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Abstract—This work is focused on streaming particle filter
registration of surface models such as homogeneous triangle
meshes and point clouds. Part of the approach is a streaming
curvature feature calculation. The investigated approach utilizes
a particle filter to incrementally update pose estimates during
data acquisition. The method is evaluated in real data experi-
ments with a high-precision laser striper system attached to an
industrial robot. During the laser scan, the data is integrated
on-the-fly in order to calculate features and based on these
to estimate the object’s pose. Experiments show the method’s
competitiveness in accuracy and reliability compared to state-of-
the-art offline algorithms.

I. INTRODUCTION

Object registration is required in a wide range of technical
applications, such as computer-assisted surgery, rapid proto-
typing, reverse engineering, or manipulation tasks in man-
ufacturing processes. The main application of the proposed
method is in autonomous 3D modeling scenarios with laser
scanners as investigated by Kriegel et al. [1]. The therein
presented autonomous modeling approach does not address the
problem of replacing the objects. However, this is necessary
if e.g. the bottom or other initially occluded parts of the
object are to be modeled and requires pose estimation. The
advance of low-cost off-the-shelf 3D sensors catalyzed the
application of pose estimation techniques. Therefore, many
current registration methods are designed for data generated
by 3D sensors such as Kinect. However, laser stripers are more
accurate and can deal better with shiny or black objects, which
is required for high quality 3D-modeling [2]. Although most
of the existing registration methods work on laser data as well,
they suffer from the time consuming data acquisition process
of laser scanners, as they do not exploit the fact that partial
data arrives continuously, i.e. in a data stream. Moreover, no
global streaming method exists that is based purely on dense
depth-images and works with laser stripers.

In this work, we fill this gap by developing a novel method
satisfying these requirements. The registration method works
on streaming data, starts with data acquisition and updates
pose estimates on-the-fly based on new data points. The benefit
is twofold: First, time is saved due to parallel processing of
data acquisition and pose estimation during laser scanning.
Second, a laser scan can be aborted before the complete scan
is carried out once the acquired data is sufficient for robust
pose estimation. To the best of our knowledge, no feature
based global streaming pose estimation method in the literature
exists, that is based on pure geometrical information.

II. RELATED WORK

For pose estimation, Fischler et al. [3] introduced the well-
known random sampling consensus (RANSAC), and succes-
sively Chen et al. [4] demonstrated its application to registra-
tion. Variants typically calculate rigid motions from subsets
of points or point-normal pairs [5], [6] or higher-dimensional
features [7] that are sampled in the datasets. Unfortunately,
these RANSAC-based methods cannot be adopted to work
with streaming data, as a uniform sampling of points cannot
be achieved before all data is acquired.

Another group of algorithms tries to group correspondences
[8] or exploit salient points [9]. Also this class of algorithms
cannot be adopted to work with streaming data, because global
data-sets are needed, especially for feature calculation.

Recently, Rink et al. [10] formulated the approach of
Barequet et al. [11] as particle filter problem. They utilize
the unique decomposability of rigid motions into rotations
and translations. Rotations are sampled and weighted with a
measure of how clustered the corresponding set of translations
is. In mobile robotics, particles filters based on pure depth
images proved to work incrementally on robust, as detailed
in the comprehensive overview given by Sturm et al. [12].
Unfortunately, these approaches are not suitable for the stated
problem, as the weighting is time consuming. In contrast
to classic mobile robotics our estimation problem is not in
2D, and thus we need a much larger number of particles.
Additionally, we have to cope with higher update rates.

The weighting of rotations as proposed by [10] and [11]
is heuristic and slow. Therefore, we propose sampling on the
space of rigid body transformations and weight these with
a fast and theoretically sound method. Apart from this, the
contributions of this work comprise a streaming curvature
calculation and streaming pose estimation, based purely on
geometrical information obtained by a moving laser striper.
Real data experiments confirm the method’s effectiveness
and reliability, compared to available state-of-the-art offline
methods. We emphasize that the advantage in computation
time is obvious due to the streaming nature of the method
and therefore this point is not addressed in the experiments.
Nevertheless, it is crucial for many applications.

