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Abstract— Motion planning in robotics is a very large field
of research. Many different approaches have been developed
to create smooth trajectories for robot movement. For example
there are optimization algorithms, which optimize kinematic
or dynamic properties of a trajectory. Furthermore, nonlin ear
programming methods like e.g. optimal control, or polynomial
based methods are widely used for trajectory generation. Most
of these techniques are used to calculate a trajectory in advance,
or they are limited to create point-to-point motions, wherethe
robot needs to stop when switching to the next target point,
especially, when interpolating in rotational space. In this paper,
we combine a low-pass filter and spherical linear interpolation
to realize a velocity-limited online trajectory generator for
robot orientations in quaternion space. We use the developed
motion generator for mirroring a human arm motion with a
robot, recorded by a low frequency visual tracking. Using the
proposed method, we can replicate the motion of the operator’s
arm with very little delay and thereby achieve an easy-to-use
interface. Furthermore, as we can strictly limit the velocity
of the generated motion, the approach can safely be used in
human robot collaboration applications.

I. I NTRODUCTION

Fig. 1. The DLR Light-Weight-Robot - a sensitive torque controlled robot
for safe human robot collaboration

The current trend in robotics is moving to a very close
interaction of humans and robots. Whether at home or in
industrial applications, robots will find their way in our ev-
eryday life [1]. Human robot interaction will at some point be
very similar to the interaction of humans among themselves.
We are talking to robots, gesticulate with them, or we show
the robot what it has to do by demonstrating the task. The
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latter, namely learning by demonstration, is a very intuitive
and therefore easy-to-use approach to program a robotic task.
Two methods of demonstration are usually applied: One,
in which the human operator physically moves the robot
to the target configurations, the other, in which the motion
of the human operator is recorded and then transformed
into trajectories for the robot. This trajectory generation is
usually performed offline. To make the interaction between
humans and robots more intuitive, robots should be able to
imitate human motions. New vision-based sensors allow to
capture human motion but are able to process the data in
a low frequency only. Furthermore, one important goal of
generating trajectories for these motions is to limit the speed
and acceleration along the path, in order to comply with the
dynamic capabilities of the robot and to guarantee safety in
human robot collaboration.

In the beginning, research was primarily concerned with
generating trajectories by using geometric approaches such
as linear interpolation, circular interpolation or polynomial
splines [2] [3] [4]. Furthermore, optimization techniquesand
nonlinear programming methods were developed to ensure a
collision-free path from an initial position to a desired final
configuration [5], [6], [7], [8]. These optimization methods
also allow to define constraints as for example velocity,
acceleration and jerk constraints. Furthermore, time-optimal
or energy-optimal solutions for a path can be found.

While these optimization techniques are very well suited
methods for planning robot paths they do have one dis-
advantage: The process of finding an optimal path within
constraints needs a lot of computation time and therefore
can not easily be performed online. However, nowadays it
is getting more important to generate reactive trajectories in
real time. Therefore, optimization approaches are useful in
combination with generalization methods [9] [10]. Similar
approaches, which are based on predefined trajectories or
trajectories extracted from learning by demonstration, modify
the path online caused by sensor events e.g. external forces
or vision based force fields. These methods can be found
in the reflex motion library [11] or in [12], [13], where
the limitation of velocities, accelerations and jerk is treated.
However, in another recently presented approach [14], trajec-
tories are generated in consideration of the robot dynamics
and its torque limits.

All these aforementioned methods are basically limited
to Cartesian positions and cannot be used for generation of
Cartesian orientations. A common way to interpolate scalar
signals, is to filter the data using a low pass filter or similar
methods. However, due to the mathematical properties of
SO(3), these classical filtering methods cannot be directly



applied to orientations. Filtering of orientations can be used
for averaging, e.g. in sensor data fusion, but when applied to
interpolation, it usually leads to notable deviations because
the components of a rotation representation are dependent
and cannot be individually filtered.

