p(t)−Wqv

′
q(t)

]
+ e′p,

T
du′q(t)

dt
= −u′q(t) +

[
Wpv

′
q(t) +Wqv

′
p(t)

]
+ e′q,

v′p(t) = S ·ψ
[
u′p(t)

S

]
,

v′q(t) = S ·ψ
[
u′q(t)

S

]
.

(12)

As shown in Fig. 7, a complex-valued recurrent neu-

ral network with N = 4 neurons is equivalent to a

real-valued recurrent neural network of N = 8 neu-

rons, split in two sub-networks of N = 4 neurons. Each

sub-network accepts in-phase and quadrature part of

the received symbol, and will produce the in-phase and

quadrature part of the decided vector, respectively. The

N complex-valued feedback contributions are mapped

into 2·N real feedback paths for each sub-network. This
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Fig. 8 System-level view of a complex-valued equalizer com-
posed by N = 4 neurons. The definitions of the external in-
put, inner state, and voltages Vik are kept unchanged. Sub-
scripts “p” and “q” account for the real and imaginary parts
of the values, respectively.

is the approach used in this work to design the analog

complex-valued vector equalizer.

5.2 Circuit Design

The system-level view of the complex equalizer is shown

in Fig. 8. The ith neuron takes the ith complex-valued

element of the external input vector e′c and outputs the

ith complex-valued element of the internal state vector

u′c(t). Each neuron also accepts the complex-valued in-

ner state elements coming from the other neurons in the

network. The voltage Vp,ik covers the real part of the in-

terference from neuron k to neuron i. Correspondingly,

Vq,ik is used for the imaginary part of the interference.

All the neurons possess the reset (Rst) input port.

The functional view of the single neuron is shown

in Fig. 9, and the schematic is detailed in Fig. 10. The

mode of operation is based on TC stages. According

to the variable separation in Eq. (12), each neuron is

formed by two twin subsystems, with each subsystem

requiring 2·(N−1) transconductance stages to generate

the weighted feedback currents.

The first TC stage (“f” in Fig. 9) is formed by a

differential pair (Q2, Q5, and the two resistors for the

emitter degeneration in Fig. 10), biased with a tail cur-

rent It. The tail current is generated through a current

up ,k
(uq , k)

V p , ik

(-V q , ik)

Rst
f

I t

I p ,ik

(I q ,ik )

φ
'
'

I pp , ik( I qq , ik)

ep ,i g

I e

'
R'

up ,i

Ceq

'

I p , i

Req

I p ,i 0

2(N-1) TC stages 
for the inner state

TC stage for the
external input

uq ,k

(up , k)

V p , ik

(V q ,ik )

Rst
f

I t

I p ,ik

(I q ,ik )

φ
'
'

I pq , ik ( I qp , ik )

eq ,i g

I e

'
R'

uq ,i

Ceq

'

I q , i

Req

Iq ,i 0

Fig. 9 Functional blocks of a neuron, as part of a N = 4
complex-valued equalizer. The topology includes two twin
subsystems. Req and Ceq represent an equivalent parasitic
low-pass filter connected to the node u′p,i (or u′q,i).

mirror, not shown in the figure. Transistors Q3 and Q4

represent the sequencer for the Rst function.

With respect to the differential pair Q2-Q5, the se-

quencer is in a “winner takes all” configuration. During

the evolution time, Q3 and Q4 are biased with a base

voltage lower than both Q2 and Q5. Therefore they are

in off state, and the differential pair Q2-Q5 generates

a differential current Ip,ik function of the differential

voltage Vp,ik. When Vq,ik is concerned, the current is

denoted as Iq,ik. With Q3 and Q4 off (evolution time),

the input/output relations can be expressed as follows:

Ip,ik = f [Vp,ik] ∈ [-It, It]

= wp,ik · It
Iq,ik = f [Vq,ik] ∈ [-It, It]

= wq,ik · It

(13)