III. SYSTEM OVERVIEW

The proposed method integrates three modules: the 3D
Data Acquisition, the Depth Image Stream Processing and the
Particle Filter module, as depicted in Fig. 1. The components
of the Depth Image Stream Processing and the Particle Filter
are described in more detail in the following sections.978-1-4673-8692-0/16/$31.00 c©2016 IEEE
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Fig. 1. The streaming pose estimation workflow is divided into three main
modules: the 3D Data Acquisition, the Depth Image Stream Processing, and
the Particle Filter. Each module contains different components.

When data acquisition is started the 3D Data Acquisition
module synchronizes the depth images with the pose informa-
tion and provides a depth image stream with depth images that
contain the pose information [13]. The depth image stream is
handled to the Depth Image Stream Processing module. Here,
the stream is divided into two different streams by the Depth
Image Stream Switch component.

One of it ends in a notification to the Particle Sampler
component of the Particle Filter module. The notification is
based on the pose information contained in the depth images,
which is extracted and inspected by the Sensor Movement
Detection component. The Particle Sampler is notified as soon
as the pose information indicates that the sensor has moved
significantly. This is the case if the translatory or rotatory
difference to the last pose used for an update exceeds some
predefined thresholds tht, thR, respectively.

The second stream is used for feature point calculation.
Here, the depth images are first converted to depth points
and passed to the Stream Feature Estimator component as
described in Sect. IV. Here, a feature point stream is handled

to the Stream Feature Classifier component, which classifies
the features according to the class borders of the template.
Finally, the feature point stream is collected in the Feature
Point Collector component from which the Particle Weighter
component acquires only the latest feature points on demand.

The Particle Filter module itself contains the Particle
Sampler, the Particle Weighter and the Particle Resampler
components, and works as described in Sect. V. The Particle
Sampler component starts sampling the particles when it
is notified by the Sensor Movement Detection component.
It performs a neighborhood sampling of the transformation
particles according to Sect. VI. When finished, the Particle
Weighter component is called, which acquires the latest feature
points from the Feature Point Collector component. The
particle weighting is carried out according to Sect. VI-B. After
weighting, the particles are resampled with an importance
resampling step.

IV. FEATURES

In this work, we adopt the streaming mesh reconstruction
of Bodenmüller [14] to produce a feature point set instead of
a mesh. Similar offline variants of the proposed features have
been introduced in [10] for the purpose of offline registration
and proved to be robust under noisy depth measurements.

Every feature point p = (cp, np, vp) ∈ R3×S2×R consists
of a coordinate cp, a surface normal np, (S2 being the unit
sphere) and a feature value vp. Let in the following p be a
point with surface normal np and a neighborhood N(p) and
define

c(p, q) := cos(np,
q − p
||q − p||

)

for a neighbor q ∈ N(p). Then, the mean, maximum and
minimum of {c(p, q)|q ∈ N(p)} are called the mean normal
cosine (MNC), maximum normal cosine (MaNC) and mini-
mum normal cosine (MiNC) in p with neighborhood N(p),
respectively.

The processing pipeline consists of three stages: the density
limitation, the normal estimation and the feature generation
step. Depth points coming from a real-time data stream are
incrementally inserted into the model if they pass a limitation
test: each newly acquired point, that is closer than a distance
rr to any point already inserted to the model, is rejected.
Thus, the entire Euclidean point density of the model is
limited and the computational effort can be controlled. For
each point that passes the density limitation, a surface normal
is estimated using principal component analysis for all points
within a spherical neighborhood with radius rn. Only points,
for which the normal estimation is considered robust (see
[14] for details), are transferred to the subsequent feature
generation step. The proposed angle features are calculated
from the point surface normal and the neighborhood points in
the model. Consequently, if a stable normal is ready and the
new point is inserted into the feature calculation module the
MNC, MaNC, or MiNC are calculated in the neighborhood of
radius rn (immediately available from the normal estimation



stage). Also, all the points in the neighborhood are updated
correspondingly.

V. MONTE CARLO REGISTRATION

In contrast to [10], we propose to sample on the complete
space of rigid body transformations, since calculating the
score function from [10] would be too slow for streaming
pose estimation. In the following, we will shortly review the
most important facts and describe our new method in detail
afterwards.

