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Abstract—Satellite-based synthetic aperture radar (SAR) has
been proven to be an effective tool for ship monitoring. Offshore
platforms monitoring is a key topic for both safety and security of
the maritime domain. However, the scientific literature oriented
to the observation of offshore platforms using SAR imagery is
very limited. This study is mostly focused on the analysis and
understanding of the multipolarization behavior of platforms’
backscattering using dual-polarization X-band SAR imagery.
This study is motivated by the fact that under low incidence
angle and moderate wind conditions, copolarized channels may
fail in detecting offshore platforms even when fine-resolution
imagery is considered. This behavior has been observed on both
medium- and high-resolution TerraSAR-X/TanDEM-X SAR
imagery, despite the fact that platforms consist of large metallic
structures. Hence, a simple multipolarization model is proposed
to analyze the platform backscattering. Model predictions are
verified on TerraSAR-X/TanDEM-X SAR imagery, showing that
for acquisitions under low incidence angle, the platforms result
in a reduced copolarized backscattered intensity even when fine
resolution imagery is considered. Finally, several solutions to
tackle this issue are proposed with concluding remark that the
performance of offshore observation.

Index Terms—Maritime safety and security, offshore platforms,
polarimetry, radar, synthetic aperture radar (SAR), target detec-
tion.

I. INTRODUCTION

the recent discovery of a significant number of deposits
in the seabed increased the amount of offshore installations [1].
A complex infrastructure is required to drill wells, extract, pro-
cess, and temporarily store crude oil and natural gas; hence, for
operational reasons, the offshore installations were restricted to

T ODAY oil and gas extraction is mostly onshore; however,
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shallow waters, such as the North Sea, till the advent of deep
water drilling technologies. The increased number of installa-
tions, the nature of mechanical drilling operations, and extreme
weather situations (e.g., hurricanes) make offshore platforms
potential environmental threats. One example is the well oil
blowout at the Deepwater Horizon platform drilling site in the
Gulf of Mexico (GoM). Furthermore, since floating produc-
tion system is dynamically positioned, they are obstacles for
yachts, merchant ships, and low flying airplanes creating poten-
tial threats to the safety of maritime traffic [2]. In conclusion,
a continuous monitoring of offshore platforms is a matter of
maritime safety and environmental security.

Traditional surveillance techniques, like coastal-based radars,
flight surveys, or patrol control can provide abundant informa-
tion on platforms locations, but only with limited spatial and
temporal coverage and at a high cost for equipment and man-
power. Platforms owners have obviously all the information
needed to create an updated database, but they are usually ad-
verse in sharing this data with competitors or publically for
business reasons. However, thanks to the huge development in
Earth observation satellites, such information can be accessed
at relatively low cost, over large areas, and in a regular manner.

The monitoring of ocean metallic targets, i.e., ships and
oil/gas rigs/platforms, with satellite-based synthetic aperture
radar (SAR) has been proven to be effective because of radar
almost all-weather and all-day acquisition capabilities [3]. In
principle, any metallic target over the ocean surface is responsi-
ble for a lager backscattering, compared to the one coming from
the surrounding sea surface. For this reason, offshore platforms
are expected to appear in SAR intensity images as spots brighter
than the background sea (see Fig. 2(a)). Several algorithms have
been developed that detect metallic targets in SAR imagery by
searching for bright pixels on a darker background [4]-[10].
Among approaches based on single-polarization SAR archi-
tectures, the constant false alarm rate is the most utilized. To
improve detection performance, techniques that exploit also the
phase contained in single look complex (SLC) SAR data have
been proposed [11]-[15]. However, the information provided by
backscattered intensity collected by a single-polarization SAR
is not always sufficient to effectively observe metallic targets.
The availability of SAR satellites with multipolarization capa-
bilities, hereafter POISAR systems, triggered the development of
a number of novel algorithms to detect targets at sea [16]—[25].
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(a)

Fig. 1.
signature. (b) Schematic sketch of the different signature contributions.

For the purpose of this study, it is worth mentioning that scien-
tific literature focused on the observation of offshore platforms
using SAR imagery is very limited. An example of this kind
of analysis is given in [26] where Casadio et al. have built the
database of platforms positions obtained by multitemporal EN-
VISAT ASAR acquisitions in 2008 for the North Sea area. This a
priori information has then been used to quantify night-time gas
flaring at offshore extractions sites by using along track scanning
radiometer. This study clearly witnesses that to ensure temporal
sampling dense enough, wide swath SAR imagery is needed.
In [27], full-polarimetric SAR measurements are exploited to
both observe metallic targets (exploiting combinations of co-
and crosspolarized channels) and detect sea oil slicks (exploit-
ing copolarized channels). However, full-polarimetric SAR has
a limited swath coverage that may prevent its operational use
for offshore platform monitoring.

