

Economic impact of LOCOMACHS results

Dr. Philipp Hilmer(DLR)
Maria Weiland M.Sc.(SAAB)
LOCOMACHS M42 Internal Review
15-16th June 2016, MTC (Coventry, UK)

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°314003.

Content

- Introduction to LOCOMACHS High Level Objectives
- Assessing cost benefits
- LOCOMACHS use-case results
- Conclusions

The Context of LOCOMACHS

Flightpath 2050 vision for tomorrow's aviation (ACARE + EU)

stakeholders

+ Other

HLO's justified the need and funding of the project

LOCOMACHS HLO's are coherent with this vision

FINMECCANICA

Global Goals of FP7

Flightpath 2050

Involving SMEs based on cutting-edge research and education

Cost effective transport chains

No negative effects on the environment

Maximising the aviation sector's economic contribution and creating value: directly from aviation manufacturing

Protecting the environment and enabling the use of sustainable energy

Maintaining and extending industrial leadership: very cost effective and energy efficient products

Reminder – LOCOMACHS HLOs

Based on Flightpath 2050:

- 1. Maximising the aviation sector's economic contribution and creating value
- 2. Maintaining and extending industrial leadership: very cost effective and energy efficient products

The LOCOMACHS High Level Objectives were defined

LOCOMACHS HLOs

Define and validate a set of design and manufacturing rules for more complex structural parts

Fully integrate geometrical tolerance and variation management in a representative airframe assembled wingbox structure

Reduce by 50% the recurring costs of non-added value shimming operations in structural joints

Reduce by 30% the recurring costs of non-added value dismantling operations

Increase level of automation to reduce recurring cost during part joining by 30%

Reduction of NDI / NDT lead time by 30%

Cost sensitivity analyses of LOCOMACHS innovations

Framework of Cost sensitivity analyses:

Cost sensitivity analyses of LOCOMACHS innovations

LOCOMACHS Demonstrators:

- Case Studies of MIWiB
- Case Studies of LAWiB
- Case Studies of ReWiB

ReWiB

MIWiB Cost sensitivity analyses

MIWiB Case study

Co-bonded Upper Cover

Technology strand	Cost saving	Targeted components and processes
Co-cured/Co-bonded part (Integration	-10%	Integrated CFC structures (lower assembly
vs. Separate details)		costs)
Possible dry fiber placement vs. handlay	-15%	Automated CFRP deposition (to reduce
		material deposition time)
Automated drill and fastening vs. Manual	F0/	Automated drill, fasten, seal (lower sub-
assembly	-5%	assembly costs)

LAWiB Cost sensitivity analyses

Case studies of LAWiB

- Rear Spar
- Upper cover production
- Rapid curing of liquid shimming
- Laser surface treatment
- RTM composite spar and wing box
- Ultra-Sonic laminate thickness control
- Countersink scan
- Hexapod-assisted positioning
- Improved drilling
- Improved NDT/NDE: AUT

Upper cover production

Cost sensitivity analyses for wing skins/ structures

Technology Strand	Cost saving at TRL3
Co-cured/ Co bonded part integration	-5%
Automated deposition of composite material (prepreg)	-15%
Automated drilling and fastening	-4%

Rapid curing of liquid shimming

Boing 787 Cargo Door - 290 parts until 2024

Laser surface treatment

RTM composite spar and wing box

■ Spar integration in the wing box

Primary part manufacturing

■ Spar full assembly (inboard/ outboard)

Ultra-Sonic laminate thickness control

Stiffened Panel Structure

Main landing gear door (1 skin + 3 stiffeners)

Conventional Process

Process Time

Mount part (s) 5 min/part

Prodtex

Hexapod-assisted positioning

Improved drilling

- Part bagging ■ Fastening
- Demoulding & cleaning
- Shimming Autoclave Assembly jig

- Positioning
- Deburring Drilling
- NDT

Improved NDT/NDE: AUT

ReWiB Cost sensitivity analyses

ReWiB Case study

Conventional build vs. ReWiB incl.
 LOCOMACHS technologies

ReWiB Case study

ReWiB vs. conventional build

Recurring Cost

Labour Fab. (h)	Labour Assy. (h)	Material (€)
-11%	-31%	+11%

Economic impact - conclusions

- Define and validate a set of design and manufacturing rules for more complex structural parts →Smart shifting of functionalities between parts of the LAWiB proves to save time in assembly, Design and manufacturing rules will be adressed in various deliverables to come
- Fully integrate geometrical tolerance and variation management in a representative airframe assembled wingbox structure. → Linked the tool design with geometrical assurances process
- Reduce by 50% the recurring costs of non-added value shimming operations in structural joints → no shimming on interface rib to UC, no shimming between LC and ribs due to new build philosophy, shimming should be further reduced
- Reduce by 30% the recurring costs of non-added value dismantling operations → not fully verified...
- Increase the level of automation related to part joining operations. → Yes
- Reduce the NDI/NDT lead time by 30% → not fully verified...

"Finding new Friends in LOCOMACHS"

