
M. J. Schuster, C. Brand, S. G. Brunner, P. Lehner, J. Reill, S. Riedel, T. Bodenmüller, K. Bussmann, S. Büttner, A. Dömel,
W. Friedl, I. Grixa, M. Hellerer, H. Hirschmüller, M. Kassecker, Z.-C. Márton, C. Nissler, F. Ruess, M. Suppa, A. Wedler,
”The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge”, 2016
c©2016 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2016),
http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=
The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge 2016

The LRU Rover for Autonomous Planetary Exploration
and its Success in the SpaceBotCamp Challenge

Martin J. Schuster1, Christoph Brand1, Sebastian G. Brunner1, Peter Lehner1, Josef Reill1, Sebastian Riedel1,
Tim Bodenmüller1, Kristin Bussmann1, Stefan Büttner1, Andreas Dömel1, Werner Friedl1, Iris Grixa1,

Matthias Hellerer1, Heiko Hirschmüller2, Michael Kassecker1, Zoltán-Csaba Márton1, Christian Nissler1,
Felix Ruess2, Michael Suppa2 and Armin Wedler1

Abstract— The task of planetary exploration poses many
challenges for a robot system, from weight and size constraints
to sensors and actuators suitable for extraterrestrial environ-
ment conditions. As there is a significant communication delay
to other planets, the efficient operation of a robot system
requires a high level of autonomy. In this work, we present
the Light Weight Rover Unit (LRU), a small and agile rover
prototype that we designed for the challenges of planetary
exploration. Its locomotion system with individually steered
wheels allows for high maneuverability in rough terrain and
the application of stereo cameras as its main sensor ensures
the applicability to space missions. We implemented software
components for self-localization in GPS-denied environments,
environment mapping, object search and localization and for
the autonomous pickup and assembly of objects with its arm.
Additional high-level mission control components facilitate both
autonomous behavior and remote monitoring of the system
state over a delayed communication link. We successfully
demonstrated the autonomous capabilities of our LRU at
the SpaceBotCamp challenge, a national robotics contest with
focus on autonomous planetary exploration. A robot had to
autonomously explore a moon-like rough-terrain environment,
locate and collect two objects and assemble them after transport
to a third object - which the LRU did on its first try, in half
of the time and fully autonomous.

I. INTRODUCTION

The Light Weight Rover Unit (LRU) [1] is particular
suited for planetary exploration. This field of application
challenges the design of a robot in many aspects. Economic
transportation to the planet forces the rover to be light. After
arriving at the planet’s surface, all sensors and actuators
need to work under the alien conditions. Even when faced
with heavy communication delay and blackouts, the ground
station team must be able to interact with the rover on a
high level. As the delay renders teleoperation inefficient,
the rover has to solve most tasks autonomously. It has to
navigate unknown, rough terrain to explore the area and
arrive at scientifically relevant locations. There, the rover has
to manipulate the environment to take samples or to assemble
technical equipment. We designed the LRU to cope with the
challenges of planetary exploration. Its unique construction is

1 German Aerospace Center (DLR), Robotics and Mechatron-
ics Center (RMC), Münchner Str. 20, 82234 Wessling, Germany,
{firstname.lastname}@dlr.de

2 Roboception GmbH, Kaflerstr. 2, 81241 Munich, Germany,
{firstname.lastname}@roboception.de

Fig. 1. The Light Weight Rover Unit (LRU) picks up the battery (yellow,
top left) and the sample (blue container, top right) and assembles them at
the base station (red, bottom) during the SpaceBotCamp challenge.

particularly light weight (approx. 40 kg) and thus economic
to transport into space. The LRU only relies on sensor
concepts (stereo cameras, inertial measurement unit) which
work in alien conditions and are currently employed in
space missions [2]. The LRU’s locomotion system can drive
over rough terrain and is highly maneuverable due to its
four independent wheels, each of them having individual
steering and driving motors. A force-controlled manipulator
on the back of the rover picks up and assembles objects.
The autonomy of the LRU stems from a variety of software
components. We developed and integrated modules for on-
board self-localization in GPS-denied environments, local
and global mapping, fast obstacle avoidance, path planning,
object detection and pose estimation, manipulation, inter-
process communication, high-level task control as well as
for a ground station mission control. We evaluated the LRU’s
capabilities in the official SpaceBotCamp challenge, which
posed typical challenges of a planetary exploration mission.
The robot had to find two known objects in an unknown
moon-like rough terrain and assemble them at a base station.
The rover had to fulfill these tasks in a single run and
communication to the rover was heavily delayed as well as

http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge 2016
http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=The LRU Rover for Autonomous Planetary Exploration and its Success in the SpaceBotCamp Challenge 2016


for most of the time unidirectional, restricting the ground
station team to merely monitoring the system. Therefore the
rover needs to solve the tasks autonomously, meaning that
it has to cope with an unknown environment using its on-
board sensor data only. In this work, we present the LRU and
explain how it solved the challenge under all these constraints
fully autonomously and successfully completed the mission
in a single run in just thirty minutes, half of the given time.