A. Motivations

In this study, offshore platform monitoring is discussed using
dual-polarization X-band SAR imagery. The analysis is under-
taken using a dataset of TerraSAR-X/TanDEM-X (TS-X/TD-X)
imagery collected over a test site in GoM at low and high inci-
dence angles. The motivation behind this study is the observation
that under low incidence angle (around 20°) and moderate wind
conditions, copolarized channels may fail in detecting offshore
platforms even when fine-resolution imagery is considered. This
behavior has been observed at first in medium-resolution TS-
X/TD-X single-polarization SAR imagery, despite the fact that
platforms are large structures that extend for several tens of me-
ters above the sea level. In order to explain such phenomenon a
simple backscattering model is proposed for the platforms. Such
model is then tested using dual-polarimetric TS-X/TD-X data.
Finally, a detection exercise is performed to show that when
copolarized channels are coherently combined, platforms can
be successfully observed even at low incidence angles. This
witnesses the key role played by the interchannel phase in
improving observation performance. This study is mostly fo-
cused on the observation and understanding of the polarimetric
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Schematic sketch of the radar signatures observed in medium-resolution X-band SAR data. (a) TS-X WSC patch showing the typical platform backscatter

behavior of platforms and a following work will be carried out in
the future that will deal with the comparison of different detec-
tors to understand which one should be used in each acquisition
conditions.

The remainder of this paper is structured as follows: In
Section II, the backscattering model is briefly sketched; in
Section III, multipolarization platforms backscattering are ana-
lyzed using actual SAR imagery; while in Section IV, detection
performance is discussed using both coherent and incoherent
dual-polarimetric features. Finally, conclusions are drawn in
Section V.

II. BACKSCATTERING MODEL

To introduce the platform backscattering model, a region of
interest extracted from medium-resolution X-band SAR data,
that includes sea surface and the target under investigation, is
shown in slant range—azimuth coordinate in Fig. 1(a). Note that
the spatial resolution is 2.6 m x 40 m (slant-range x azimuth)
and the incidence angle at the platform location is 8 = 39°.6.
Platforms installed in shallow water consist of vertical metallic
towers sustained by submersed pylons fixed to the sea floor.
Fig. 1(b) shows an interpretation of the different scattering con-
tributions for a given azimuth angle. The tower’s altitude can be
of several tens of meters, and, hence, it may cause several scat-
tering mechanisms that results in multiple bright spots aligned
along the range direction (indicated by the yellow arrows in
Fig. 1(a)). The first mechanism is due to what is commonly
referred as layover (dashed red line path in Fig. 1(b)): the direct
reflection from the highest structures of the platform and it will
be located before the actual position of the platform. The sec-
ond mechanism is mainly caused by double reflections between
the platform vertical structures and the ocean surface (dashed
green line path in Fig. 1(b) with yellow diamonds indicating
the possible point of reflections): this spot will be located ver-
tically underneath the vertical structure. The third mechanism
accounts for triple reflections (or even higher order) between
the platform and the surrounding sea surface (dashed black line
path in Fig. 1(b)). They could be due to the electromagnetic
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wave that reflects on the sea, a platform structure, again on the
sea, and back to the sensor (see yellow diamonds along with
the dashed black path in Fig. 1(b)). They are located after the
platform, since the path that the electromagnetic wave has to
travel is longer. According to this simplistic model, these three
main mechanisms make possible the detection, and, hence, the
platform monitoring using SAR data.

A. Observing the Backscattering of Offshore Platforms With
Medium-Resolution Data

Offshore drilling sites consist of several platforms that, when
jointly connected, form superstructures whose size is several
tens of meters. However, in many cases, offshore platforms are
spread a part over the oil field; this happen for instance in GoM
[2]. In the case of a wide spatial distribution of platforms, the
use of scanning SAR (ScanSAR) imaging mode is a reason-
able choice. With this SAR imaging mode, larger coverage is
obtained at the cost of lower spatial resolution.

