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Abstract—Localization has increasingly become important for
a variety of applications and context aware services. Today’s
mobile communication terminals exploit existing reference signal
structures for propagation delay based positioning. Recently,
particular single-parametrized waveforms with adaptable power
spectral densities (PSDs) haven been proposed in the context of
5G. These waveforms haven been investigated based on Cramér-
Rao lower bounds (CRLBs) and Ziv-Zakai lower bounds (ZZLBs)
for multipath-free channels.

Time-dispersive channels have neither been investigated theo-
retically nor numerically. In this work, we make this gap smaller
by numerical evaluations of the proposed waveforms. We focus on
a simple correlation-based receiver and investigate the resulting
ranging error. Our evaluations with varying root mean square
(RMS) delay spread and fixed Rician K-factor clearly show,
for which particular channels and signal bandwidths specific
waveforms and their respective parameters should be chosen. A
ranging error reduction of factor 1.2 to more than 5 compared
to state of the art reference signals can be obtained. Hence, we
pave the way to possibly place a new waveform within the 5G
context for improved ranging accuracy compared to state of the
art.

I. INTRODUCTION

Position information has increasingly become important

for a variety of applications and context aware services.

Global navigation satellite systems (GNSSs) are commonly

used to provide position information outdoors. The required

localization accuracy and precision highly depend on the

intended application. Only outdoors with little multipath,

specialized GNSS receivers provide centimeter-accuracy and

sufficiently high position information update rates required for

automated machinery. Strong multipath, signal blockage, and

unfavorable geometric satellite constellations result in highly

degraded positioning accuracies. Alternative wireless systems

are therefore used to complement, or even replace GNSS based

positioning. State of the art communication standards, such as

3G, and 4G already provide various positioning methods to

complement GNSS based localization for mobile terminals.

These methods infer position information based on ranging,

connectivity, or angular information. Additionally, cooperative

localization techniques utilizing device-to-device (D2D) con-

nectivity have shown a superior positioning performance in

dense networks [1]. However, localization is not considered in

wireless communication standards targeting mass-market from

the beginning of the design phase, as for example ranging

is commonly seen as side-product within the communication

community. The only exception up till now are the latest re-

leases of the 3rd Generation Partnership Project (3GPP)-Long

Term Evolution (LTE) for which specific signal structures have

been squeezed into the standard, without considering specific

optimized waveforms and localization requirements [2].

Recent developments within the wireless communication

community to revolutionize the existing 4G communication

standard towards 5G pave the way to actually place local-

ization into an upcoming 5G standard from the beginning

of the design phase [3]. Various optimized waveforms are

currently discussed to solely improve communication in terms

of throughput, latency, adjacent channel interference, and cov-

erage [4]. These optimized waveforms mostly cover existing

concepts based on filtered multi-carrier modulation, or filter-

bank based modulation, and would allow a flexible spectrum

usage. A key focus within 5G is also on machine-to-machine

communication and collaborative communication networks,

which plays in our hand for cooperative positioning. Massively

connected mobile terminals with D2D wireless links would

become available, and the authors in [5] already showed

the theoretical benefit of high mobile terminal densities for

localization. However, all envisaged 5G waveforms so far do

not consider any ranging aspect and assume a rectangular

signal power spectral density (PSD).

Recently, a 5G localization waveform has been proposed to

trade-off ranging precision for ranging signal miss-detection

during initial acquisition. In [6] the authors evaluated the

ranging precision of a set of single-parametrized waveforms

with different PSDs based on Cramér-Rao lower bounds

(CRLBs) and Ziv-Zakai lower bounds (ZZLBs). They fo-

cused on multipath-free channels with additive white Gaussian

noise (AWGN) but without shadow fading. As a result they

showed that particular waveforms can be chosen to improve

ranging precision compared to a state of the art rectangular

PSDs in signal-to-noise ratio (SNR) limited scenarios. This

parametrized waveform concept has been extended in [7] to

evaluate the positioning performance in a non-cooperative

scenario with three base stations and one mobile station.

