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Abstract—Channel-SLAM is an algorithm which uses mul-
tipath propagation for positioning and treats multipath com-
ponents (MPCs) as line-of-sight (LoS) signals originated from
virtual transmitters (VTs). To use the information of the MPCs,
Channel-SLAM estimates the receiver position and the position
of the VTs simultaneously using simultaneous localization and
mapping (SLAM) and does not require any prior information
such as room-layout or a database for fingerprinting. This
paper investigates mapping, where we derive a probabilistic
map representation based on the receiver positions. Thus, if
the receiver knows its current location, the information in the
probabilistic map helps to estimate the trajectory of further
receiver movement. Similar to SLAM approaches, we estimate,
map and reuse VT positions in this paper. The algorithm is
evaluated based on measurements in an indoor scenario with one
fixed transmitter and a moving receiver. We show that indoor
positioning is possible with only one transmitter when MPCs are
used.



I. INTRODUCTION

Positioning is next to communication the most important

field of applications for wireless radio transmissions. Global

navigation satellite system (GNSS) receivers can deliver very

good position estimates under optimum conditions. Good

accuracy can be achieved by ranging, i.e. the determination

of the radio wave propagation distance from a transmitter at a

known location to the receiver. Under pure line-of-sight (LoS)

propagation conditions, the information of the wave’s traveled

distance can be extracted from the amplitude, phase or the

delay of the wideband signal. To obtain the three dimensional

position of the receiver, ranges to at least four different trans-

mitters need to be measured, assuming that the transmitters

are synchronized and their positions are known. However, in

critical scenarios, the positioning accuracy of GNSS is reduced

because of multipath effects, low received signal power and

non-line-of-sight (NLoS) propagation. Though, signals of op-

portunity for example originated from mobile communication

base-stations, dedicated ultra-wideband (UWB) transmitters or

wireless local area network (WLAN) base-stations can be used

for positioning. In this paper, we consider a positioning ap-

proach using wireless signals in challenging environments like

indoor or deep urban. In such environments the transmitted

signal is reflected and scattered by objects. Hence, the signal

reaching the receive antenna consists of multiple paths, called

multipath. Multipath reception degrades the accuracy of the

positioning device as long as the receiver is based on standard

methods. Optimal methods to mitigate multipath effects on

the range estimate are based on the estimation of the channel

impulse response where the first arrived path is treated as the

LoS path. Therefore, these methods determine the multipath

only to remove the influence on the range estimate of the LoS

path.

With Channel-SLAM [1]–[4] we introduced a novel algo-

rithm which uses multipath components (MPCs) for position-

ing instead of mitigating them. Measurements with a moving

receive antenna showed, that some MPCs have a path life

of several meters of the receiver movement [5]. These long

visible paths can be used by Channel-SLAM for positioning.

Channel-SLAM treats each MPC as a LoS signal from a virtual

transmitter (VT) whose position is unknown to the receiver.

These VTs are static during the receiver movement. Channel-

SLAM estimates the receiver position and the positions of

the VTs simultaneously, thus, contrarily to other approaches

the approach does not require any prior information such as

room-layout or a database for fingerprinting [6]–[8]. The

only conditions to be fulfilled are the presence of a multipath

environment, a moving receiver as well as prior knowledge

of the initial receiver states, i.e. position and moving direc-

tion. To further improve the accuracy of Channel-SLAM, we

fused in [4] additionally a gyroscope which provides heading

information of the moving receiver.

This work builds on and extends the previous work on

Channel-SLAM. Channel-SLAM basically uses a two level

approach: The first level uses the Kalman enhanced super

resolution tracking (KEST) algorithm to estimate and track

the amplitude and the delay of each MPCs [9]. Afterwards,

the second level estimates simultaneously the positions of the

receiver and the VTs based on the estimated parameters of the

MPCs. To track the receiver movement, we use a recursive

Bayesian filter approach to estimate the probability density

function of the receiver position and the VT positions. A

method to estimate the position of the receiver at the same time

as landmarks is called simultaneous localization and mapping

(SLAM) [10]–[12]. Usually in robotics, SLAM covers the

task of asserting whether the robot returned to a previously

visited area, after moving for an arbitrary time which is

called loop closure. This allows the robot to reuse previously

gained information. Hence, we derived in [4] a probabilistic

map representation based on previously visited locations. As

soon as the receiver returns to an already mapped position,

information of the previous movements at this position can

be reused to obtain predictions for the further movement.