II. RELATED WORK

The experiences gathered with the successful and ongoing
Mars exploration rover missions like MER [3] and MSL [2]
as well as earlier considerations on rover autonomy [4]
clarify requirements and space-suitable options regarding
hardware as well as software components. Autonomous navi-
gation solutions for unstructured and unknown environments
taking robot safety, resource management (e.g. power con-
sumption) and general robustness into account are available
in many field robotic systems tested on earth [5], [6], [7], [8].
Similar to [5], we employ passive stereo cameras as a space-
suitable sensor setup similar to current Mars rovers [3], [2].
Due to the sensor-specific noise characteristics, this however
makes navigation and mapping more challenging compared
to LIDAR-based systems [6], [7], [8], which allow high-
precision measurements within a longer range of distances.
In the light of unreliable and delayed communication chan-
nels, high-level autonomy, adaptation and failure recovery are
desirable but pose significant challenges on the algorithmic
and conceptual level. While mission-level reasoning and task
planning allows for flexible online adaptation [7], we follow
an approach based on modular but pre-defined control-
flows. In our experience, this is more robust in case of
well-defined tasks w.r.t. known objects, being typical for
space missions. A predictable sequence of individual steps
furthermore allows a high understandability of the robots
behavior for the operating and monitoring crew.

III. SYSTEM OVERVIEW

Fig. 2. System overview

Our system setup, presented in Figure 2, consists of the
LRU rover as well as a groundstation to monitor the robot’s
state and to provide remote access for shared autonomy ap-
proaches. In the SpaceBotCamp scenario, the communication
link was artificially limited in bandwidth to 100 Mbit/s and
delayed by two seconds in each direction, which approxi-
mates the delay between a ground station on earth and a rover

Fig. 3. LRU kinematic side and top view

on moon. In the following, we give details on the rover’s
hardware and present its software components in Section IV.

A. Kinematics

The LRU has a total length of 1090mm and a total
width of 730mm. It is designed to drive in rough terrain
at a maximum velocity of 1.1m/s. In Figure 3, we give an
overview over the locomotion subsystem. It consists of four
individually powered and steered wheels, attached to two
bogies that each make use of a serial elastic actuator (SEA).
That way, the rover features active and passive suspension in
both bogies. The active element allows controlling the bo-
gie’s rotational position to adjust the center of mass in order
to distribute wheel load in rough terrain or improve stability
on steep slopes. By use of an active-passive combination,
even an active dynamic body damping is feasible. Also all
components attached to the rover body benefit from that
additional degree of freedom by increasing their workspace,
e.g. by repositioning the attached camera beam for a better
view of the environment. Each actuator in the SEA, the wheel
hub and steering drives utilizes an ILM38 drive train that was
designed for space applications, see Section III-B. Compared
to other rover concepts, the LRU profits from its individually
steered wheels, which allow for driving sideways and turning
in place, thus increasing maneuverability. Furthermore, our
four wheeled kinematic has advantages in terms of compact-
ness and weight compared to six-wheeled rovers.

B. Locomotion

As for the kinematics, reliability and robustness in rough
terrain are also most important for the locomotion sub-system
(LSS). Due to their high peak torque and very high torque
per volume and weight ratio, we use permanent magnet
synchronous motors [9] in every rover joint. Two actuator
unit sizes were developed to meet the different requirements.
We employ the small ILM25 unit to move the pan/tilt unit
and the bigger ILM38 unit for wheel traction and steering.
The name indicates that it is an internal rotor motor with
the number showing the diameter of the motor stator in
millimeters. Originally the ILM38 unit (rated torque: 5Nm),
shown in Figure 4, has been developed for the mobile
payload element rover prototype [10] and was developed
further to the LRU actuator module. We employ it for traction
as well as for steering and actuating the serial elastic module.
To actuate the rover’s pan/tilt unit [11], the concept was
scaled to a smaller ILM25 module (rated torque: 2.4Nm).



Fig. 4. Sectioned view of wheel hub and steering drive

This unit is actually used and validated in an ongoing DLR
space mission called MASCOT [12], a contribution to the
JAXA Hayabusa2 mission. The wheel design combines a
flexible spring metal sheet running surface with a central
rigid ring and thereby profits from both advantages of wide
and narrow wheel types. The wheel-to-ground contact is
focused on the rigid ring at hard and flat terrain, which leads
to low rolling resistance. When driving in soft terrain, the
flexible running surface ensures reduction of sinkage and, in
combination with the grousers, gives the wheels maximum
grip. We are able to adapt the stiffness of the elastic wheels
by changing their number of spokes, allowing to absorb
shocks directly in the wheels.