Again, the channel has been assumed multipath-free and

without shadowing, and a maximum achievable gain of 42.3%
has been found. Further investigations included path loss and

shadow fading from WINNER II channel models to obtain



more realistic results. However, no multipath resulting in a

frequency-selective channel is assumed.

In reality ranging accuracy is mostly degraded by multipath

in combination with low to medium bandwidth-limited signals

for terrestrial mobile communication systems, and not by SNR.

Naturally, we focus on investigating the ranging accuracy of

the newly proposed 5G localization waveform for frequency-

selective channels in this work. We particularly chose a low-

complex estimator estimating the first arriving path only.

Hence, we will show how well suited the proposed waveform

will be for ranging with bandwidth-limited signals, and which

parameters should be chosen.

Our contribution is organized as follows: in Sec. II we

recall the proposed parametrized waveforms, followed by the

transmission model for time-of-arrival (ToA) based ranging in

Sec. III. The derived maximum-likelihood (ML) estimator is

presented in Sec. IV and we first investigate the multipath error

envelope in Sec. V. In Sec. VI we apply different WINNER II

channel models to evaluate the ranging accuracy, followed by

a more generalized evaluation with varying root mean square

(RMS) delay spreads in Sec. VII. Finally, we wrap up our

work in the conclusion and give a possible outlook for further

investigations in Sec. VIII.

II. 5G LOCALIZATION WAVEFORMS

The authors in [6] proposed several single-parametrized

ranging waveforms with different power spectral densitys

(PSDs). In general, these waveform proposals can be viewed

as windowing functions. For clarity, we shortly recall those

waveforms as they provide the basis for our investigations.

The first parametric waveform consists of a triangular

shaped PSD as depicted in Fig. 1(a). We can analytically

describe the PSD with a so called shaping parameter α ∈ R,

0 ≤ α ≤ 1 as

|S (f)|2 =

{

(1− α) 2
B − 4 (1−2α)

B2 |f | , |f | ≤ B
2

0, |f | > B
2

(1)

with the signal bandwidth B [6]. For an α = 0.5 we obtain a

state of the art uniform PSD, which we refer to as rectangular

waveform throughout this paper. Furthermore, this rectangular

waveform serves as reference. The corresponding autocorre-

lation functions are derived in [6], and Fig. 1(b) shows the

resulting autocorrelation functions for the waveforms depicted

in Fig. 1(a). One aspect is directly visible from Fig. 1(b):

we trade-off the width of the main correlation peak for the

height of the decaying side-lobes similarly to using windowing

functions in spectral estimation. Consequently, the power

of interfering multipath components from a time-dispersive

channel can either be suppressed or even increased, depending

on the delay relative to the line-of-sight (LoS) path.

As second parametrized waveform we consider a weighted

superposition of two Dirac delta functions at the spectrum’s

edge and a rectangular waveform. This superposition has

been beneficial in [6] to decrease the CRLB. We refer to
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Fig. 1. Triangle waveform [6].

this waveform as Dirac-rectangular waveform and denote the

power spectral density as

|S(f)|2 =

{

1−γ
B + γ

2

[

δ(f + B
2 ) + δ(f − B

2 )
]

, |f | ≤ B
2

0, |f | > B
2
(2)

with the signal bandwidth B, and γ ∈ R, 0 ≤ γ ≤ 1
as shaping parameter [6]. Fig. 2(a) illustrates the PSD. A

rectangular waveform is obtained by setting γ = 0. Fig. 2(b)

shows autocorrelation functions for different γ. Compared to

the triangular waveform, the side-lobes of the autocorrelation

function do not decay. In the extreme case with γ = 1
the resulting autocorrelation is a cosine-function. Hence, the

usable parameter range will be different for time-dispersive

channels compared to an AWGN channel without multipath,

as evaluated in [6].