A very nice approach for interpolating orientations orig-
inates from computer animation. Shoemake [15] introduces
an approach for spherical linear interpolation (SLERP) which
generates the shortest path between the current and the
desired orientation. Furthermore, this linear interpolation
method allows to define a desired time for the motion
and thereby a maximum rotary velocity can easily be re-
alized. However, there is a discontinuity in the rotational
velocity, when concatenating multiple segments of SLERP-
trajectories.

In this paper we present a real-time trajectory generation
method, which can be used for demonstrating tasks or inter-
active programming in a very simple way. In our approach,
we command the robot online via visual tracking of the
operator’s arm. To achieve this, the low frequency tracking
signal (e.g. 30Hz when using a Microsoft Kinect) needs to
be up-sampled to the 1kHz control loop of the robotic system
at runtime. At the same time the velocity of the generated
trajectory needs to be limited in order to ensure safety for
the environment and the robotic system itself. Our approach
allows to directly move the robot in tandem with the arm of
a human operator while guaranteeing a smooth continuous
behavior.

This paper is organized as follows. Section II describes the
SLERP algorithm introduced by Shoemake and a filter design
using quaternions. A proof for satisfying the limitation ofthe
angular velocity is done. Sec. III provides simulation and the
results of a comparison of each method and the combination
of both. In Sec. IV experiments using a VICON tracking
system and grasping a ball from a stand are shown. Section
V concludes the paper.

II. SMOOTH MOTION GENERATION USINGSLERP

In this section we introduce the general spherical linear
interpolation (SLERP) formalism given a starting orientation
and a desired final orientation [15]. Then, we explain a
method for filtering the SLERP output for generating smooth
motions with quaternions and finally prove the adherence of
the maximum velocity limitation to the combined trajectory
generation. The overall scheme of our method is depicted in
Fig. 2.

A. Slerp

When interpolating between two points in space, one is
interested in following the shortest path between these points.
In Euclidian space, this shortest path is obviously given
by a straight line. However, in non-Euclidian spaces, like
SO(3), the shortest path is not that intuitively found. In
[15], this problem is solved using quaternion-based linear
interpolation. Given the starting orientation asq0 and the
desired orientationqs the interpolating path can be computed
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Fig. 2. Approach - Combining two methods for smooth motion generation
in quaternion space. A low-frequency sensor signal is used as input
command for the robot. In combination with a method known from the
dynamic movement primitives paradigm, a suitable orientation generation
allows to smoothly and constrained move the robot in Cartesian space.

as
Slerp(q0,qs, u) = q0(q

−1

0
qs)

u, (1)

where 0 ≤ u ≤ 1 denotes the interpolation parameter. In
quaternion space, the quaternionqs and −qs describe the
same orientation. However, when calculating the spherical
linear trajectory towardsqs there are two solutions, which
can be seen as clockwise and counter-clockwise rotations. To
actually compute the shortest possible path from a starting
orientation to a target orientation, eitherqs or −qs has to
be chosen according to:

qs =

{

qs , q0 · qs ≥ 0

−qs , q0 · qs < 0
(2)

Equation (1) can be reformulated to:

q̃d(t) =
sin[(1− u(t))Θ]

sin(Θ)
q0 +

sin(u(t)Θ)

sin(Θ)
qs, (3)

where the total amount of rotation is given by

Θ = acos(q0 · qs). (4)

Since SLERP corresponds to linear interpolation (i.e. con-
stant velocity) we can useΘ to calculate an interpolation
durationTm, which limits the rotational velocity toωmax.

Tm =
Θ

ωmax

(5)

However, in order to prevent the robot from moving faster
than the source signal, we define the final interpolation time
Tq as:

Tq = max(Tm, Ts), (6)

whereTs is the sampling time of the source signal, which
can be computed as

Ts =
1

fs
, (7)

wherefs is the frequency of the sensor signal. Finally, having
the interpolation duration, we can formulate the interpolation
parameteru as:

u(t) =

{

ζ∆u , ζ < Tq

1 , ζ ≥ Tq

(8)



with ζ = t− tl wheret denotes the time andtl is the time
when the desired goal orientation changed for the last time
and ∆u = 1

Tq

. Furthermore, for each goal update at time
t, the initial orientation is updated asq0 = q̃d(t) and the
interpolation parameteru is reset to zero.