C. Manipulator

To extend the LRU’s abilities for manipulating and fetch-
ing objects, a robotic arm needed to be attached to the
system. As industrial developments and actual manipula-
tors at our institute were too heavy and did not offer an
appropriate workspace, we chose the JACO2 from Kinova.
With a total weight of 5.7 kg, a single power supply of 24V
and a RS485 communication bus, the manipulator could be
integrated at acceptable effort. The maximum load of 1.0 kg
at its fully extended arm position is sufficient for grasping
and manipulating our target objects. To enhance the grasping
capabilities of the six degree-of-freedom manipulator, we
optimized the gripper w.r.t. the shapes of the target objects.
The final task in the SpaceBotCamp challenge was to fit one
of the fetched objects into a base station. We chose to solve
this by means of impedance control. Therefore we replaced
the robot pose controller by our own control structure and
only kept the Kinova motor controllers.

D. Sensor Setup

To ensure a robust and light weight sensor solution, we
based our complete autonomous navigation, mapping and
exploration on a single b/w stereo camera system. Its baseline
of 9 cm results from the demand for precise close-range
data for navigation. An additional center camera gives us
color information for object detection. The cameras’ fields
of view are increased by using a pan/tilt mechanism that is
able to pan the cameras ±180◦ and to tilt ±90◦ [11]. We
employ an additional pair of stereo cameras at the back of
the rover to get unobstructed, high-resolution vision data for
object pose estimation and manipulation. With a baseline
of 6 cm, we adjusted these cameras to the manipulator’s
workspace and use them only during object pickup and
assembly. Furthermore, we use an IMU in the rover’s body
to improve its ego motion estimation through sensor fusion.

E. Computational Power

In order to build a truly autonomous system, we perform
all required computation on board the LRU. We employ
a standard industrial computer with an i7-3740QM CPU
(2.70GHz) and added a FPGA Spartan-6 Board. The uti-
lization of terrestrial components for computation hardware
allows faster research cycles on novel software concepts.
We however decided to run the computationally intensive
stereo processing on the FPGA. The corresponding VHDL
code thus could also be transfered and implemented on
space proof, i.e. radiation hardened, FPGAs in the future.
We outsourced the control of the manipulator to an Atom
processor board. This separation from the i/o-intensive image
processing pipeline helped us to satisfy the controller’s real-
time requirements.

IV. SOFTWARE ARCHITECTURE

Fig. 5. LRU software architecture: on-board key components and data flow

We present an overview of our software architecture in
Figure 5. We established the data flow between our com-
ponents via three different middlewares in order to satisfy
their particular needs: Links and Nodes for real-time control
and SensorNet for the distribution of high-bandwidth vision
data, both being developed at our institute. In addition, we
connect our higher-level software components via the widely
used Robot Operating System (ROS). On-board the LRU, we
typically run more than 100 software processes in parallel,
involving the execution of about 100 different libraries and
components developed by more than 20 internal developers.
In order to manage this complexity, we developed our own
release and dependency management toolchain RM Package
Management (RMPM) to track and deploy consistent soft-
ware versions to the LRU as well as to mockup systems and
simulations. In addition, we employ the process manager of



Links and Nodes to monitor process output, manage runtime
dependencies and allow the compilation of mission settings
by combining pre-defined modules and configurations.

A. Perception

The LRU’s perception of the environment is purely vision-
based. For the pair of stereo cameras in the pan/tilt head,
we perform dense stereo reconstruction through Semi-Global
Matching (SGM) [13] running on an on-board Spartan 6
LX75 FPGA with a resolution of 1024× 508 px at 14.6Hz.
The resulting depth data is used for stereo visual odometry,
obstacle avoidance and 3D environment mapping. We chose
b/w cameras for our navigation stereo setup as they have a
shorter exposure time as well as a higher effective resolution,
which is important for the accuracy of visual odometry
estimation. Thus, we map the color information of our third
pan/tilt camera onto the depth data to serve as input for our
object detection. The rear-facing color stereo cameras are
only triggered on-demand for close-range precise 6D object
pose estimation. In order to achieve an accurate mapping of
the color to depth data as well as to obtain reliable object
localization for grasping, the transformations between the
stereo and color camera as well as between the rear cameras
and the gripper have to be determined. We automated this
process, called hand-eye calibration [14], by attaching a
calibration pattern to the LRU’s gripper to move it to pre-
defined poses within the cameras’ fields of view.

B. Navigation, Search and Exploration

1) Self-Localization and Environment Mapping: For self-
localization, we use the stereo data from the pan/tilt camera
head to compute visual odometry [15]. For a robust, real-
time local pose estimation, we fuse these estimates with IMU
measurements in a local reference filter [16] that is realized
as a keyframe-based Extended Kalman Filter (EKF) with
time-delay compensation [17]. We designed our mapping
framework to allow the LRU to operate in GPS-denied,
previously unknown indoor as well as rough-terrain outdoor
environments. It combines fast local mapping for obstacle
avoidance with a submap-based online global mapping ap-
proach to create a consistent 3D environment model for
search and exploration. As a first step, we perform a fast
stereo-error adaptive obstacle and terrain classification on
the depth images from the pan/tilt stereo cameras [18]. The
resulting cost map is directly used for local path planning. In
addition, we integrate the full 3D stereo data, including the
obstacle classification results, into submaps by aggregating it
along the trajectories estimated by our local reference filter.
We always switch the filter’s frame of reference into the
origin of the current submap in order to maintain consistency
and numerical stability within the filter as well as to allow
for a more accurate integration of the filter’s uncertainty
estimates into our overlying SLAM system. For online global
optimization of pose and map estimates, we add the submap
origins as nodes to a SLAM graph, connect them via the filter
estimates and then run the iSAM2 [19] incremental least-
squares error minimization after each change of the graph.