The two afore introduced waveforms showed, comparable

to windowing functions used in spectral estimation, a trade-off

between the width of the main correlation peak and the height

of the side-lobes. It is hence desirable to use a waveform with

controllable side-lobe amplitudes. Dolph-Chebyshev window

functions fulfill this condition and represent the third evaluated

waveform within this work. Fig. 3(a) and Fig. 3(b) illustrate

the PSD and the autocorrelation function respectively. We

denote a shaping parameter κ ∈ R, κ > 0 in Decibel to define
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Fig. 2. Dirac-rectangular waveform.

the side-lobe attenuation. Further derivations and waveform

definitions are available in [6].

At the end of this section we want to relate these waveforms

to the latest developments and envisaged improvements in 5G:

in 5G massively connected devices, either mobile terminals

for persons or for machines, enable cooperative positioning

techniques. System bandwidth and transmission power are

very limited for carrier frequencies below 6GHz. Hence,

more optimal waveforms to improve ranging accuracy for

cooperative positioning compared to state of the art would

significantly improve mobile terminal localization. As stated

in [6], only the PSD is of interest. Consequently, phases of

subcarriers can either be modulated with data symbols or

optimized for a reduced peak-to-average power ratio (PAPR).

Within 5G various different modulation schemes are proposed

to enable a flexible spectrum’s usage and to enable more

time- and frequency-concentrated signals, e.g., reducing adja-

cent channel interference. Single-parametrized waveforms for

ranging can easily be placed within this context.

III. TRANSMISSION MODEL

Our transmission model depicted in Fig. 4 comprises a

multi-carrier transmitter and a multi-carrier receiver based on

orthogonal frequency division multiplex (OFDM). Transmitter

and receiver are perfectly synchronized in time to enable ToA

or time-of-flight (ToF) ranging. The PSD of the transmitted

signal is denoted as |S (f)|2 with f ∈ R, −B/2 ≤ f ≤ B/2.
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Fig. 3. Dolph-Chebyshev waveform.

Assuming a sampling interval Ts as the inverse of the sampling

frequency fs, we can describe the sampled and transmitted

OFDM symbol in time-domain as

s [n] =
1√
N

N/2−1
∑

l=−N/2

S

(

l
f

fs

)

ej2πn
l
N , (3)

with n as sample index in the range n = [−C,N − 1],
and l as subcarrier index. The OFDM symbol consists of

N even subcarriers and the cyclic prefix is C samples long.

In practical implementations we need to keep guard bands

at the spectrum’s edge for low-pass filtering. Hence, only

Nu < N usable subcarriers can be allocated, but the power

of the transmitted signal s [n] is normalized to one. An in

general time-dispersive mobile radio channel can be expressed

as summation of M weighted Dirac delta functions δ

h [n, τ ] =
M
∑

m=1

βmδm

[

n− τm
Ts

]

, (4)

with βm ∈ C as complex amplitude for the multipath com-

ponent m, and τm ∈ R
+ as delay of multipath component

m in seconds. The LoS component is represented by m = 1,

and we assume a stationary channel for the duration of one

OFDM ranging symbol. Gaussian distributed white noise with
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Fig. 4. Transmission model for OFDM based ToA ranging.

zero mean and variance σ2
z represented by z [n] is added, and

we obtain the received signal

r [n] = s [n] ∗ h [n, τ ] + z [n] (5)

at the receiver. The estimator derived in the next section is

used to estimate the delay of the first incoming path τm=1

denoted as τ̂1.

IV. MAXIMUM-LIKELIHOOD ESTIMATOR

The estimator in Fig. 4 consists of an maximum-likelihood

(ML) estimator assuming a mobile radio channel with a single-

tap only. As shown in [8], this ML estimator can be realized as

single channel-tap correlation receiver, equivalent to a delay-

locked loop (DLL) used in GNSS receivers. We focus on

snapshot based estimation, where only one received OFDM

symbol is used for estimation. No tracking is applied. The

ML estimator to incoherently estimate the delay of the LoS

path therefore corresponds to

τ̂1 = argmax
τ̃m

∣

∣

∣

∣

∣

N−1
∑

l=0

r∗ [l] sref

[

l − τ̃m=1

Ts

]