During the reset time the base voltage of Q3 and Q4

is higher than the base of both Q2 and Q5. The bias

current It flows only through Q3 and Q4, equally split,

and independent of Vp,ik(Vq,ik). With Q3 and Q4 on,

the differential currents Ip,ik and Iq,ik become zero:

Ip,ik = Iq,ik = 0, ∀(Vp,ik, Vq,ik) (Reset time)

The differential current Ip,ik (Iq,ik) biases a second

TC stage (ϕ in Fig. 9), formed by two differential pairs

in Gilbert cell configuration (Q6, Q7, Q8, Q9 in Fig. 10).

The large signal output current is a four-quadrant mul-

tiplication of the inner state u′p,k (u′q,k). Depending on

the subsystem under consideration, the input/output
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Fig. 10 Circuit schematic of a fully-differential subsystem, as part of a complex-valued vector equalizer.

relations can be expressed as follows:

Ipp,ik = ϕ
[
Vp,ik, u

′
p,k

]
∈ [-Ip,ik, Ip,ik]

= wp,ik · It · tanh

(
u′p,k
2 · Vt

)
Iqq,ik = ϕ

[
Vq,ik, u

′
q,k

]
∈ [-Iq,ik, Iq,ik]

= wq,ik · It · tanh

(
u′q,k
2 · Vt

) (14)



Ipq,ik = ϕ
[
Vp,ik, u

′
q,k

]
∈ [-Ip,ik, Ip,ik]

= wp,ik · It · tanh

(
u′q,k
2 · Vt

)
Iqp,ik = ϕ

[
Vq,ik, u

′
p,k

]
∈ [-Iq,ik, Iq,ik]

= wq,ik · It · tanh

(
u′p,k
2 · Vt

) (15)

An additional transconductance stage (g in Fig. 9,

Q12 and Q13 in Fig. 10) is used to generate a current

Ip,i0 (or Iq,i0), proportional to the in-phase (or quadra-

ture) ith element of the external input e′c. This stage is

optimized to provide a linear large signal output charac-

teristic (constant transconductanceG) among the range

of interest:

Ip,i0 = g
[
e′p,i
]
∈ [-Ie, Ie]

= G · e′p,i
Iq,i0 = g

[
e′q,i
]
∈ [-Ie, Ie]

= G · e′q,i

(16)

Connecting the output branches of the Gilbert cells,

the total in-phase differential currents (Ip,i) for the ith

neuron can finally be computed as in Eq. (17). For the

twin subsystem, the total quadrature differential cur-

rent of the ith neuron (Iq,i) is given in Eq. (18).

Ip,i = It ·
N∑

k=1
k 6=i

[
wp,ik · tanh

(
u′p,k
2 · Vt

)]
+

− It ·
N∑

k=1
k 6=i

[
wq,ik · tanh

(
u′q,k
2 · Vt

)]
+

+G · e′p,i

(17)

Iq,i = It ·
N∑

k=1
k 6=i

[
wp,ik · tanh

(
u′q,k
2 · Vt

)]
+

+ It ·
N∑

k=1
k 6=i

[
wq,ik · tanh

(
u′p,k
2 · Vt

)]
+

+G · e′q,i

(18)

As for the real-valued equalizer, an equivalent para-

sitic low-pass filter can be defined, mainly composed of

a physical load resistor R′, and the combination of (i)

the output impedance of the Gilbert cells connected to

the node u′p,i (or u′q,i), and (ii) of the input impedance
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of the transconductance stages, driven by u′p,i (or u′q,i).

Defining τ ≡ Req · Ceq, and choosing G = 1/Req, the

nodal analysis on nodes u′p,i and u′q,i respectively gives:

τ ·
du′p,i(t)

dt
= −u′p,i(t)−Req · Ip,i(t) + e′p,i,

τ ·
du′q,i(t)

dt
= −u′q,i(t)−Req · Iq,i(t) + e′q,i,

(19)

When written in vector form, the set of equations

in (19) corresponds to Eqs. (12), if S · α = Req · It and

β = S/(2 · Vt). Finally, the diodes D1 and D2 in Fig.