Fig. 6. Schematic of SLAM graph for our submap-based global map-
ping. The highlighted rectangle represent overlapping submaps that match,
resulting in a loop closure constraint that is added to the graph.

Fig. 7. Orthographic top-down views of 3D point cloud map (5 cm resolu-
tion, height colored, obstacles in red) at the middle of our SpaceBotCamp
run (left) and 2.5D terrain classification map at the end of our run (right).

The combination of a local reference filter and incremental
graph SLAM allows us to benefit from their particular
advantages: The filter provides real-time, long-term stable
state estimation for control and fast obstacle avoidance
while the online graph optimization provides global pose
and map estimates [20]. In order to generate loop closure
constraints, we perform 6D map matching using the obstacle
classifications and the 3D submap data to compute relative
transformations between pairs of submaps [21]. Based on
the estimated transform between two submaps we choose
only potentially matching pairs for the registration instead
of a brute force approach. We thereby rely on 3D geometric
features as they are more robust to changing viewpoints and
light conditions than 2D image features. After a final ICP
refinement and outlier filtering, we integrate the resulting
6D transformation into the SLAM graph with respect to their
estimated error, as sketched out in Figure 6. We present a
visualization of our 3D point cloud map and our obstacle
classification results in Figure 7.

2) Search and Exploration: For planetary exploration, we
consider previously unknown environments as well as scenar-
ios where a low resolution map, e.g. from a satellite image,
is available. As in real space missions, the rover should be
able to execute predefined tasks fully autonomously, but also
be able to support semi-autonomous operation as low-level
remote control is either impossible or very inefficient due to
the aforementioned communication delays. Starting with a
rough map from a low resolution image, a waypoint mission
can be planned, either in order to fully explore the whole



Fig. 8. Assembly sketch of the base station of the SpaceBotCamp

territory or to explicitly focus on areas of interest where
relevant targets are likely to be found. In scenarios where no
prior information is available, we employ a frontier based
exploration algorithm in order to maximize coverage. It plans
local goals online at the frontiers to unexplored territory with
respect to the current global pose and map estimates.

In the SpaceBotCamp challenge, a rough map
(1 px =̂ 0.5m) was given, however we did not know
the location of objects a priori. Thus, in order to find
all targets, we needed to plan waypoints such that they
cover the complete field. We therefore divided the area
into grid cells sized according to the LRU’s range of
reliable perception. During the search and exploration in
the challenge, we scanned the area on each waypoint with
our pan/tilt sensor head, covering a full 360◦ angle of view
around the rover. Unreachable waypoints are approached as
close as possible and then skipped.

Detecting both near and far objects with a fixed lens
stereo- and color setup poses considerable challenges to the
algorithms. The further the objects are away, the less they
reveal their characteristics due to the decreasing amount of
pixels on the camera sensor. Thus segmentation by color and
estimation of their extent looks more promising than trying to
identify shape properties. We achieve a robust segmentation
of unicolored objects in various light conditions through a
learning-based classification approach, thereby taking HSV-
color and brightness features as well as neighborhood rela-
tions into account. We combine the resulting segments with
depth data for a cluster analysis. Since depth and angle w.r.t.
to the camera are sufficient to estimate an object’s position
and size, we filter all clusters according to the object’s
expected dimensions in order to obtain a reliable and robust
estimation of its location. We experimentally determined a
reasonable maximum distance of 5m for object detection,
taking into account robustness and the cost of acting on false
positives. If an object is detected, the rover interrupts its
current exploration state to pick up the object and continues
with the next waypoint afterwards. We apply a fast, graph-
based 2D path planner for the LRU to navigate autonomously
between waypoints, taking the surrounding obstacles and
local terrain classification maps into account.

C. Manipulation

To cope with the communication delay during remote
planetary missions, the manipulation of probes and technical
equipment must be semi-autonomous to the least. Round trip
times from a few seconds (Moon) up to several minutes
(Mars) degrade teleoperation techniques. The manipulation

Fig. 9. Our successful base station assembly at the SpaceBotCamp

software of the LRU can autonomously pick and assemble
prior known objects. An example is the assembly of the
base station of the SpaceBotCamp, see Figures 8 and 9. The
hardest subtask is the autonomous insertion of the battery.
The rover first has to estimate the relative pose of the base
station, then position the battery in front of the slot and
finally insert it while actively controlling the contact.