The TS-X/TD-X four beams ScanSAR mode achieves a swath
width of ~100 km at spatial resolution of ~18 m. In 2013, the
TS-X/TD-X product portfolio has been extended adding a six
beams Wide-ScanSAR (WSC) mode with ~40-m resolution
and swath width of ~250 km. Fig. 2(a) shows the UTM map
of a projected and calibrated HH-polarized TS-X WSC am-
plitude image. The image was collected on August 14, 2014
at 12:08 UTC under low-moderate wind conditions (2—5 m/s)
over a cluster of offshore platforms in GoM. It is interesting to
note that not all bright pixels in Fig. 2(a) are offshore platforms,
as other marine metallic targets, e.g. ships, buoys, etc., pro-
duce a backscattered signal larger than the sea background one.
To classify the bright pixels in Fig. 2(a), the offshore platform
records from the U.S. Bureau of Safety and Environmental En-
forcement (BSEE) are merged with a cloud-free multispectral
image collected by the operational land imager (OLI) onboard
the Landsat-8 satellite. The colocated portion of the OLI image
is shown in true color composite (band 4 in red, band 3 in green,
band 2 in blue) in Fig. 2(b). The figure is augmented with red
squares, which indicate the matches between the BSEE dataset
and platforms localized in the OLI subimage. A zoom in of one
of the platforms (200 x 200 pixels) is shown in the clip on the
bottom right side of the image.

B. Results of the Analysis

Comparing Fig. 2(a) and (b), it is possible to conclude that
most of the bright pixels in the scene of Fig. 2(a) are offshore
platforms. Unfortunately, the physical dimensions of these tar-
gets are unknown, but the zoom-in clip of the OLI image (which
has a pixel spacing of 30 m) suggests these targets have dimen-
sions larger than 30 m. Besides, oil rigs can be several tens
of meters higher than the sea level, and, therefore, they should
be detectable in medium-resolution SAR images as well (see
Fig. 2(a)). However, one can note that the radar backscatter of
such big targets reduces significantly (apparently it vanishes)
under certain incidence angles. To better clarify this point, an
additional TS-X WSC scene, collected on May 1, 2014 at 12:17
UTC over the same cluster of platforms in Fig. 2(a) and (b), is
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Fig. 2. Cluster of offshore platforms in GoM. (a) Map projection of the
calibrated HH-polarized amplitude TS-X WSC mode SAR data collected on
14 August, 2014 (case high); (b) true color composite OLI image augmented
with BSEE platforms records matches; and (c¢) map projection of the calibrated
HH-polarized amplitude TS-X WSC mode SAR data collected on 1 May, 2014
(case low).
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TABLE I
OVERVIEW OF THE DUAL-POLARIMETRIC TS-X/TD-X SM ACQUISITIONS OVER KNOWN OFFSHORE PLATFORMS IN GOM

Acquisition ID Data Time Resolution® Rg-Az  Incidence Angle ¥  Polarization =~ Wind Speed m/s
GoM1 2014/10/13 12:17 UTC 1.2m x 6.6m 19.8°-21.7° HH-VV 7-12
GoM2 2014/03/24 12:08 UTC 1.2m x 6.6m 39.0°-40.3° HH-VV 6-11
GoM3 2012/10/28 12:17 UTC 1.2m x 6.6 m 19.8°-21.7° HH-HV 8-12
GoM4 2014/03/02 12:08 UTC 1.2m x 6.6m 39.0°-40.3° HH-HV 5-10
GoM5 2012/11/08 12:17 UTC 1.2m x 6.6 m 19.8°-21.7° VH-VV 5-10
GoM6 2014/03/13 12:08 UTC 1.2m x 6.6 m 39.0°-40.3° VH-VV 4-9

*Nominal values. The resolution in range depends on incidence angle and increases with it.

considered. The UTM projected HH-polarized amplitude image
is shown in Fig. 2(c). Both SAR data are characterized by the
same polarization, imaging mode, resolution, and viewing direc-
tion. The only difference is the incidence angle, which ranges in
the interval 39°.15-40°.15 (case high) and 19°.80-21°.15 (case
low) for the scene shown in Fig. 2(a) and (c), respectively. It can
be noted that none of the platforms observed in Fig. 2(a) (and
identified in Fig. 2(b)) results in a backscattered signal larger
enough to be clearly identified in Fig. 2(c). This outcome might
provide an operational constraint when observing offshore plat-
form with single-polarization SAR. Therefore, deeper analysis
of the radar backscatter under different polarization combina-
tions and incidence angles is performed in the next section.