∣

∣

∣

∣

∣

, (6)

assuming an unknown phase offset between transmitter and

receiver. The correlation length is equivalent to the OFDM

symbol length without the cyclic prefix. The received signal

r [n] has been defined in (5), and the time-delayed reference

signal for crosscorrelation in the index range l = [0, N − 1]
is defined as

sref

[

l − τ̃1
Ts

]

=
1√
N

N/2−1
∑

x=−N/2

S

(

l
f

fs

)

ej2πn
l−τ̃1/Ts

N . (7)

Range estimation is commonly divided into two steps: an

acquisition step and a fine-synchronization step. In the ac-

quisition step the correlation function in (6) is evaluated

on a time grid which is integer multiples of the receiver’s

sampling duration Ts. The maximum of this coarse-grid cor-

relation function is detected and used as initialization for

fine-synchronization. By using OFDM we can shift the fine-

synchronization from time-domain into frequency-domain to

avoid costly signal interpolations in time-domain for sub-

sample delay estimation. The cyclic prefix enables a shift

from linear to circular convolution. Hence, we can estimate

the delay in frequency-domain. Ranging performance therefore

depends on both steps. Correlation functions with high side-

lobes result in incorrect maximum correlation peak detection

during the acquisition phase, and ranging estimates become

erroneous.

We can see from (6) that we optimize with respect to the

strongest path only, assuming that the LoS path used for

ranging is the strongest path. The channel itself as defined

in (4) comprises M components. As a result, our ML esti-

mator will be biased and the ranging performance of the ML

estimator cannot be assessed with lower bounds such as the

CRLB or the ZZLB anymore. Consequently, we are interested

how the estimation bias changes with respect to the signal’s

PSDs defined in Sec. II if we keep this simple estimator. Is

it possible to obtain a lower estimation bias with waveforms

different from the rectangular waveform? Throughout the rest

of this paper we refer to estimation accuracy as the bias, and

to precision as the variance/standard deviation.

V. MULTIPATH ERROR ENVELOPE

In general, time-dispersive wireless channels affect any

timing based ranging technique. Multiple delayed, attenuated

and phase rotated replicas of the originally transmitted signal

of limited bandwidth are superimposed at the receiver antenna.

In this section we have a closer look at the multipath error

envelope (MEE).

The MEE, also known as multipath-profile, is a common

way of illustrating multipath performance for a given band-

width limited signal applied for time based ranging [9]. It

shows the influence of a single multipath component with a

dedicated magnitude, phase and delay relative to the LoS path,

on the range estimation bias. Hence, the channel defined in (4)

simplifies to

h [n, τ ] = β1δ

[

n− τ1
Ts

]

+ β2δ

[

n− τ2
Ts

]

, (8)

with τ1 as the delay of the LoS path and τ2 as delay of the first

multipath component. For the MEE we are only interested in

relative delays, amplitude levels, and phases. The delay of the

interfering multipath component is swept from τ2 > τ1 up to

a predefined limit of interest. The magnitude |β2|2 is set to a

fixed level of, e.g., 3 dB lower than the magnitude of the LoS

path, and the relative phase is swept between 0◦ and 360◦.

In this work, the MEE is evaluated as follows: we apply the

incoherent ML estimator defined in (6) with the channel from

(8), and set the noise term z ≡ 0 as we are only interested in

the estimation bias. The power of the multipath component is

3 dB lower than the LoS path, and range estimation is based

on the two-step approach: acquisition by maximum correlation

peak detection and fine-synchronization in frequency-domain.