1) Object Pose Estimation: First, the LRU has to estimate
the relative pose of the base station with a precision below
1 cm. It therefore captures the target object with its rear
stereo cameras and estimates the pose of the known object
by segmenting the depth image based on the color of the
object. The point cloud is then downsampled, smoothed,
and surface normals are estimated using PCL. Finally, an
extension of PCL’s sample consensus module is used to fit
the best matching cylinder or quad to the points, as described
in [22]. The method is not only optimizing the inlier count
probabilistically, as traditional RANSAC, but also minimizes
the percentage of the shape’s volume that is contradicted by
depth measurements. Since we knew the sizes of the objects,
those were added as constraints in the scene description
language, and the remaining parameters were estimated.

A particular problem arose for the base station, which
is rarely fully visible in a depth image. Thus the best
matching model (quad) is likely to be too small. We therefore
extended our method with the option to define a 3D model
for the shapes that is then placed in all possible positions
overlapping the fitted model (excluding those that violate
any constraints in the scene description, e.g. models being
upside down). The 3D model placements are then rendered
and the resulting images compared with the camera image
for an edge-distance based scoring.

2) Prepositioning the Manipulator: Second, the LRU has
to preposition its hand in front of the slot with a maximum
deviation of 1 cm. As the objects are known beforehand,
we designed predefined configurations and frames for fast,
robust and deterministic execution. The LRU first steers to
a relative pose w.r.t. the base station. The manipulator then
picks the battery from the transport basket and moves to
an approach configuration. From there, the LRU computes
a relative Cartesian path and moves the battery into the
approach pose in front of the slot.

3) Impedance Controlled Contacts: Third, the manipu-
lator has to control the contact to the base station. To
control the stiffness of the manipulator, we replaced the
commercial Kinova JACO2 API with our own controllers.
We developed a communication layer based on an embedded
microcontroller, which sends PWM commands directly to
the motor controllers at the necessary control frequencies



(approx. 700Hz). Based on this interface, we implemented
multiple control modes, including impedance control [23].
By controlling the stiffness of the manipulator, the LRU can
robustly insert the battery into the slot of the base station.

D. Task Control

For programming complex autonomous tasks, we employ
our own powerful visual programming tool RAFCON that
is based on state machines. RAFCON can be split up in
two parts: a core and a GUI. The GUI is used to visually
program state machines that are then executed by the core
on the target device. Our state machine concept is basically
a finite state machine, combined with many concepts intro-
duced by SyncCharts [24]. Thus, our state machine approach
supports hierarchies and concurrencies. Logic connections
defining the execution order are clearly separated from data
connections managing the flow of data. Error and preemption
handling concepts are tightly integrated. We plan a separate
publication on RAFCON itself, as a more detailed descrip-
tion would lie beyond the scope of this paper.

For the SpaceBotCamp challenge, we built state machines
with more than 700 states, 1200 transitions and up to 8
hierarchy levels with RAFCON, demonstrating the capability
and scalability of the tool. The handling of huge state
machines is possible due to the state machine editor GUI
featuring an elaborate zooming concept. This allows the user
to zoom and pan inside the state machine like in a digital
map and thereby facilitates dynamic expansion or hiding of
details of sub-states deeply nested in a hierarchy. Moreover
it supports state re-usability as state machines, designed
by different developers, can be linked into more complex
state machines by so called library states. In scenarios like
the SpacebotCamp challenge, state machine development is
typically distributed among several developers. In our case,
one cared for the states concerning computer vision, another
prepared the navigation states and a third wrapped the
manipulation functionalities of the robot into states. Thereby,
we can provide all of the robot’s functionalities in small
state machines that we then combine to more complex ones.
Furthermore, these single building blocks can be re-used in
other scenarios, reducing development time. In Figure 10, we
present a simplified hierarchical state machine for fetching an
object. The ability to launch state machines at arbitrary states

Fig. 10. A hierarchical state machine that combines different functionalities
of the robot to the more abstract state ”Fetch yellow object”. Each of the
state rows represent a different hierarchy level, the arrows illustrate the
transitions. Branching transitions, e.g. for error recovery, have been omitted
for clarity. States concerning navigation are marked blue, states dealing with
object localization green and states concerning manipulation red.

boosts quick state machine development and makes powerful
error handling and failure recovery possible. Especially in
complex missions, in which a part of the task has already
been fulfilled, dedicated entry points allow a full system
recovery without performing redundant work.

E. Ground Station Mission Control
Being able to monitor and - if necessary - intervene

with a robot’s task execution is crucial for being able to
operate a robot in unstructured and unknown environments.
In contrast to many field robotics applications here on earth,
the communication channel to a robot deployed on another
planet will likely be low-bandwidth, severely delayed and un-
reliable with potentially extended periods of communication
blackouts in one or both directions. Our approach for system
and mission control is designed to take these constraints into
account and allows to efficiently monitor autonomous task
execution as well as to provide means for shared autonomy
robot control when necessary.