10 are used as voltage shifters, while the diodes D3 and

D4 are voltage limiting circuits.

6 Simulations Results

In this section two types of simulations, run on general-

purpose computers, of the continuous-time RNN equal-

izer are compared and shortly discussed: one represents

Eq. (3) simulated in Matlab, and labeled in the fol-

lowing as “algorithm”. The second is a circuit-based

simulation, performed in Keysight ADS, and labeled as

“circuit”. The modulation is BPSK, and the number

of neurons is four. Here results are presented for two

channel matrices:

Rm =


1 +0.60 +0.60 +0.60

+0.60 1 +0.60 +0.60

+0.60 +0.60 1 +0.60

+0.60 +0.60 +0.60 1



Rh =


1 +0.85 +0.66 -0.67

+0.85 1 +0.85 -0.79

+0.66 +0.85 1 -0.89

-0.67 -0.79 -0.89 1


They are representative of channels with moderate

(Rm) and high (Rh) crosstalk (interference between

vector components), respectively. A pseudo-random se-

quence of symbol vectors was generated and multiplied

with one of these matrices. Gaussian noise vectors ac-

cording to the Eb/N0 signal-to-noise ratio were then

added. Eb is the average energy per bit. For the circuit

simulations all the applied signals have a rise/fall time

of tr/f = τ/3.

Fig. 11 shows the good agreement of the bit error

rate (BER) curves between the algorithm and the cir-

cuit simulation. Since the vector equalization based on

RNNs is a suboptimum scheme, the Maximum Likeli-

hood curves are also shown for reference.

Because of the iterative nature of the RNN algo-

rithm, the BER is – additionally to Eb/N0 – a function

of the evolution (tev) and reset (tRst) time. Given a

channel matrix, a BER surface is obtained by sweeping

Eb/N0 [dB]
0 1 2 3 4 5 6 7 8 9

B
E

R

10 -4

10 -3

10 -2

10 -1

Algorithm
Circuit
Max Likelihood

(a) BER vs. Eb/N0 for moderate crosstalk Rm

Eb/N0 [dB]
0 2 4 6 8 10 12 14 16 18

B
E

R

10 -4

10 -3

10 -2

10 -1

Algorithm
Circuit
Max Likelihood

(b) BER vs. Eb/N0 for high crosstalk Rh

Fig. 11 BER evaluation of the continuous-time RNN equal-
izer, including circuit and algorithm simulations. Maximum
Likelihood algorithm shown for reference.
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2
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Fig. 12 Rh BER surface for different evaluation and reset
times, and constant signal-to-noise ratio. Flat performance in-
dicates that (i) the circuit reaches a proper stable equilibrium
point, and (ii) does not possess memory of a previous equal-
ization. Note: circuit-based simulation performed in Keysight
ADS.

the evolution and reset time, and keeping the signal-to-

noise ratio constant, as shown in Fig. 12 for a circuit-

based simulation with interference given by Rh and

Eb/N0 = 18 dB. Following this optimization procedure,

and considering the region in which the BER perfor-

mance becomes flat, values for the minimum equaliza-

tion (tev,min) and reset (tRst,min) time can be found.
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{
Rm : [tev,min, tRst,min] = [3.67, 1.33]τ

Rh : [tev,min, tRst,min] = [4, 2]τ

tequ = tev,min + tRst,min is the total equalization time,

i.e. the minimum relative time between two successive

symbol vectors. tequ must be equal or smaller than the

symbol interval Ts of the digital transmission. With the

numbers from before and τ = 42 ps (see Sec. 9) we get

Ts for the worst case channel Rh:

Ts ≥ (4 + 2) · 42 ps = 252 ps,

corresponding to a throughput of four GSymbol/s (16

Gbit/s). For the BER simulations of Fig. 11, the mini-

mum values for Ts were taken.