Relative phases are swept within [0◦, 360◦) in 5◦ steps, and we

average the obtained range estimation bias over these relative

phases. This averaging is equivalent to a spatial average over

the carrier phase. According to 3GPP-LTE we use a sampling

frequency of 30.72MHz and an OFDM symbol length of N =
2048. In contrast to 3GPP-LTE we allocate approximately

90% of the sampling bandwidth with Nu = 1800, which

results in an effective bandwidth of 27MHz and an effective

spatial sample length of 11.1m with a propagation speed

of 3× 108 ms−1. The state of the art rectangular waveform

always serves as reference.
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Fig. 5 shows the multipath error envelope averaged over

all relative phases for the triangle waveform. Only some

waveform parameters α are selected for illustration. We can

clearly see the trade-off between the wider main correlation

peak and reduced side lobes: for α = 0 the ranging bias

vanishes for relative delays equivalent to 25m and above, but

the maximum ranging bias is higher compared to the rectangle

waveform with α = 0.5. A narrower main correlation peak,

e.g., for α = 0.8 results in a lower maximum ranging bias but

results in a larger ranging bias at higher relative delays. Too

high correlation side-lobes as for α = 1 result in unfavorable

superpositions of the main correlation peak and the correlation

peak of the multipath component. Maximum correlation peak

detection in the acquisition step fails and estimation outliers

occur. We can observe this from Fig. 5 with α = 1, where

the ranging bias suddenly increases for relative delays around

5m. Hence, this waveform parameter should not be chosen

for such a channel.

The proposed Dirac-rectangular waveform shows a similar

result compared to the triangle waveform, see Fig. 6. We

do not show results for parameter values γ > 0.6, because

beyond this γ we always experience incorrect correlation peak

detections and the estimation bias is off the chart. Compared

to lower bound results in [6], [7] we obtain a much lower
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Fig. 7. MEE for the Dolph-Chebyshev waveform with selected waveform
parameters κ and averaged over all relative phases.

waveform parameter range for which this Dirac-rectangular

waveform shows an improvement.

Fig. 7 shows the result for the Dolph-Chebyshev waveform

and a selected number of side-lobe attenuation values κ. These

results are comparable to the Dirac-rectangular waveform for

small values of κ because the PSDs are similar, see Fig. 2(a)

and Fig. 3(a) for comparison.

Finally, we select the best MEE result from all three

waveforms for which no detection outliers occur, and shortly

discuss the result. Fig. 8 shows these three results together

with the result from the rectangular waveform as reference.

Compared to the state of the art rectangular waveform we can

reduce the maximum average ranging estimation bias by about

42%. We also observe that the difference between the triangle

and the Dirac-rectangular waveform is negligible with respect

to the maximum estimation bias. However, the estimation bias

from the triangle waveform decays much faster over higher

relative delays compared to the Dirac-rectangular waveform.

Naturally, one might ask in which channel scenarios our

proposed waveforms and their respective parameters are ben-

eficial based on the MEE evaluations. Let us consider two

channel scenarios: an indoor channel with a very small delay

spread and and outdoor channel with a larger delay spread

and multipath clustering. In an indoor scenario the delay

spread is commonly very small. Hence, the relative delay

between the LoS path and any other multipath component is

small. In such a scenario, we require a small range estimation

bias at small relative delays but we don’t need to consider

higher relative delays. As a consequence, larger estimation

biases resulting from higher correlation side-lobes at larger

relative delays would not degrade an application’s positioning

performance, as larger relative delays simply do not occur. The

Dirac-rectangular waveform would be a beneficial choice. For

an outdoor channel scenario this relation is exactly opposite

compared to the indoor channel scenario. For example, if

clusters of multipath components with large relative delays

occur, we might choose a Dolph-Chebyshev waveform with

very small correlation side-lobes to suppress the interference

resulting from multipath.
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TABLE I
OVERVIEW OF SELECTED WINNER-II SCENARIO PARAMETERS [10].