Fig. 11. Communication setup for remote monitoring and access

1) Dealing with Unreliable Communication Channels:
To avoid any side-effects of an unreliable communication
channel on the robot’s task execution, all communication
between the robot and a human operator at the ground station
(mission control) is based on non-acknowledged communi-
cation over UDP between otherwise completely decoupled
networks. Not using any acknowledgment mechanism for
communication fits well to many transmitted data streams of
continuous nature (e.g. sensor data) and allows the robot to
operate in scenarios where no uplink to the robot is available
(the default in the SpaceBotCamp scenario).

For transmitting task-relevant information like sensor data,
planned paths or detected objects, we use ROS in a multi-
master setup with two ROS networks, one on the robot and
one between all ground station computers. We developed an
UDP forwarder to exchange any ROS topics in a network-
transparent way between subscribers and publishers on both
sides. High-bandwidth data like images and point clouds
are transferred rate-limited and with reduced resolution. For
specific ROS message types like images, the data is split and
marshalled in a way that allows to reassemble a complete
ROS message even if large parts of the message’s packets
were not received. We for example transmit image data
chunk-wise and fill in missing chunks on the receiver side.

We monitor the execution status of ROS and non-ROS
processes running on the robot through our process man-
ager provided by our Links and Nodes middleware, thereby



gaining access to all processes’ console output. In addition,
we get a clear picture if all required components operate
normally by specifying run and restart dependencies as
well as conditions for how a process normally behaves
during start-up, execution and quitting (defined by regular
expressions on console output). The console outputs and
execution state (stopped, starting, started, ready, stopping,
error, etc.) per process are forwarded to the ground station via
UDP multicasts, allowing multiple operators and applications
to receive and analyze this information at the same time.
The process manager on the robot side also implements a
UDP command protocol over which start/stop requests for
any process can be triggered from the ground station. To
reliably monitor the task execution and high-level system
state, our task control software implements a UDP-based
communication protocol (separate from our mechanism for
ROS messages) with additional message bursts, sequence
numbers and hash values to cope with packet loss and
reordering during transmission of state information. Similar
to the process manager, a UDP command protocol allows for
example to pause and continue task execution.

2) Remote Access for Shared Autonomy: In case of (im-
minent) failure or observed abnormal behavior on system-
or component-level, we use several mechanisms to restore
normal operation conditions and resume autonomous task
execution. On task-level, we are able to start, stop, pause
and step through the active task execution model. In addition
to the main task, we maintain a repository of standalone
(sub)tasks, which can be triggered remotely and largely
require no specific start conditions (e.g. lookBackwards,
moveArmToHomePosition, detectObjectA). Usually they are
part of the main tasks’ execution flow and generate outputs
(e.g. ROS tf frames), which can be used once the main task
is resumed. On process-level, we are able to stop and restart
processes and process groups on the robot. In addition, we
prepared failure handling scripts, which can be triggered for
example to re-initialize components or modify parameters.

3) Mission Control Setup at Groundstation: Our mission
control setup at the ground station, as used during the
SpaceBotCamp challenge, includes three operators - naviga-
tion, (general) system and manipulation operator - and one
supervising operator coordinator. The navigation operator
monitors planning and execution of drive motions as well
as robot localization and mapping through appropriate RVIZ
visualizations for navigation frames, paths and the generated
maps (obstacle map, height map, etc.). The system opera-
tor focuses on warning/error monitoring for all processes,
(sub)system restarts, monitoring and, if necessary, control of
high-level task execution. For this purpose, we use the ROS
console together with custom remote UIs for process man-
agement and high-level task visualization/execution. The ma-
nipulation operator watches over correct manipulator motion
planning & execution and object recognition. All operators
have access to all basic robot telemetry information such
as battery voltage, CPU usage and temperature, emergency
status, joint position & torques, controller state and control
rate statistics via a custom UI as well.

V. THE SPACEBOTCAMP CHALLENGE

The SpaceBotCamp1 is a national robotics challenge or-
ganized by the DLR Space Administration. Similar to the
DARPA robotics challenges in the US, its goal is to stimulate
innovations, benchmark state-of-the-art technologies in the
field of autonomous mobile robotics and kick-start their
integration into working systems. It took place in November
2015 in Hürth, Germany with ten participating teams from
universities and research institutes from all over Germany.
We all had to face a challenging task focused on autonomous
exploration and manipulation in an unstructured, previously
unknown GPS-denied environment.

A. Scenario Description

Fig. 12. An overview of the SpacebotCamp scenario. The competition field
was 13m x 18m. The LRU started next to the red base station on top of
a hill of approx. 2m height. In the foreground, a blue container filled with
a rock sample can be seen, while the yellow battery object is hidden by a
large rock. The goal of the challenge was to explore and map the unknown
terrain as well as to locate and collect the sample and the battery object for
the assembly task at the base station.