7 Weights Discretization

For both a real-valued (cf. Sec. 4.1) and a complex-

valued (cf. Sec. 5.2) vector equalizer the differential

transconductance stages f provide the multiplication

of a differential current signal, as a function of an ana-

log voltage. All the weights for the equalizer can be in

principle configured to assume any value in a range be-

tween [-1,+1] with any precision (see also Sec. 9). As

shown in Fig. 13 (a), this section is concerned with the

resolution D of the weights, such that the BER of the

equalizer with finely spaced discrete weights approaches

the BER of an equalizer, driven by precise analog val-

ues. Results of this study are presented in Fig. 13 (b) for

a QPSK modulation with the complex-valued channel

matrix in Eq. (20).

Rcx =


1 0.25-j0.10 -0.15+j0.15 +0.15+j0.20

R∗12 1 -0.10-j0.35 +j0.10+j0.15

R∗13 R∗23 1 -0.35+j0.00

R∗14 R∗24 R∗34 1


(20)

With D = 1 bit the equalizer does not work cor-

rectly, and the BER presents an error floor. With a

resolution D = 2 bits the vector equalizer shows a SNR

loss of ≈ 3 dB (with respect to an equalizer, driven

by precise values) at a BER = 10−2. The SNR loss

decreases to approximately 0.6 and 0.3 dB, with reso-

lutions D = 3 and 4 bits, respectively. The SNR loss

falls to a value of ≈ 0.01 dB for D = 6 bits, and a

similar behavior is observed for different matrices. We

conclude that a digital-to-analog converter (DAC), cov-

ering the whole range of weights [-1,+1] with resolution

D = 6 bits, is sufficient to mimic the performance of an

equalizer without discretization error.

(a)

E
b
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0
 [dB]
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B
E

R

10
-4

10
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10
-2

10
-1

'1' bit DAC

'2' bits DAC

'3' bits DAC

'4' bits DAC

'6' bits DAC

No discr. error

(b)

Fig. 13 Weights discretization error: (a) Discrete-time
model on symbol basis with discrete weights control; (b)
BER vs. Eb/N0 for crosstalk Rcx, parameterized for different
weights resolutions. Setup: 223 input bits, tev = tRst = 5 τ .

8 Energy Requirement

Digital and analog signal processing rely on highly di-

verse theories of operation. A common denominator be-

tween the two domains can be found in the energy re-

quirement (ER), here defined as the ratio between the

power requirements of an architecture [Watt] and its

bit rate, i.e. the number of bits per second the archi-

tecture is able to equalize. All other aspects, e.g. the

area requirement, are excluded from the comparison.

ER has dimensions of [J/bit], so the the smaller ER

the more energy efficient the system is. This definition

of energy requirement allows to compare very diverse

architectures, overcoming the problem of an analysis

solely relying on performance, i.e. a pure benchmark.

ER [J/bit] =
Power [W]

Bit rate [bit/s]
(21)

Digital solutions included in this comparison are

ranked in terms of floating point operations per sec-

ond (FLOPS) and of the related power consumption.

The conversion between FLOPS and bit rate is achieved

by considering (i) the algorithm complexity (how many

floating point operations are required by the algorithm
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Table 2 Algorithm complexity

Equalization complexity per neuron
Real valued Complex valued

Mult N − 1 4 ·N − 4

Sums N 4 ·N − 2

tanh(·) 1 2

per vector equalization), and (ii) the degree of paral-

lelization (how many bits are produced in parallel af-

ter an equalization). The algorithm complexity is com-

puted as follows (cf. Table 2): for a real-valued equal-

ization, each neuron requires three multiplications, four

sums, and one hyperbolic tangent computation per it-

eration. We assume that each operation corresponds

to one FLOP, and that ten iterations are sufficient to

equalize a vector. This results in an algorithmic com-

plexity of 320 floating point operations per equalization.