In order to estimate and store the probability distribution of

the receiver’s motions as a function of location, we need to

partition the space. Equivalently to [13]–[15], we propose a

probabilistic map that represents the receiver positions by a

two-dimensional hexagonal grid. In previous implementations

of Channel-SLAM, we did not consider re-tracking previ-

ous MPCs or VTs. Hence, if the tracking of a MPC has

been lost and might be regained, the corresponding VT is

initialized without any prior information. Similar to SLAM

approaches, we estimate, map and reuse VT positions in this

paper. To verify the refined algorithm, we perform evaluations

based on measurements. We used an indoor scenario with

one fixed transmitter and a moving pedestrian, carrying the

receive antenna and a gyroscope in his hands. The pedestrian

was moving on the ground floor of a building with partly

overlapping parts. Hence, we show that the algorithm is able

to map the trajectory as well as reuse the estimated map and

VTs.

The paper is structured as follows: Section II describes the

signal model and its use by VTs, afterwards Section III derives

the proposed algorithm. Thereafter, Section IV evaluates the

algorithm based on measurements. The last section, Section V,

concludes the paper.

Throughout the paper, we will use the following notation:

• (·)T , (·)H stands for matrix (or vector) transpose and

conjugate transpose, respectively.

• All vectors are interpreted as column vectors.

• x ⊙ y denotes the Hadamard-Schur product, i.e. the

element-wise multiplication of vector x and y.

• I denotes an identity matrix.

• Matrices are denoted by bold capital letters and vectors

by bold small letters.

• ‖A‖2 =
∑

l

∑

m |Al,m|2 represents the square of the

Frobenius norm of A with elements Al,m.

• a ∼ N
(
x;µa, σ

2
a

)
denotes a Gaussian distributed random

variable a with mean µa and variance σ2
a.

• 1 : k stands for all integer numbers starting from 1 to k,

thus 1, 2, . . . , k.
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Fig. 1: The figure shows three propagation mechanism: First

scenario: the transmitted signal is reflected on a smooth

surface. VT1 is defined by mirroring the physical transmitter

position at the surface. Second scenario: the transmitted signal

is scattered at S. VT2 is defined at the position of S. Third

scenario: The transmitted signal is scattered and afterwards

reflected on a smooth surface. VT3 is defined by mirroring

the scatterer S at the surface. In the second and third scenario

the additional propagation length dVT equals to dTS(tk).
Additional interactions between the physical transmitter and

S may occur indicated by the winded line.

• p
(
x
)

denotes the probability density function of x.

• f−1(·)denotes the inverse of function f(·).
• c is the speed of light.

II. SIGNAL MODEL

Fig. 1 shows three propagation mechanism. In the first sce-

nario, the transmitted signal is reflected on a smooth surface.

The transmitter has a fixed position and the receiver is moving

on the indicated path. When the receiver is moving also the re-

flection point at the coordinates rr(tk) is moving. If we mirror

the physical transmitter position on the reflecting surface, we

obtain the position rVT,1 of VT1 which is static during the re-

ceiver movement. The distance between VT1 and the receiver

is equivalent to the propagation time of the reflected signal

multiplied with the speed of light. Additionally, Fig. 1 exploits

a scenario where the signal is scattered. The propagation

effect of scattering occurs if an electromagnetic wave impinges

an object and the energy is spread out in all directions.

Geometrically, the effect of scattering can be described as

a fixed point S in the pathway of the MPC for all receiver

positions. Hence, the propagation distance of the scattered

path is dTS(tk) + dSU(tk) = ‖rt − rs‖ + ‖rs − ru(tk)‖ =
‖rVT,2 − ru(tk)‖ + dVT where dTS(tk) = dVT > 0 is

constant and rs = rVT,2 denotes the position of the scatterer.

Thus, we define S as VT2 for the MPC and treat dVT > 0
as an additional propagation distance associated to the MPC.

Furthermore, Fig. 1 shows a generalization of the considered

multipath effects. The transmitted signal is scattered at S and

afterwards reflected. Between the transmitter and S additional

interactions are possible. When the receiver is moving, the

reflection point on the reflecting surface is moving as well.

Hence, the VT3 is defined by mirroring the scatterer S at the

surface as visualized.

To summarize, the propagation path of each MPC can be

equivalently described as a direct path between a VT and the

receiver plus an additional constant propagation length dVT.