WINNER-II scenario RMS delay spread K-factor

A1, in building
Indoor office/residential

38ns 7 dB

B1, hotspot
Typical urban micro-cell

36ns 9 dB

B3, hotspot
Large indoor hall

29ns 2 dB

C1, metropol
Suburban

58ns 9 dB

C2, metropol
Typical urban macro-cell

40ns 7 dB

D1, rural
Rural macro-cell

15ns 7 dB

D2a, moving networks
BS-MRS, rural

39ns 7 dB

VI. WINNER-II CHANNEL MODEL EVALUATION

As a next step we investigate the ranging performance of

the proposed waveforms by using a state of the art channel

model widely used in the communication community. The

WINNER-II channel model is used and we selecte the model

scenarios A1, B1, B3, C1, C2, D1, and D2a in the LoS case for

numerical evaluation [10]. These numerical evaluations should

have shown which specific waveform and waveform parameter

should be chosen for a particular channel model scenario, such

as indoor office, urban micro-cell, indoor hall, urban macro-

cell, and so on. Unfortunately, our numerical evaluations

were inconclusive: we did not find significant correlations

between the model scenarios and its model parameters and

the optimally chosen waveform and waveform parameter. We

investigated this issue further and identified the following

circumstances which have lead to these inconclusive results:

for all LoS scenarios in the WINNER-II channel model the

RMS delay spread is approximately equal and the Rician K-

factor is approximately equal as well. Tab. I summarizes the

RMS delay spread and Rician K-factor for the afore listed

model scenarios. Hence, we cannot correlate our findings with

the RMS delay spread as the RMS delay spread does not cover

a wider range of values.

VII. DELAY SPREAD DEPENDENT RANGING ACCURACY

The inconclusive results from WINNER-II channel evalua-

tions in the previous section shows that we need a different

channel model for our evaluations. At the end of our evalua-

tions we want to give a clear answer in which environments

particular waveforms and parameters should be chosen. We

focus on LoS propagation conditions for ranging, and hence,

the channel can properly be described in general by the Ricean

K-factor, and the RMS delay spread denoted as τRMS. The

RMS delay spread in particular describes various outdoor and

indoor environments very well: indoors τRMS is in the order

of about 100 ns, and outdoors τRMS can reach up to several µs
depending on the carrier frequency.

A. Channel Generation

Several methods to generate channel realizations based on

a given K-factor and τRMS are available in existing literature

[11]. At this point we need to make clear that channel real-

izations with multipath components lying in fixed equidistant

taps must not be chosen. In [11] this is described as method

of equal distances. Such generated channels will lead to

incorrect evaluation results as waveforms with null-values

in the autocorrelation function at particular taps are easily

found but in reality, multipath components seldom lie exactly

on equidistant taps. Consequently, we chose the multipath

delay generation method as described by WINNER-II in [10,

Sec. 4.2] and adapted it to our needs.

Channel generation parameters are as follows: the Rician

K-factor is fixed to 7 dB as in [10, Tab. 4-5], we use an

exponentially decaying power delay profile [10, Tab. 4-5],

a total number of 20 rays for the multipath generation, and

a varying RMS delay spread τRMS between 1 ns and 10 µs.
Phases of all multipath rays and the LoS path are randomly

generated and uncorrelated for each channel realization with

uniform distribution. Additionally, the delay of the LoS path

is known but uniformly distributed within [0, 1). The channel

is interpolated and applied in frequency-domain, as we use

OFDM modulated signals. 1× 104 channel realizations are

generated for evaluations.

OFDM signal parameters are as follows: the subcarrier

spacing is fsc = 15 kHz and we use three different 3GPP-

LTE bandwidths 100MHz, 20MHz and 5MHz [2]. The

corresponding OFDM symbol lengths without cyclic prefix N
are therefore 8192, 2048 and 512 and the amount of allocable

subcarriers Nu are 6666, 1200 and 300 respectively. Our

chosen RMS delay spread value range requires an increased

cyclic prefix length of C = N/2 to consume the channel

impulse response and to avoid inter-symbol interference (ISI).

B. Performance Metric

In many cases the ranging root mean square error (RMSE) is

the chosen performance metric for snapshot based range esti-

mation. A first evaluation however showed, that the achievable

gain in RMSE for different optimally chosen waveforms over

the RMS delay spread compared to the rectangular waveform

is negligible. As mentioned in Sec. II the chosen waveforms
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the 1-sigma cutting point. The bandwidth is 100MHz and τRMS is 4 µs.

are simply windowing functions. Hence, for particular channel

realizations we gain, for some we loose ranging performance,

and in the average we do not gain at all. However, localization

algorithms commonly employ tracking and the snapshot based

ranging RMSE is not a well suited performance metric.