The output parallelization is equal to N .

Summarizing, the energy requirement for the digital

solution (ERdig) can be written as:

ERdig =
Power

Outputs · (FLOPS/Algorithm)
(22)

The analog solution represents an application spe-

cific integrated circuit, i.e. the algorithm complexity is

hardwired in the circuit design. The bit rate is com-

puted from the equalization time tequ, function of the

time constant τ . With regards to the power consump-

tion, in our design static power is the dominant param-

eter involved. The energy requirement for the analog

implementation can then be written as:

ERan =
Power

Outputs · (1/Equalization time)
(23)

Fig. 14 shows the energy requirement comparison

for the case of a N = 4 neurons real-valued equalizer.

Cyan squares represent the ten fastest architectures, as

ranked in the Top500 list in June 2015 [21]. The rate

of execution lies between 50 and 400 Tbit/s, but the

power requested to achieve such performance is between

1 and 20 MW. Those architectures show on average an

ERdig ≈ 50 nJ/bit. Green triangles are representative

of the ten most efficient architectures, as ranked in the

Green500 list in June 2015 [2]. Those system can per-

form an equalization with bit rates approximately rang-

ing from 2 to 10 Tbit/s, with power consumptions in

the range of 30-200 kW. The average energy require-

ment is ERdig ≈ 18 nJ/bit. Located at the bottom left

corner of the picture, red circles show the performance

of five commercial general purpose processors1. Those

single-processor architectures cover bit rates between

Bit Rate [bit/s]
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P
ow

er
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]
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10-1

100

101
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50 nJ/bit

18 nJ/bit

60 nJ/bit

2.27 pJ/bit

Energy Efficiency - Comparative Analysis

Top500 - June 2015 Green500 - June 2015

Single Processors Analog Implementation

Fig. 14 Energy requirement comparison between digital and
analog real-valued vector equalizers, with N = 4 neurons.

300 Mbit/s and 2 Gbit/s, with power requirements ap-

proximately spanning from 10 to 100 W. The average

energy requirement is ERdig ≈ 60 nJ/bit.

Finally, the analog solution presented in this work

allows for the equalization of 16 Gbit/s, already out-

performing single-processors architectures in terms of

pure performance. Most important, the analog vector

equalizer requires a static power of only 35 mW (mea-

sured on the real chip, cf. Fig. 18 in Sec.9). With an

energy requirement ERan ≈ 2 pJ/bit, we can conclude

that our dedicated hardware shows an efficiency im-

provement between three and four orders of magnitude

over the digital counterparts.

The advantage of the analog solution is maintained

in the case of a complex-valued equalizer. The power

consumption of a digital architecture – as well as its

performance in FLOPS – is assumed as constant. The

output parallelization doubles (from N parallel bits for

a real-valued equalization to 2 · N bits for a complex-

valued one). As derived from Eq. (12) and listed in

Table 2, the algorithmic complexity increases to 1120

floating point operations per equalization, for a complex-

valued equalization with N = 4 neurons.

The complex-valued analog equalizer of Sec. 5 is de-

signed with a power consumption P ≈ 85 mW, and a

time constant τ ≈ 160 ps. Assuming a sufficient equal-

ization time tequ = 6 τ , also the complex equalizer

shows an energy efficiency improvement of three orders

of magnitude.

1 Microprocessors included in the comparison [Name, de-
clared peak performance, TDP]: (1) Intel i7-3930k, 153
GFLOPS, 130 W; (2) Intel i7-3840QM, 89.6 GFLOPS, 45 W;
(3) Intel i5-3570, 108.8 GFLOPS, 77 W; (4) Intel i5-3610ME,
43 GFLOPS, 35 W; (5) Intel i3-3229Y, 22.4 GFLOPS, 13 W.
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Fig. 15 Single neuron characterization: realized test struc-
ture, including the single neuron (cf. Fig. 3), an equivalent
load and additional buffers to facilitate the measurements.
The inner state u′k is accessible and used to generate the
feedbacks for the ith neuron.