If only reflections occurred on the pathway between physical

transmitter and receiver, this additional propagation length is

zero dVT = 0. If the MPC was interacting with a scatterer, the

additional propagation length is greater than zero dVT > 0.

Equivalently, we can interpret dVT as a constant clock offset

between the VT and the physical transmitter. Hence, Channel-

SLAM treats each MPC as a LoS signal from a VT with static

position that is unknown to the receiver.

III. MULTIPATH ASSISTED POSITIONING USING MAPPING

The received signal is processed by the KEST algorithm,

that estimates for each MPC i, the propagation distance di(tk).
For each time instant tk, the estimates of the KEST algorithm

are condensed as the vector z(tk) with

z(tk) = [d̃0(tk), . . . , d̃N(tk)−1(tk)]
T , (1)

where N(tk) denotes the number of MPCs and the KEST

estimates d̃i(tk) of di(tk). As introduced in [4], in a Bayesian

formulation, the posterior probability density function (PDF)

is defined by

p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
(2)

where M(t0:k) defines the probabilistic map of the previous

receiver trajectory and x(t0:k) defines the state vector. Here,

the state vector x(tk) at time instant tk for N(tk) MPCs is

defined by

x(tk) =
[

xu(tk)
T
,xVT,0(tk)

T
, . . . ,xVT,N(tk)−1(tk)

]T

,

(3)

with the receiver state

xu(tk) =
[

ru(tk)
T
,vu(tk)

T
, bu(tk), ρu(tk)

]T

, (4)

where ru(tk) is the receiver position, vu(tk) the receiver

velocity, bu(tk) and ρu(tk) the receiver’s clock bias and drift,

respectively. The parameters representing the VT of the i-th

MPC are defined as

xVT,i(tk) =
[
rVT,i(tk)

T , dVT,i(tk)
]T

, (5)

where rVT,i(tk) are the coordinates of the VT and dVT,i(tk)
the additional propagation distance. We can factorize (2) into

p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
(6)

= p
(
x(t0:k)|z(t0:k)

)
· p

(
M(t0:k)|z(t0:k) ,x(t0:k)

)
(7)

= p
(
x(t0:k)|z(t0:k)

)

︸ ︷︷ ︸

Channel-SLAM

· p
(
M(t0:k)|xu(t0:k)

)

︸ ︷︷ ︸

mapping problem conditioned on the receiver state

(8)

where we assume that the map M(tk) only depends on the

receiver state xu(tk) as part of x(tk). In (6), the first term
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Fig. 2: Representing a walked path by hexagons: the black line

indicates the walked path, the red hexagons shows the mapped

path.

p
(
x(t0:k)|z(t0:k)

)
defines the posterior of Channel-SLAM

described in [1] and the second term p
(
M(t0:k)|xu(t0:k)

)

defines the probabilistic map described in [4].

As mentioned in [4], to estimate and store the probability

distribution of receivers motions as a function of location, we

need to partition the space. We discretize the space into a grid

of Nh adjacent hexagons Hi ∈ {H0, H1, . . . , Hi, . . . HNh−1},

where i uniquely references a position of a hexagon. Fig. 2

shows an example where the walked path is indicated by

the black line, the corresponding discretized hexagon map is

indicated in red. We define by M(tk), the time invariant map

of the previous receiver positions discretized by hexagons.

In previous implementations of Channel-SLAM, we did not

consider re-tracking previous MPCs or VTs. Hence, if the

tracking of a MPC has been lost and might be regained, the

corresponding VT is initialized without any prior information.

Similar to SLAM approaches, we estimate, map and reuse

VT positions in this paper. Thus, additional information on

regions from where each VT is visible has to be included in

the hexagon map. Before the receiver returns to a previously

mapped position (first loop), the algorithm initializes all VTs

entirely new, without a-priori information. Hence, each VT is

estimated in a discrete representation of the posterior prob-

ability density function of the VT states, by particle clouds,

see [1]. This part of the algorithm has high computational

complexity because the receiver has no information about the

states and hence, the location of the VTs. During the receiver

movement, the posterior probability density function of the VT

state converges which reduces the computational complexity.

In order to reuse the estimated VT locations, we save for each

mapped hexagon Hi the estimated VT locations. When the

receiver returns to a previously mapped hexagon Hi (loop-

closure) the algorithm evaluates the similarities among all

VTs. Therefore, the algorithm can reuse the estimated VTs

for positioning when the receiver returns to an already mapped

position. This enables on the one hand a lower complexity of

the algorithm as well as a better position estimation of the

receiver position.