One main problem when concatinating trajectories gen-
erated using the SLERP algorithm is getting discontinuities
in the velocities, which lead to very high motor commands.
In the following section we describe how to smoothen the
SLERP output using a second-order differential equation
with quaternions.

B. Dynamic Filter Design

Generating smooth trajectories is very important to achieve
safe and stable robot behavior. Differential equations of
second order are well known, and it is possible to asymp-
totically stabilize the system. In order to design a filter for
quaterinons, we use an approach introduced in the dynamic
movement primitives (DMPs) community by [16]. There,
quaternions are used to represent non-singular rotations in
R

3. In order to use SLERP as a motion generator for direct
and shortest rotational movements, we need to smoothen
the output signal. Different approaches exist [17] parabolic
blends are used to smoothen the trajectory. But, as we are
interested in close human robot interaction the maximum
desired velocity must never be exceeded, which is not in the
focus of other methods.

1) Differential equation for quaternions:The general for-
mulation introduced by [16] using quaternions for dynamic
movement primitives is

τ ϑ̇ = K(g− x)−Dϑ+Kf(s)

τ ẋ = ϑ
(9)

wherex and ϑ denote the position and the velocity. The
stiffness of the system is defined byK, the damping termD
leads to a non-oscillating system. A convergence to the goal
g is guaranteed andτ is a temporal scaling factor. The force
term f (s) is basically used for learning the trajectories.

In general, movement primitives can be used for generat-
ing motions in joint or cartesian space. However, in order to
apply for rotational motions with quaternions the formalism
described in [16] has to be used:

τω̇ = Ke0({ηd,qd}{η̃d, q̃d})−Dω, (10)

for the quaternion low-pass-filter design, whereω denotes
the angular velocity, ande0 the error between the actual
quaternion and the goal quaternion. As our main intend
is to converge to the goal orientation and not generating
predefinded trajectories by gaussian basis, we choose the
force f(s) to be zero.

For the following we denote our quaternion vector as
q = [η q̃]T , where η denotes the scalar element and
q̃ = [qi qj qk]

T the vector element of the quaternion. The
error between the actual orientation and the goal orientation
can be written as

e0({η1,q1}, {η2,q2}) = η1q2 − η2q1 − q×

1
q2, (11)

whereq1 denotes the actual orientation,q2 the desired goal
position andq× denotes a skew-symmetric matrix

q× =





0 −qk qj
qk 0 −qi
−qj qi 0



 . (12)

To finally calculate quaternions from the rotary velocity
as shown in Fig. 2 the equation of the time derivative of
quaternions is

dq

dt
=

[

η̇
˙̃q

]

=
1

2
Q(ω)

[

η

q̃

]

, (13)

with

Q(ω) =

[

0 ωT

ω −ω×

]

. (14)

The resulting quaternion is the desired value as input for the
torque-controlled LWR III. In the following section we prove
that the input velocity of the dynamical system can never be
exceeded.

2) Maximum velocity proof:Due to the properties of
the SLERP algorithm, the input to the filter has a limited
velocity. Now we have to find the right set of parameters to
ensure that the output velocity of the second-order differen-
tial equation with quaternion input is never higher than the
velocity of the input. To achieve this, we use the one-degree-
of-freedom formulation for rotation as

τω̇ +Dω +Ke0(ω,ωd) = 0 (15)

where the error between actual orientation and goal orien-
tation can be expressed as the subtraction of the integrated
angular goal velocity and actual rotary velocity, which can
be written as

e0 =

∫

ωdt−
∫

ωddt. (16)

We obtain the derivative of the first-order differential equa-
tion which leads to the second-order differential equation