9 Measurement Results

Our first measurements focused on the functional vali-

dation of the single neuron for real-valued equalizations:

weighted multiplication, β of the activation function,

and cutoff frequency, i.e. the equivalent time constant

τ . For this purpose the circuit of Fig. 15 was realized

using a 250 nm SiGe BiCMOS fabrication process by

IHP. The test structure was bonded and mounted on a

Rogers RO4003 printed circuit board (PCB).

The feedback states u′k for the ith neuron, com-

ing from the other neurons (k ∈ [1, ..., N ], k 6= i), are

here externally generated and directly applied. Pro-

vided that the neuron under test also drives an identical

load (N −1 transconductance stages) as in the full vec-

tor equalizer, the characterization of this elementary

cell remains valid at system level.

Fig. 16 shows the gain variation wik as a function

of the voltage Vik applied. The values are computed by

applying a sinusoidal excitation to u′k and by measuring
magnitude and phase of u′i before the corner frequency

given by τ , at a frequency of 0.1 GHz. The attenuator

– cf. Fig. 4 and 5 – allows the weights to be fine-tuned,

within a span of 1.2 V. The measured curve presents

a shift ∆Vik ≈ 0.1 V with respect to simulations. This

shift can however be easily calibrated in the measure-

ment setup and has not any impact on neuron’s perfor-

mance.

The slope of the activation function β at the ori-

gin – cf. Eqs. (2) and (5) – is a free parameter that

can be optimized. From our simulations, the condition

to fulfill for best performance is β ≥ 3 V-1. Measure-

ments performed at 0.1 GHz resulted in a value of 3.47,

slightly smaller than the simulated one β = 3.87 V-1.

Reasons can probably be imputed to small losses in the

measurement setup.

The equivalent τ for time scaling can be measured

by applying a sinusoidal excitation to the external input

e′i and measuring the frequency response at the neuron

output u′i. Fig. 17 (a) shows the simulated transfer func-

Vik [V]
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w
ik
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Fig. 16 Voltage mapping wik = f [Vik] ∈ [−1, 1]. Blue
squares represent measured values.
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measurement, and comparison with simulation results.

Fig. 17 Equivalent τ of a single neuron. Measurements con-
firm the hypothesis of a first-order low-pass filter comparable
to an ideal low-pass RC filter, lumped between u+

i and u−i .

tion |u′i/e′i| and a comparison with an ideal RC low pass

filter with cutoff frequency of 3.79 GHz (τ = 42 ps). The

hypothesis of a frequency response which resembles an

ideal RC behavior is confirmed by Fig. 17 (b), show-

ing the single-input single-output |u+i /e
+
i |measurement

and the comparison with the expected curve.

Having the single neuron validated by measurement

data, a full vector equalizer has been fabricated (Fig.

18). The chip area of 0.68 mm2 is dominated by the

several pads needed for measurements. The pin config-

uration is the following: four differential external inputs

(pads 1, 2, 3, 4, 5, 6, 7, 8), four differential outputs (pads
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GND     1      2      3       4      5      6      7      8    GND

9

10

11

GND                 21    19            16    14               GND

23     22    20    18    17    15    13    12

26

25

24

Fig. 18 Layout of the vector equalizer and pin configuration.

9, 10, 11, 12, 23, 24, 25, 26), six pins for the weights con-

figuration (pads 13, 14, 18, 19, 20, 21), reset (pad 15),

voltage supplies (pads 16, 17, 22) and grounds (square

pads). The active area is approximately 0.09 mm2, with

a transistor count CNT = 171 for four neurons. The

power consumption of 35 mW was measured, confirm-

ing simulation results.