IV. MEASUREMENTS

This section evaluates the derived algorithm based on indoor

channel measurements with a single static physical transmitter

and a moving pedestrian as shown in Fig. 3 and Fig. 4.

The pedestrian moves on the blue track for 543 s, moving

from the parking lot inside the building, down two corridors,

inside the meeting room and back out to the parking lot.

For the following analyzes, we divide the track into different

sections, see Table I. The measurements were performed

using the MEDAV RUSK-DLR broadband channel sounder in

single-input single-output (SISO) mode with the measurement

parameters as summarized in Table II. As shown in Fig. 5,

the moving pedestrian was equipped with the receive antenna

and a Xsense inertial measurement unit (IMU). We captured

simultaneously the received signal as well as the turn rates

of the gyroscope of the IMU. To measure the coordinates we

use a tachymeter TPS1200 from Leica Geosystems AG. We

mounted a prism as shown in Fig. 5 next to the receive antenna

on a stick above the moving person. The tachymeter was

located in the lobby where the prism of the moving pedestrian

is in LoS conditions to the tachymeter in the sections I,

II, IV, VI, VII and VIII. For the corridor parts, sections III

and V, the reference position was obtained using previously

measured ground truth points. The tachymeter transmits the

measured coordinates to the channel sounder which records

the channel impulse responses (CIRs) and the coordinates

simultaneously. During the walk the pedestrian is moving

with a constant speed, except between the time instants 230 s

and 285 s, and between 395 s and 415 s, the pedestrian was

standing. Fig. 6 shows the recorded unprocessed CIRs versus

the receiver traveled distance in seconds. The figure shows

the delay multiplied by the speed of light in meter. It is

apparent that this is a high multipath scenario with path delays

up to 100 m. Many MPCs are closely spaced regarding their

delay, nevertheless for some parts of the track it is possible to

determine the evolution of different MPCs by inspection. The

plot also shows that we are able to receive a signal from the

physical transmitter all the time. There are periods with high

power, when the user is in the lobby close to the physical

transmitter, and periods with low power when the LoS is

blocked or attenuated, e.g. outdoors or inside the corridors.

In order to exploit the multipath propagation for positioning,

we have to estimate and track the MPCs over time. Hence, the

accuracy of Channel-SLAM relies directly on the accuracy of

the CIR estimations of KEST. Fig. 7 shows the estimation

results of KEST for the CIR versus the receiver traveled time

in seconds. Many paths can be tracked for several seconds

of receiver movement. Channel-SLAM considers an underde-

termined system, therefore, long visible paths are preferable.

Thus for the evaluations, we extract from Fig. 7 only the long

visible paths as visualized in Fig. 8. Anyhow, Channel-SLAM



Fig. 3: Satellite Image: The pedestrian is moving from the

parking lot inside the building, down two corridors, inside the

meeting room and back out to the parking lot.

Fig. 4: Measurement scenario with a fixed transmitter and a

moving receiver (pedestrian). The pedestrian moves on the

blue track for 543 s, moving from the parking lot inside the

building, down two corridors, inside the meeting room and

back out to the parking lot. The track is divided into different

sections, see Table I.

TABLE I: Description of the different sections of the track

Section Beginning at Description

I t = 0 s Outdoor

II t = 62 s Lobby

III t = 93 s Right corridor

IV t = 233 s Lobby transition

V t = 315 s Left corridor

VI t = 404 s Short lobby passage

& meeting room

VII t = 490 s Lobby

VIII t = 518 s Outdoor

Fig. 5: Moving pedestrian: The receive antenna mounted on

a stick next to a prism for measuring the ground truth of the

moving pedestrian. The gyroscope is carried in the hands of

the pedestrian.

could use all detected MPCs, however, this would increase the

computational complexity.

Fig. 8 shows only the paths of KEST which are tracked

for a long receiver movement. The black dashed line in Fig. 8

shows the geometrical line-of-sight (GLoS) path. For the first

section of the track (I), we have LoS condition, where the

signal of the LoS path is attenuated by the coated window.

We are walking towards the physical transmitter, so the delay

of the LoS path decreases. The other paths behave similarly,

indicating their corresponding VT lies in the moving direction.

When we enter the lobby (II), the received power increases and

drops again by the time we enter the first corridor (III). During

the movement in the corridor, one MPC with a slightly larger

delay than the calculated LoS is present, which is probably

caused by a diffraction at the entrance door of the corridor.