The error distribution becomes more important if localization

algorithms within a Bayesian framework are chosen.

In this work, we therefore focus on the 1-sigma cumulative

distribution function (CDF) point of the absolute ranging error.

Fig. 9 shows CDF curves of the absolute ranging error of

selected waveforms for explanation. The rectangular waveform

is always our reference. As we can see in this example, the

Dolph-Chebyshev waveform with κ = 32dB performs better

compared to the rectangular waveform up to about 75% of

the cases. We are thus interested in waveforms which result

in a lower absolute ranging error e in 68.27% of the cases

compared to the rectangular waveform.

C. Results

At first we have a look at the absolute ranging error for

the state of the art rectangular waveform over the RMS delay

spread τRMS for SNR values of −10 dB, 0 dB and 10 dB
and the three bandwidths of 100MHz, 20MHz and 5MHz.

The SNR denotes the signal-to-noise ratio at the receiver

input before the correlator/matched filter, and hence, does not

include the correlation gain. Fig. 10 shows these results, which

serve as reference and benchmark for the proposed waveforms

in this work. For comparison we calculated the CRLB for the

multipath-free case for the rectangular waveform. Fig. 10(a)

shows the result for a bandwidth of 100MHz. We observe

a small ranging error for very small delay spreads, because

the relative delay of interfering multipath components is so

small that the channel becomes frequency-flat again. The

ranging error increases for larger delay spreads and reaches

a maximum at τRMS ≈ 30 ns. This delay spread is typical
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(a) Rectangular waveform with a bandwidth of 100MHz.
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(b) Rectangular waveform with a bandwidth of 20MHz.
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Fig. 10. Absolute ranging error based on the 1-sigma CDF cutting point
(68.27%) of the rectangular waveform for reference. The square-root of the
CRLB for multipath-free channels is additionally shown for SNRs of −10dB
and 0dB.



for indoor scenarios, see Tab. I. For larger delay spreads

reaching 10 µs we observe a smaller ranging error because

the probability of interfering multipath components with small

relative delay is lower due to the exponentially decaying

power delay profile. Additionally, interfering autocorrelation

side-lobes from interfering multipath components with larger

relative delay are smaller, as the side-lobes decay fast for the

rectangular waveform. Two interesting aspects are visible: the

receiver SNR does not play a role for τRMS between 2 ns and

700 ns, and the ranging error converges to specific values. The

first aspect highlights that the ranging error is solely dominated

by the frequency-selective channel resulting in an increased

ranging bias. Regardless of the SNR we cannot obtain a

lower ranging error. The second aspect highlights that the

ranging error becomes dominated by AWGN, and converges to

the calculated square-root of the CRLB. A smooth transition

between those two aspects is also visible. Once the system

is noise-limited only, the results from [5], [6] are applicable.

Results for bandwidths of 20MHz and 5MHz shown in

Fig. 10(b) and Fig. 10(c) are similar. Particularly for 5MHz
we clearly see the noise domination for delay spreads up to

30 ns for an SNR of −10 dB.

Secondly, we calculate the CDF of the absolute ranging

error for all waveform and parameter combinations, and select

the combination with the smallest absolute error at the 1-

sigma point. This selection is equivalent to a genie-algorithm

knowing the K-factor and RMS delay spread of the channel

a-priori and providing us the best parameter combination. We

define a ranging error reduction factor

G =
eref

eopt

, (9)

with eref as reference error obtained from the state of the art

rectangular waveform, and eopt as error from the optimally

chosen waveform parameter, see also Fig. 9. Hence, G directly

indicates how much better a proposed waveform is compared

to state of the art.

Fig. 11 shows the error reduction factor for all three wave-

forms with optimally chosen waveform parameters at a signal

bandwidth of 100MHz. Let us focus on the triangle waveform

in Fig. 11(a) first: G is negligible for τRMS below 1 µs and

does not show an SNR dependency. Above 1 µs we clearly

see a significant improvement, particularly for higher SNRs.