III. OBSERVING THE BACKSCATTERING OF OFFSHORE
PLATFORMS WITH HIGH-RESOLUTION DATA

In this section, a multipolarization analysis of the signal
backscattered by offshore platforms is undertaken exploiting
a time series of fine-resolution satellite TS-X/TD-X images col-
lected over the same area under different incidence angles.

A. Dual-Polarimetric Dataset Description

The TS-X/TD-X dataset has been collected in all possible
dual-polarization combinations at two different viewing geome-
tries using repeat pass acquisitions. All products have been
acquired during satellite descending orbit (right looking) in
StripMap (SM) mode which provides a nominal spatial reso-
lution of 1.2 m x 6.6 m (range x azimuth) and the L1b SLC data
format is processed. The SAR dataset is described in Table I.

This dataset consists of three couples (one for each dual-
polarization combination) of images collected over the same
cluster of platforms shown in Fig. 2 at two different incidence
angles that, hereinafter, are referred as low (GoM1, GoM3, and
GoM5) and high (GoM2, GoM4, and GoM6).

In Fig. 3, an overview of the area under investigation is shown
together with the satellite ground coverages of the low (yellow
rectangle) and high (green rectangle) acquisition geometries. It
can be noted that satellite coverages are almost spatially colo-
cated and include several offshore platforms (gray dots). In ad-
dition, bathymetry information provided by the NGDC coastal
relief model, witnesses that platforms are located in water depth
<100 m, hence they are Fixed type offshore platforms.

wo3.25° we2.75" W92.25° Wo1.75° Wo1.25° W30,75% W90.25°

Google earth

Fig. 3. Overview of the area under investigation (background GoogleEarth).
TS-X/TD-X coverages, related to low and high acquisition geometries, are
shown as yellow and green rectangles, respectively. The GoM bathymetry from
the NGDC coastal relief model is overlaid as isobath for 100, 200, 300 m depth
(cyan, red, and dark blue lines, respectively). Offshore platforms locations are
indicated as gray rectangles.

B. Single-Pol Analysis

To analyse the backscattering behaviour of the offshore plat-
forms under different linear transmit/receive polarizations and
with respect to the incidence angle, the four dual-polarimetric
HH-HV and VH-VV SM TS-X/TD-X are considered, i.e.,
GoM3 and GoMS for the case low and GoM4 and GoM6 for the
case high. To make clearer the analysis, we will focus on three
platforms randomly selected among all the platforms present.
These are termed as P1, P2, and P3 in Fig. 2(b). The geographi-
cal location for these platforms is provided in form of maps for
an easy cross reference among the results provided in the paper.

In the following, the low and high incidence angle cases are
treated separately.

1) The intensity images for the low incidence angle case are
shown in Fig. 4. The first row of images refers to the GoM3
acquisition, while the second row refers to the GoMS5 one.
All the images are ground projected and calibrated mag-
nitudes. The figure is organized in such a way that the im-
ages on the main diagonal (see Fig. 4(a) and (d)) refer to
copolarized HH and VV channels; while the off-diagonal
images (see Fig. 4(b) and (c)) refer to the crosspolar-
ized HV and VH channels. Starting from the copolarized
backscattering, it can be observed that it is very hard to
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Multitemporal ground projected calibrated amplitude SAR data collected by TS-X/TD-X over a cluster of three offshore platforms in GoM (labeled as

P1, P2, and P3). The first row shows GoM3 imagery collected at HH (a) and HV (b) polarization. The second row shows GoM5 imagery collected at VH (c) and

VV (d) polarization.

distinguish the signatures of the three platforms from the
surrounding sea surface backscattering. This is especially
true for P3. However, if we consider the crosspolarized
channels, the platforms are well distinguishable from the
surrounding sea clutter. It is interesting to notice that if we
compare the results of using high-resolution images (see
Fig. 4) with low-resolution images (see Fig. 2), one can
conclude that the lower spatial resolution is not playing a
key role in making the copolarized backscattering of the
platform being undistinguishable from sea clutter.

2) The high incidence angle case is analyzed in Fig. 5,
where the same format of Fig. 4 is adopted. In this oc-
casion, the first and second rows are referring to the ac-
quisitions GoM4 and GoM6, respectively. It can be noted
that all the platforms can be clearly distinguished from
the background sea regardless the use of co- or crosspo-
larized channels. Interestingly, the finer spatial resolution
of the SM imagery allows observing the expected sig-
natures resulting from double and triple reflections (see
Fig. 1). They appear as elongated strips oriented along the
azimuth direction.