An autonomous robot system, consisting of one or mul-
tiple robots with a total mass of less than 100 kg, had to
autonomously explore and map an area modeled after a
moon-like, rough-terrain planetary surface. Therein, it had to
locate and collect both a blue container with a rock sample
(approx. 500 g) as well as a yellow object representing a
battery (approx. 800 g). Both objects had to be transported
to a red base station and finally assembled, as sketched out in
Figure 8. A high level of autonomy was necessary to fulfill
the task since a delay of four seconds round trip time was
artificially added to the communication in order to simulate
the real delay between earth and moon. Furthermore, the
uplink to the robotic system was completely blocked, except
for up to three five-minute checkpoints. During these limited
time frames, a ground station crew was allowed to send
commands to the robotic system over a delayed channel.
Apart from that, they could only passively monitor the robot.
In addition, they were located in a separate room and thus
without any visual contact to the competition field. After two
days of preparation, each team had a single opportunity to
solve the challenge within a sixty-minute time slot in front
of a public audience.

1http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-8101



B. Results and Discussion

According to the original rules of the challenge, we were
the only team amongst the ten competitors to fulfill all
mandatory tasks. Furthermore, we solved the tasks while fac-
ing all of the specified communication constraints from the
very beginning of the mission. We accomplished this in just
thirty minutes, half of the given time frame, and with full on-
board autonomy. In contrast, many other teams softened the
challenging communication restrictions in order to allow for
mixed autonomy and teleoperation approaches. We only took
a single one of the three allowed checkpoints to double-check
the object localization for the base station as its precision is
crucial for flawless assembly. We thereby solely sent four
high-level commands to the rover during the whole mission,
including the one-way delay of two seconds for all sent com-
mands and received data. Thus we could demonstrate that
we still had full high-level control of the system despite the
delayed and constrained communication link between ground
station and LRU. Finally, our system was the only robot
which managed to climb and descend the steep crushed-stone
ramp, shown in Figure 12, fully autonomously. We present
a video of our run at https://youtu.be/wCTkSxcna8o

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented the Light Weight Rover
Unit (LRU) as an agile rover system for autonomous plan-
etary exploration. We provide an overview of our system
architecture, detailing both the hardware and software com-
ponents as well as our ground station setup for monitoring
the robot’s state and activities over a delayed and restricted
communication link. We designed the LRU to operate at
a high level of autonomy during rough-terrain navigation,
search and exploration as well as object manipulation tasks.
This is essential to conduct efficient space missions in
the light of delayed communications to foreign planets.
In addition, our task control framework allows interactions
with the rover at a high level of abstraction in case shared
autonomy is needed. The LRU faced the challenges posed
by the SpaceBotCamp 2015 planetary exploration scenario
with great success and allowed us to demonstrate a fully au-
tonomous operation with very limited options for monitoring
and remote access. For future work, we plan to extend the
rover’s object manipulation abilities by employing a more
flexible grasp and assembly planning. In addition, we work
on joint localization and mapping with multiple robots to im-
prove efficiency through parallelization, robustness through
redundancy and to benefit from complementary capabilities
in heterogeneous robot teams.

ACKNOWLEDGMENT

We thank the members of the Mobile Robots Group at
DLR-RMC, especially Florian Schmidt and Philipp Lutz, for
their assistance. This work was supported by the Helmholtz
Association, project alliance ROBEX, under contract number
HA-304.

REFERENCES

[1] A. Wedler, B. Rebele, J. Reill, M. Suppa, H. Hirschmüller, C. Brand,
M. Schuster, B. Vodermayer, H. Gmeiner, A. Maier, B. Willberg,
K. Bussmann, F. Wappler, and M. Hellerer, “LRU - Lightweight Rover
Unit,” in ASTRA, 2015.

[2] J. P. Grotzinger et al., “Mars Science Laboratory Mission and Science
Investigation,” Space Science Reviews, vol. 170, no. 1, pp. 5–56, 2012.

[3] M. Maimone, A. Johnson, Y. Cheng, R. Willson, e. M. H. Matthies,
Larry”, and O. Khatib, Experimental Robotics IX. Springer Berlin
Heidelberg, 2006, ch. Autonomous Navigation Results from the Mars
Exploration Rover (MER) Mission, pp. 3–13.

[4] R. Washington, K. Golden, J. Bresina, D. Smith, C. Anderson,
and T. Smith, “Autonomous Rovers for Mars Exploration,” in IEEE
Aerospace Conference, vol. 1, 1999.

[5] D. Wettergreen, M. Wagner, D. Jonak, V. Baskaran, M. Deans, S. Heys,
D. Pane, T. Smith, J. Teza, D. R. Thompson, et al., “Long-Distance
Autonomous Survey and Mapping in the Robotic Investigation of Life
in the Atacama Desert,” in iSAIRAS, 2008.