τω̈ +Dω̇ +Kω −Kωd = 0. (17)

Transformation to Laplace domain yields

Ω(s)

Ωd(s)
=

K

τs2 +Ds+K
. (18)

A non-oscillating dynamic system is defined by non-
imaginary poles which can be calculated as

p1,2 = −D

2τ
±
√

D2

4τ2
− K

τ
(19)

With a constant stiffness factorK we caluclate the damping
term asD ≥

√
4Kτ for a non-oscillating system. Thus,

setting the damping coefficientD accordingly guarantees that
the maximum output angular velocity isω ≤ ωdmax

, where
ωdmax

is the maximum absolute angular velocity.

III. S IMULATION

In this section we simulate the application of the filter
algorithm as a method for direct low frequency sensor input.
Then, we examine the behavior of using only SLERP as
trajectory generation without further smoothing. Finally, the
simulation results of the combined algorithm are shown.



A. Simulation results using only filter on the input signal

For the simulation we generated an artificial source signal
(qtarget) sampled with a frequency of 25 Hz. When feed-
ing this low frequency signal to the filter algorithm the
output shows an oscillating behavior, as shown in Fig. 3).
This behavior is expected, since the low sampling of the
source signal results in infinite high velocities at each sam-
pling point. The second-order differential equation actually
smoothes the signal to some extent, but the output is not
applicable on a robotic system as the resulting torques are
not feasible. Furthermore, the application of this signal to
a robotic simulator results in a very unnatural and jerky
movement behavior of the robot. This unnatural behavior
makes it difficult to control the robot by navigating via track-
ing sensors. Tuning the parameters to reduce the oscillation
would lead to a very high delay. Application of a source

Fig. 3. Direct signal input to the quaternion filter. (left) One component of
the resulting quaternion is depicted. The red dashed line depicts the original
sensor signal. The black solid line depicts the resulting trajectory. (right) The
maximum desired velocity is depicted as dotted magenta line. The resulting
velocity of the trajectory generation exceeds the maximum velocity and a
strong oscillating behavior is apparent.

signal with even lower frequency (≤ 10Hz) results in a stop-
motion-like behavior of the robot similar to the stick-slip
effect known from friction. Another issue when using only
the quaternion filter method is the exceedance of the desired
maximum velocity as one can see in Fig. 3 in the right plot.
The final velocity of the generated trajectory is much higher
than the maximum desired velocity of 2 rad/s. Especially
when humans and robots coexist in a shared workspace,
limiting the velocity is a safety requirement and renders the
filter approach inapplicable.

B. Simulation results using only SLERP

Velocity limitation in orientation interpolation can be
achieved using the SLERP algorithm, which was introduced
by Shoemake as a method for interpolating orientations in
quaternion space [15]. The main features of this approach
are the generation of the shortest motion from one initial
orientation to a desired final orientation and the possibility
to bound the angular velocity. In Fig. 4 the same artificial
target signal, depicted as dashed red line, was used for
analyzing the behavior of the SLERP trajectory generation.
The resulting trajectory is depicted by the blue solid line.
The trajectory of the SLERP-generated quaternions appears
to be smooth, but the resulting velocity is not continuous (see
Fig. 4 right side), which is inapplicable as an input signal for
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Fig. 4. Left row: Comparison of artificially generated inputand the
generated trajectory using SLERP only. Right row: Angular velocities
generated from the SLERP algorithm. The right bottom plot depicts the
absolute angular velocity (blue) and the velocity limit of 2rad/s which is
never exceeded.

a robot. Therefore, we use the combined trajectory generation
which is analyzed in the following.

C. Filtered SLERP

As seen, each single method is not sufficient when applied
on its own. However, a combination of both methods leads
to the desired result. In Fig. 5, the target trajectory, as used
in the plots before, is depicted by a red dashed line. The re-
sulting trajectory of the filtered SLERP algorithm is depicted
as black solid line. As one can see the velocity in the right
row never exceeds the maximum desired velocity and the
resulting trajectory is smooth and continuous. Application
of this signal on a real robotic system is presented in the
following chapter.