C. Scattering Mechanism Analysis

This section aims at analyzing the platforms’ backscatter-
ing exploiting multipolarization SAR imagery. The images are

exploited to gain some understanding on the physics of platform
scattering. In particular, a physical explanation of the odd results
provided by copolarized imagery collected at low incidence an-
gles is provided. All the information regarding the polarimetric
scattering is contained in quad-polarimetric data. Unfortunately,
only dual-polarization coherent SAR measurements are avail-
able. Among the dual-polarimetric channel combinations, the
copol/copol ones, i.e., HH — VV, are the most informative.
All the analysis conducted will be restricted to the polarimet-
ric space that is observable using the copolarized combination.
The use of quad-polarimetric data may reveal other scattering
mechanisms that we are not able to observe using only dual-
polarimetric data.

The coherent HH — VYV datasets GoM1 and GoM2 (see
Table I) are considered and the platform P2 is used as ref-
erence. In Fig. 6(a) (case low) and (b) (case high), false
color images are generated normalizing the all RGB chan-
nels to the span of the covariance matrix. The coding used
in this case is: Red = |HH-VV|, Green = [HH *(VV)|, and
Blue = [HH+ VV| (where T denotes complex conjugate) in or-
der to highlight double reflection, correlation information, and
single reflection, respectively. In other words, for each pixel
of these images, the sum of the intensity of HH — VV and
HH+VYV is unitary. The normalization process is used to get
rid of the intensity information and highlight the polarimetric
information content. For visualization purposes, Fig. 6(c) (case
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Fig. 5. Multitemporal ground projected calibrated amplitude SAR data collected by TS-X/TD-X over a cluster of three offshore platforms in GoM (labeled as
P1, P2, and P3). The first row shows GoM4 imagery collected at HH (a) and HV (b) polarization. The second row shows GoM6 imagery collected at VH (c) and
VV (d) polarization.

case low case high case low case high |

by

Jhhnd

Jhhswd

o D

Fig. 6. False color images showing the platform P2 (see Figs. 4 and 5). (a) Dataset GoM1 (case low) and (b) dataset GoM2 (case high) are normalized using the
span and coded as Red = |HH- VV/|, Green = [HH*(VV)|, and Blue = |HH + VV|. (c) Dataset GoM1 (case low) and (d) dataset GoM2 (case high) are scaled

using the mean of each channel; Red = [HH - VV|, Green = [HH + VV|, and Blue = [HH * (VV)'].

low) and (d) (case high) is generated without normalization but  and (b) deserve to be commented. The low- and high-incidence
simply scaling individually the single RGB channels. The cod- angle cases are, therefore, treated separately.

ing used in this case is: Red = |[HH- VV|, Green = |[HH+VV]|, 1) With respect to the low case (see Fig. 6(a)), it can be noted
and Blue = |[HH*(VV )'|. In both the cases, a 5 x 5 Lee filter that sea backscattering is characterized by a high single-
is applied to reduce speckle noise. While the interpretation of bounce mechanism and high HH — V'V coherence (bluish
Fig. 6(c) and (d) is straightforward, the results shown in Fig. 6(a) color) (Bragg scattering applies as expected). Platform
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scattering seems to show the expected three mechanisms.
The rightmost part of the platform (the pixels that are
closer to the sensor in range direction) is dominated by
a mechanism that appears in green that represent corre-
lation between the HH and VV channels. This may be a
dipole scattering. The pixels in the middle of the platform
are reddish which calls for a mechanism that is dihedral
scattering. The dual-reflection mechanism is, therefore,
an ordinary horizontal dihedral (double bounce). The left-
most mechanism is hard to visualize and submerged by
the return from the sea.

2) With respect to the high case (see Fig. 6(b)), sea backscat-
tering still calls for Bragg scattering although the pinkish
color indicates a mixture with double-reflection contribu-
tions. This may be due to the lower backscattering form
the sea Platform backscattering clearly identifies the three
mechanisms along the range direction. In fact, in this case
(see Fig. 6(b)), the rightmost part of the platform appears
to be richer in red (it is more yellowish). It appears a mix-
ture of mechanisms that could lead to a larger dihedral
scattering. The pixels in the middle of the platform are
reddish calling for dihedral scattering. As a matter of fact,
since the reflection coefficient of the metallic platform is
larger than the sea one, the platform is expected to be well
distinguishable in copolarized imagery.