A descriptive test to check the functionality of the

equalizer connections is shown in Fig. 19. The equalizer

is tested with a set of input vectors e′ with equal ele-

ments (e′i = e′, i ∈ [1, ..., N ]) and the steady state out-

puts u′ are measured. If the weights are set equally for

all the neruons (wik = w, k ∈ [1, ..., N ], k 6= i), the ex-

pected transfer characteristic u′ = f(e′) complies with

the following transcendental scalar equation:

u′ − w · (Sα) · (N − 1) · tanh

(
u′

2 · Vt

)
= e′ (24)

The numerical solution of Eq. 24 with w = 1 shows a

hysteresis loop, described by the model in Eq. (25): bneg
and bpos are two switching boundaries. When the input

is outside the boundaries, one unique solution exists for

Eq. (24). When the input is within the boundaries, the

output presents two stable solutions. The choice of the

“plus” or “minus” sign in Eq. (25) then depends on the

last crossed boundary. If the input last crossed bpos, the

numerical solution is with the plus sign. Otherwise, the

solution with the “minus” sign is the correct one.

u′ =


e′ + (Sα)(N − 1), ∀ e′ ≥ bpos
e′ − (Sα)(N − 1), ∀ e′ ≤ bneg
e′ ± (Sα)(N − 1), ∀ bneg < e′ < bpos

(25)

In other words, because of the neurons’ strong non-

linearities, as the external input increases and reaches

the boundary bpos, the internal state flips from a nega-

tive to a positive value. As the external input decreases

and reaches the boundary bneg, the inner state switches

from a positive to a negative value. The good agreement

between simulations and measurements is confirmed by

External input vector e' [V]
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

In
n
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te
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' 
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-0.5
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1

1.5
b
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b
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Fig. 19 Hysteresis curve resulting from a numerical solution
of Eq. (24): comparison between simulations (black line) and
measured data (blue circles).

Fig. 19, where all the four differential outputs are mea-

sured for each differential external input vector e′.

10 Conclusions

Given the current trend of wireless and mobile commu-

nications, implementing complex algorithms, achieving

high data rates, and at the same time minimizing the

power consumption of a digital signal processing system

is becoming extremely challenging. And the situation is

not likely to be reversed in the near future, by scaling

the minimum feature size of transistors. Our intention is

to turn this challenge into an opportunity to revitalize

the topic of analog signal processing, i.e. implementing

algorithms with efficient dedicated analog circuits.

As an application of analog nonlinear signal process-

ing we presented a vector equalizer for MIMO transmis-

sions, realized in SiGe BiCMOS technology. The equal-

izer can handle vectors of length N = 4 for either BPSK

or QPSK modulation schemes.

Bit error rate performance comparisons showed vir-

tually the same or similar behavior for the common

digital signal processing and the analog VLSI circuit

version. The reason for the comparable robustness –

the input is noisy – is that both types of processing

use equilibrium states of nonlinear dynamical systems

to get the outputs, rather than simple amplitude levels.

The throughput of the vector equalizer is influenced

by the evolution time the analog RNN needs to reach

the equilibrium state. This time in turn depends on

the equivalent time constant τ . In our circuit design

the throughput was maximized by exploiting the low-

pass behavior, given by parasitic capacitances of bipo-

lar transistors and MOSFETs. Furthermore, an on-chip

switch gives the possibility to reset the internal states

of the equalizer – a fundamental prerequisite to handle

a sequence of vectors.

The analog vector equalizer does not need an analog

to digital conversion of the inputs, but needs to be con-
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figured with proper weights, representing the channel

state. We showed that the optimum interface requires

a DAC with a minimum resolution of six bits.

The set of measured data confirmed the expected

characteristics of a single neuron. Also the equalizer

was tested with a predefined set of input-output vec-

tors, and always confirmed the simulation results. In

comparison with common digital signal processing we

conclude that the energy efficiency can be improved by

some orders of magnitude. This confirms earlier con-

jectures, stating a huge potential for nonlinear signal

processing with analog circuits.
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