IV. EXPERIMENTS

For validating the filtered SLERP combination on a real
robotic system, we used the DLR light-weight-robot LWR III
equipped with the DLR-HIT-hand II. The goal of the exper-
iment was to mirror the motion of the human online (see
Fig. 9). In particular the human dynamically grasped a ball
from a stand, without slowing down and the robot was doing
exactly the same task in parallel. In order to trigger the grasp
command we used a surface electromyography (sEMG)
sensor placed on the forearm of the operator. From the EMG
activity opening and closing of the operators hand could be
detected and commanded to the robot’s hand accordingly. We
used the vision-based tracking system VICON as a tracking
device for the human motion. The tracking marker was
placed at the backhand of the human operator. A schematic



Fig. 5. Left row: Comparison of artificially generated inputdata of low
frequency with the filtered SLERP-generated trajectory. Right row: Angular
velocities generated from the filtered SLERP algorithm. Theright bottom
plot depicts the absolute angular velocity (blue) and the velocity limit of
2 rad/s which is never exceeded.

overview is depicted in Fig. 6. The frequency of the position
and orientation data transfer was set to 100 Hz but was
modifiable to a lower frequency. At this point we didn’t want
to set the value of the input signal frequency for Eq. (7)
manually. Therefore, we implemented a signal frequency
observer, which detects changes in the input signal and
calculates the sampling timeTs over a window of 4 samples.
In Fig. 7 (left row) the target values of each quaternion-
component is depicted as red, dashed line. In contrast to the
artificially generated signal, the real sensor data is more noisy
and contains outliers. As one can see the SLERP algorithm
compensates for the low quality of the sensor data effectively.
Also the maximum velocity is never exceeded, as depicted
in Fig. 7 on the right. In combination with the quaternion
filter algorithm we achieve the final trajectory as depicted by
the black, solid line in Fig. 7. In a second experiment we
modified the data transfer to a frequency of 10 Hz as shown
in Fig. 8. In order to also move the robot translationally, we
implemented a similar method for the online generation of
position trajectories. Having the same algorithm for position
and orientation interpolation allows e.g. for synchronization,
i.e. the rotation and positions reach the desired values at the
same time.

V. CONCLUSION

In this paper we presented a new approach for online
smooth trajectory generation. We used this approach to have
a robot mirror the human arm motion, which was recorded

Fig. 6. Schematic setup of the experiment - The human participant is
equipped with EMG sensors (1) for triggering the grasp command and
tracking markers (2) for tracking the position and orientation of the human
arm with a VICON tracking system (5). The task in this experiment is to
dynamically grasp the ball (4) without slowing down while the LWR III
robot (6) is exactly mirroring the task (3).
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Fig. 7. Left row: Comparison of 100 Hz sensor data (red), as received from
the VICON system, the SLERP-generated trajectory (blue) and the final
interpolator output (black). Right row: Comparison of angular velocities
generated from the SLERP algorithm (blue) and the results ofthe filtered
SLERP output (black). The right bottom plot depicts the absolute angular
velocity (SLERP in blue, filtered SLERP in black) and the velocity limit of
2 rad/s (grey), which is never exceeded.

online via a low-frequency visual tracking. The robot fol-
lows the human motion with limited velocities and smooth
acceleration. The SLERP algorithm introduced in [15] was
modified in order to continuously interpolate incoming data
towards a changing target. In combination with an approach
from the dynamic movement primitives, we are able to
generate orientation trajectories online in quaternion space.
We proved the adherence of the limited angular velocity
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Fig. 8. Left row: Comparison of 10 Hz sensor data (red), as received from
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and showed the behavior in simulation. Additionally, in our
experiments we dynamically grasped a ball from a stand
while the light weight robot LWR III exactly mirrored the
operator’s movement. In the future we will look for a way
to limit the accelerations and extend this algorithm to a via-
point interpolator for Cartesian movements with the robot.
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