At this point we observe the ranging performance limitation

based on the frequency-selective channel and AWGN again:

the lower plot in Fig. 11(a) shows the corresponding optimal

waveform parameter. α converges to 0 for high SNRs resulting

in a PSD concentration around the DC-carrier, see Fig. 1(a),

and faster decaying autocorrelation side-lobes. For lower SNRs

we transition to the AWGN limitation. Hence, α converges to

1 resulting in a PSD concentration at the spectrum’s edge, see

SNR values of −10 dB and 0 dB. Minor variations of α for

a particular SNR over τRMS result from the limited number

of channel realizations and resulting minor variations in the

calculated CDFs. The Dirac-rectangular waveform shows an

improvement at RMS delay spreads around 10 ns to 100 ns,
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(a) Triangle waveform.
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(b) Dirac-rectangular waveform.
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(c) Dolph-Chebyshev waveform.

Fig. 11. Resulting 1-sigma point ranging gain for a bandwidth of 100MHz
and optimally chosen waveform parameters. Colors represent different SNRs.
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(b) Dirac-rectangular waveform.
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(c) Dolph-Chebyshev waveform.

Fig. 12. Resulting 1-sigma point ranging gain for a bandwidth of 20MHz
and optimally chosen waveform parameters. Colors represent different SNRs.
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(b) Dirac-rectangular waveform.
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(c) Dolph-Chebyshev waveform.

Fig. 13. Resulting 1-sigma point ranging gain for a bandwidth of 5MHz and
optimally chosen waveform parameters. Colors represent different SNRs.



see Fig. 11(b). An improvement at larger τRMS is not possible

because we can not concentrate the PSD around the DC-

carrier. κ converges to 0 which represents the rectangular

waveform. We already observed in Sec. II and Fig. 3(a) that

the Dolph-Chebyshev waveform is very similar to the Dirac-

rectangular waveform for small side-lobe attenuation values

κ. The ranging error reduction factor is similar compared to

the Dirac-rectangular waveform for τRMS between 10 ns and

100 ns. Additionally, we also gain at larger RMS delay spreads

for SNR values greater than 0 dB. However, we loose at low

SNRs compared to the rectangular waveform. The maximum

achievable G for τRMS between 10 ns and 100 ns is 1.161.

Results for signal bandwidths of 20MHz and 5MHz de-

picted in Fig. 12 and Fig. 13 are similar compared to previ-

ously described results for 100MHz. Keeping in mind the

reference in Fig. 10, we observe much larger RMS delay

spread value ranges where the ranging error is limited by

AWGN and not by the frequency-selective channel itself. As

a result we can see that for τRMS below 10 ns for 20MHz and

below 100 ns for 5MHz: optimal waveform parameters across

all waveform types converge to values with a PSD concentra-

tion at the spectrum’s edge. Ranging error reduction factors

of about 1.5 can be obtained in the AWGN limitation case

and about 1.2 in the frequency-selective channel limitation

case. Based on these results with lower signal bandwidths we

can also state that the Dirac-rectangular waveform is a more

optimal waveform compared to the state of the art rectangular

waveform.

VIII. CONCLUSION AND OUTLOOK

Based on our numerical evaluations with varying RMS

delay spread we can conclude as follows: the ranging error can

be reduced by a factor between 1.2 and over 5 for optimally

chosen waveforms and parameters compared to a state of the

art rectangular PSD. It is important to say that we used a

single-channel-tap correlation receiver also known as DLL in

GNSS receivers for range estimation. Such an estimator can

easily be implemented in existing communication receivers.

Our results show which waveform and parameter should be

chosen, given a particular channel RMS delay spread and

signal bandwidth.

Further investigations should focus on deriving a theoretical

framework to easily assess the resulting ranging performance

over time-dispersive channels, as our conducted numerical

evaluations are very time-consuming. With such a theoretical

framework, additional parameters sweeps should be executed,

e.g., more fine-grained systems bandwidths and different

Ricean K-factors. The sensitivity of waveform parameter mis-

match on ranging performance should also be part of further

investigations.
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