To understand how much power is scattered by each mecha-

nism we need to consider the images Fig. 6(c) and (d).

In conclusion, dihedral scattering plays an important role in
platforms’ backscattering. This implies that when the incidence
angle reduces, platforms are less visible in copolarized intensity
imagery since the total area of the planes representing the dihe-
dral is reduced (because the largest plane has to be the one on
the platform vertical structures). From an operational viewpoint,
this means that the most critical scenario to detect offshore plat-
forms is achieved when single-polarization copolarized, (HH or
VV)imagery is collected at low incidence angles. Improving the
spatial resolution from tens of meters (e.g., WSC mode) to me-
ters (e.g., SM mode) does not improve platforms detectability.

Crosspolarization images are less affected by this problem
because the HV or VH scattering is less related to the dihedral
mechanism. However, crosspolarized acquisitions do not repre-
sent the standard SAR mode for geoscience applications. In fact,
searching the TS-X/TD-X historical archive, about 70% of the
high-resolution dual-polarimetric products are HH — VV with
the remaining 30% that includes both copol/crosspol products
combinations. The percentage of accessing crosspol imagery
greatly decrease (about 1%) when medium-resolution single-pol
acquisitions are considered. In addition, since offshore detection
is very often corroborative to sea oil pollution monitoring [28],
crosspolarized channels are not the best option.

IV. APPLICATION OF DUAL-POLARIMETRIC OBSERVABLES
AND DETECTORS

Moderate wind conditions apply through the processed
dataset in Table I. Therefore, the sea state analyzed in this study
is restricted to moderate. In the future, we will try to collect
a larger dataset where we will hopefully capture different sea
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states. However, it is interesting to note that even under mod-
erate sea state conditions, may be difficult observing the SAR
backscattering signature of offshore platforms. Two polarimet-
ric detectors, namely the Geometrical perturbation polarimetric
notch filter (PNF') and the degree of depolarization (DoD) are
considered. We also tested other polarimetric observables that
can be used to gain understanding of the scattering. These are
the product coPro and ratio coRat of copolarized channels.
The latter are incoherent observables, i.e., they do not exploit
the interchannel phase.

A. Polarimetric Observables and Practical Implementations

The incoherent observables coPro and coRat are linear com-
bination of the two measured scattering amplitudes and are,
therefore, given by

coProd = |[HH| * |[VV] (1)
coRat = |HH|/|VV]. (2)

In order to take advantage of the polarimetric information,
PNF and DoD target detectors have been selected because pro-
posed in the literature as very promising and highly flexible
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Fig. 8. Case HH — VV low coherent analysis. (a) and (b) Ground projected
and byte-scaled features PNF and DoD in correspondence of the platforms P1,
P2, and P3; (c) and (d) respective normalized 3D plots in satellite coordinate.

for the detection of ships. Their performance for ship detection
was shown to exceed the ones obtained via standard single-pol
(either copol or crosspol) detectors [18], [21], [25], [29]. Itis im-
portant to note that their relevance is not limited to copol/copol
combination. However, because the purpose of this analysis is
to evaluate the effect of the lower backscattering from platforms
at low incidence angle, in this study, we dedicate the detec-
tion test only to copolarization channels, where the platform is
not visible and polarimetry has the potential to improve signif-
icantly the detection exercise. The application of detectors to
copol/crosspol products and quad-polarimetric data is left for
the future, where a larger dataset will be collected to quantify
the full benefits of polarimetric information.

The PNF was first proposed by Marino ef al. [18], [30]
and bases the detection strategy on isolating the polarimetric
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signature coming from the sea and detecting anything else. For
this reason, it works as a notch filter in the space of the partial
targets, where the null is located on the signature of the sea.

The final detector is obtained by thresholding the polarimetric
feature

PNF = —— 3

where Red R regularize the sensitivity of the distance, and P,
and Py, are the total and clutter powers, i.e., the difference
represents the power of the target. In a practical implementation,
the signature of the clutter can be extracted locally using large
moving windows, while the signature of the target under test
can be extracted using smaller moving windows. In this study,
the former is extracted locally using 51 x 51 moving windows,
the latter using 5 x 5 moving windows. For all experiments,
Red R = 0.0025 has been set. For the detection of ships in
dual-polarimetric SAR data, the PNF is suggested to perform
best on HH — VV combinations [18], [25], [30].