[6] J. Stückler, M. Schwarz, and M. Schadler, “NimbRo Explorer: Semi-
Autonomous Exploration and Mobile Manipulation in Rough Terrain,”
JFR, 2015.

[7] M. Eich, R. Hartanto, S. Kasperski, S. Natarajan, and J. Wollenberg,
“Towards Coordinated Multirobot Missions for Lunar Sample Collec-
tion in an Unknown Environment,” JFR, vol. 31, no. 1, 2014.

[8] J. Schwendner, T. Röhr, S. Haase, M. Wirkus, M. Manz, S. Arnold,
and J. Machowinski, “The Artemis Rover as an Example for Model
Based Engineering in Space Robotics,” in ICRA Workshop, 2014.

[9] A. Wedler, M. Chalon, K. Landzettel, M. Görner, E. Krämer, R. Gru-
ber, A. Beyer, H.-J. Sedlmayr, B. Willberg, B. Wieland, J. Reill,
M. Schedl, A. Albu-Schäffer, and G. Hirzinger, “DLR’s Dynamic
Actuator Modules for Robotic Space Applications,” in Aerospace
Mechanisms Symposium, no. 41, 2012.

[10] R. Haarmann, Q. Mühlbauer, L. Richter, S. Klinkner, C. Lee,
C. Wagner, R. Jaumann, A. Koncz, H. Michaelis, J. Schwendner,
H. Hirschmüller, and A. Wedler, “Mobile Payload Element (MPE):
Concept study for a sample fetching rover for the ESA Lunar Lander
Mission,” in I-SAIRAS, 2012.

[11] A. Wedler, A. Maier, J. Reill, C. Brand, H. Hirschmüller, M. Suppa,
A. Beyer, and R. Haarmann, “Pan/Tilt-Unit as a Perception Module
for Extra-Terrestrial Vehicle and Landing Systems,” in ASTRA, 2013.

[12] J. Reill, H. Sedlmayr, P. Neugebauer, M. Maier, E. Krämer, and
R. Lichtenheldt, “MASCOT – Asteroid Lander with Innovative Mo-
bility Mechanism,” in ASTRA, 2015.

[13] H. Hirschmüller, “Stereo Processing by Semiglobal Matching and
Mutual Information,” IPAMI, vol. 30, no. 2, pp. 328–341, Feb. 2008.

[14] K. H. Strobl and G. Hirzinger, “Optimal Hand-Eye Calibration,” in
IROS, 2006.

[15] H. Hirschmüller, P. Innocent, and J. Garibaldi, “Fast, unconstrained
camera motion estimation from stereo without tracking and robust
statistics,” ICARCV, vol. 2, pp. 1099–1104, 2002.

[16] K. Schmid, F. Ruess, and D. Burschka, “Local Reference Filter for
Life-Long Vision Aided Inertial Navigation,” in FUSION, 2014.

[17] K. Schmid, F. Ruess, M. Suppa, and D. Burschka, “State Estimation
for highly dynamic flying Systems using Key Frame Odometry with
varying Time Delays,” in IROS, 2012.

[18] C. Brand, M. J. Schuster, H. Hirschmüller, and M. Suppa, “Stereo-
Vision Based Obstacle Mapping for Indoor/Outdoor SLAM,” in IROS,
2014.

[19] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2 : Incremental Smoothing and Mapping Using the Bayes
Tree,” IJRR, vol. 31, pp. 217–236, 2012.

[20] M. J. Schuster, C. Brand, H. Hirschmüller, and M. Suppa, “Multi-
Robot 6D Graph SLAM Connecting Decoupled Local Reference
Filters,” in IROS, 2015.

[21] C. Brand, M. J. Schuster, H. Hirschmüller, and M. Suppa, “Submap
Matching for Stereo-Vision Based Indoor/Outdoor SLAM,” in IROS,
2015.

[22] S. Büttner, Z.-C. Márton, and K. Hertkorn, “Automatic scene parsing
for generic object descriptions using shape primitives,” Robotics and
Autonomous Systems, vol. 76, pp. 93–112, 2016.

[23] A. Albu-Schäffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control
of flexible joint robots,” IJRR, vol. 26, no. 1, pp. 23–39, 2007.

[24] C. André, “SyncCharts: A Visual Representation of Reactive Behav-
iors,” TR 95-52, Université de Nice-Sophia Antipolis, 1995.


	Introduction
	Related Work
	System Overview
	Kinematics
	Locomotion
	Manipulator
	Sensor Setup
	Computational Power

	Software Architecture
	Perception
	Navigation, Search and Exploration
	Self-Localization and Environment Mapping
	Search and Exploration

	Manipulation
	Object Pose Estimation
	Prepositioning the Manipulator
	Impedance Controlled Contacts

	Task Control
	Ground Station Mission Control
	Dealing with Unreliable Communication Channels
	Remote Access for Shared Autonomy
	Mission Control Setup at Groundstation


	The SpaceBotCamp Challenge
	Scenario Description
	Results and Discussion

	Conclusion and Future Work
	References