TABLE II: Channel sounder settings

Parameter Value

RF center frequency 1.51 GHz

Bandwidth B 100 MHz

Number of sub-carriers N 1281

Sub-carrier spacing ∆f 78.125 kHz

Transmit power 10 mW

Signal period Tp 12.8 µs

Measurement rate Tg 1.024 ms

Transmitter antenna Omni-directional (V-polarized)

Receiver antenna Omni-directional (V-polarized)

Fig. 6: Recorded unprocessed CIRs versus the receiver traveled

distance in seconds. The track is divided into different sections,

see Table I.

Interestingly for this part of the track we also have a signal

originated from the opposite direction, which is apparently

being reflected at the end of the corridor. As expected, the

power rises again when we leave the corridor, stand still for

some time and then cross the lobby (IV). It stands out that

the LoS component is tracked rather inaccurately for this part.

This might be caused by limited bandwidth and closely spaced

MPCs. Hence KEST is not able to resolve all paths properly

and the estimated LoS path is not identical to the geometrical

LoS path. Inside the second corridor (V), we obviously have a

NLoS condition. After shortly passing the lobby we enter the

meeting room (VI). Apparently this is a challenging situation

for KEST. Although several MPCs are present, they can only

be tracked for a short period of time. Finally, we walk out of

the meeting room and leave the building through the lobby

(VI). Outdoors (VIII) we roughly take the same way as in the

beginning, but stop 3m after the starting point. Comparing

section I and VIII, we can see that the evolution of the MPCs

is similar, however not all MPCs are tracked in both sections.

Fig. 9, Fig. 10, Fig. 11 and Fig. 12 illustrate the perfor-

mance of the derived algorithm. For simplicity we show in

these figures only the estimations of the pedestrian position

and the mapped paths. We show by the green circles the

particle filter (PF) estimations of the receiver position and by

the red circle the minimum mean square estimate, see [1], of

Fig. 7: Estimation results of KEST for the CIR versus the

receiver traveled distance in meters. The track is divided into

different sections, see Table I.

Fig. 8: Estimation results of KEST for the CIR versus the

receiver traveled distance in meters. Only long tracked paths

are visualized. The black dashed line indicates the GLoS path.

The track is divided into different sections, see Table I.

the pedestrian position. The estimations of the VT locations

are not shown in this paper, example of the estimations can

be found e.g. in [4]. Channel-SLAM does not need any

prior information except of a coarse receiver starting position.

Hence, the receiver position is initialized in a square with

1m× 1m around the correct starting position, see Fig. 9. For

the evaluations of Channel-SLAM, we do not assume any prior

knowledge on the transmitters, i.e. we estimated the positions

of the physical transmitter and virtual transmitter simultane-

ously. Similarly to Fig. 9, Fig. 10 shows the estimation results

at tk = 144 s at the end of the corridor of section III. The figure

shows the mapped hexagons, where the grey hexagons indicate

the estimated trajectory with the highest (particle) weight.

After turning at the end of the corridor, the probabilistic map

enhances the movement prediction until we reached the lobby

again, see Fig. 11. We see that the uncertainty of the position

estimation of the receiver is reduced. Fig. 12 shows the

estimation results at the end of the track. We can observe,

that we are able to map the receiver path accurately. We

see that during the receiver movement the uncertainty on the

estimated pedestrian position increases. However, due to the

mapping and reusing of the map, we are able estimate the

pedestrian trajectory with an error smaller than 3 m for the



Fig. 9: Initialization of the algorithm at tk = 0 s.

Fig. 10: Estimated receiver position and map after tk = 144 s
at the end of the corridor.

whole scenario.

V. CONCLUSIONS

In this paper, we presented and extended the work on

multipath assisted positioning, called Channel-SLAM. The

new positioning method uses a SLAM approach to map

the receiver position. We propose a probabilistic map that

represents the receiver motion in a two-dimensional hexagonal

grid. Hence, as soon as the receiver returns to an already

mapped position, information of this position can be reused to

obtain better position estimations of the receiver as well as the

VT positions. Additionally, the obtained maps can be shared

between different receivers and VTs can be used similarly

to real transmitters with the advantage that VTs are always

in LoS to the receiver. We evaluated the algorithm based on

indoor measurements with a moving pedestrian and one fixed

transmitter.

Fig. 11: Estimated receiver position and map after tk = 217 s
entering the lobby.

Fig. 12: Estimated receiver position and map after tk = 543 s
at the end of the track.
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