The DoD is a unitary feature, defined as inverse of the DoP,
which represents the distance of the polarization state from the
origin of the Poincaré sphere. Since the transmitted waves are
always totally polarized, the depolarization is associated with a
DoD of the incident states close to unity. As each pixel belong-
ing to a platform can have a different polarimetric scattering
mechanisms, the DoD should be higher (more depolarized) on
a platform than the surrounding sea surface [21], [29], [31]. The
DoD for the dual-polarimetric combination selected is given
by equation (4) as shown bottom of this page, where ¢ and &
denote real and imaginary part, respectively. Please note in case
of the HH — VV combination, we perform an abuse of nota-
tion calling (4) “DoD,” since this is applicable only when the
same polarized wave is transmitted (in HH — VV, we change
the polarization of the transmitted wave). The four terms in 4
are also known as Stokes parameters where the denominator is
the total power and used for normalization. In this situation, the
physical interpretation of the DoD is not straightforward as for
the proper Stokes parameters, but it is still of value in terms of
signal processing. As matter of fact in [21], DoD is suggested
to perform best on HH — VV among the linear combinations.
For the processing of DoD, only a 5 x 5 moving windows are
applied for the estimation.

B. Copol/Copol Case Low

Fig. 7 introduces the incoherent detection exercise for the
case HH — VV low, where coPro and coRat features are dis-
played for the same geographical area shown in Figs. 4 and 5.
For a visualization purpose, the incoherent features coPro and
coRat are byte scaled and ground projected in Fig. 7(a) and (b).
Additionally, the two features are normalized and displayed in

DoD =1 —

\/(HH|2 - |VV|2)2 + [2(R (HH + VV1))]* + [2(S (HH % VV1))]?

(HH[" +[VV])

“
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Fig.9. Case HH — VV high incoherent analysis. (a) and (b) Ground projected
and byte-scaled features coPro and coRat in correspondence of the platforms P1,
P2, and P3; (c) and (d) Respective normalized 3-D plots in satellite coordinate.

the form of tridimensional surface in Fig. 7(c) and (d). It can be
noted that both incoherent features do not allow observing well-
distinguishable signals associated with the platforms present.
This implies that the incoherent combination (either product or
ratio) do not offer a clear advantage when observing platforms
at low incidence angles.

Following the same template, the coherent analysis is in-
troduced in Fig. 8, where PNF and DoD features are consid-
ered. In this case, a completely different output is achieved that
shows well-distinguishable signals associated with each of the
platforms. The additional bright signature located north of the
platform on the left-hand side in Fig. 8(a) and (b) is probably a
passing by ship, which presence was not possible to recognize
before looking at PNF and DoD outputs. Nevertheless, this is a
supposition since not ground truth information about ships in the
area is available. In summary, these results clearly witness the
added value of coherently combining, i.e., both amplitude and
interchannel phase copolarized channels for platform detection
application.

C. Copol/Copol Case High

For a matter of completeness, we show the obtained results
also for the case high, although it is not as challenging as the
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case low. Fig. 9 introduces the incoherent analysis for the case
HH — VV high, where coPro and coRat features are displayed
for the same geographical area shown in Figs. 4 and 5. Simi-
larly, Fig. 10 shows the results of the coherent analysis where
PNF and DoD features are considered. In this case, both coher-
ent and incoherent features provide well-distinguishable signals
associated with the platforms considered in this investigation.

V. CONCLUSION

This study aims at analyzing satellite-based SAR observation
of offshore sea platforms. A multipolarization analysis is under-
taken exploiting a dataset of TerraSAR-X/TanDEM-X multipo-
larization imagery. It is analyzed and discussed the multipolar-
ization backscattering from platforms at low (around 20°) and
high (around 39°) incidence angles. The results obtained clearly
shows that platforms, although consisting of relatively large
metallic structures, may be hardly visible in single-polarization
copolarized SAR imagery collected at low incidence an-
gles under moderate sea state conditions. This phenomenon,
which is explained analyzing the scattering contributions that
characterize platform backscattering, is significantly mitigated
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when coherent dual-polarimetric copolarized acquisitions are
exploited. No improvement is obtained when incoherent dual-
polarimetric copolarized combinations are exploited. Future re-
search will address the benchmarking of different polarimetric
detectors for the cases considered here including the ones that
could take benefit of the crosspol channel.
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