The space of rigid body transformations is denoted T . We
search the transformation Ti ∈ T between a template model
P and a measured point cloud model Q of a known object at
time step i. Each particle comprises a transformation T ∈ T
and a weight w. The state transition between two time steps
consists of the systematical change described by the transition
function Ai and some error εAi

.
In the special case of registration, Ai can be considered the

identity, and the observed model is assumed to be constant
over time (Ai = id). The error εAi

is assumed to be distributed
uniformly in a neighborhood of the identity. Each particle
(T,w) in each time step i is weighted by the conditional
probability density function (pdf) f(Qi|T, P ) of observed data
Qi conditional on the state T and the template model P . Thus,
particle filter registration can be summarized:

1) Sample an initial set of transformations.
2) Weight each T by f(Qi|T, P )
3) Resample all T s according to their weights.
4) Optionally: Adapt the sampling neighborhoods (chang-

ing g(ε)) and/or the number of particles.
5) Sample transformations in the neighborhoods of the ex-

isting transformations. Return to step 2 if not converged.
In step 4 some parameters are adopted, i.e. the sampling
neighborhood, the number of particles and the radius for
correspondence search. In this work, we reduce each of the
parameters by the same factor of 0.9. For each parameter, a
starting value and a minimum value is used. The latter defines
a lower bound for the reduction. The initial and minimal
local sampling radii for translations are denoted rT and rt,
respectively. The initial and minimal number of particles is
denoted nP and np. The initial and minimal radii for the
correspondence search in the particle weighting are denoted
rS and rs, respectively. We are aware that more flexible ap-
proaches would help to improve the performance, e.g. increase
radii or number of particles if results become worse during the
streaming process. We intentionally simplified the setting, for
the sake of a clear and tight description of the basic method.

VI. SAMPLING POSE-PARTICLES

A common a priori distribution for expressing ignorance
is the uniform distribution. So if no a priori knowledge is
available, both the rotational and the translational part of
the transformation can be sampled uniformly on the whole
parameter space. In other cases, there might be some a priori
knowledge: Often the space can be restricted to a cuboid subset
on which the transformations are sampled uniformly.

A. Sampling Rotations and Translations

In this work, we concentrate on sampling transformations
uniformly. Sampling rotations from a uniform distribution
can be performed in various ways. As outlined in [10],
sophisticated approximate methods for deterministic sampling
exist, but uniform sampling in a statistical sense has proven
to be advantageous. Therefore, we use uniform sampling in
α-neighborhoods of arbitrary rotations. The α-neighborhood
Nα(R) of a rotation R is defined as

Nα(R) := {R̃ ∈ R|d(R, R̃) ≤ α}, where α ∈ [0, π]

with d(R, R̃) being the rotational difference between two
rotations R, R̃, i.e. the angle of the axis-angle representation
of R ◦ R̃−1. For total ignorance the π-neighborhood of the
identity can be used to sample all rotations.

In the iterative process of the proposed particle filter, in
every sampling step the neighborhood radius decreases. Note
that the transition function A is supposed to be the identity
and the error ε is supposed to be uniformly distributed in a
neighborhood of the identity. Therefore, every transformation
is sampled in a neighborhood of itself.

B. Scoring Transformations

Let P,Q be the feature points of the template and the
incoming data feature points, correspondingly. Further, we
assume the features to be classified, i.e. vp is as a discrete
category for every p ∈ P (and correspondingly for Q). Now
consider a particle describing a transformation T = (R, t). Let
q be the feature point in the data corresponding to the feature
point p of the template model. If the underlying transformation
T between data and template is known, it is reasonable to
assume cq to follow a normal distribution with expectation
T (cp) and some covariance matrix Σ = σ2 · id. Then, if we
the errors are identically and independently distributed and
we consider a set of feature points p = {p1, . . . , pn} and a
set of correspondences q = {q1, . . . , qn}, we end up at the
conditional pdf of all feature point locations to be:

f(q|T,p) ∝ exp− 1

2σ2

n∑
i=1

(T (cpi)− cqi)2. (1)

In practice, the corresponding pi are approximated by the
nearest feature point to qi with the same feature class:

pi = arg min
p∈P,vp=vqi

d(T (cp), cqi)

If the feature class is erroneous for some q, no correct
corresponding p will be found in the template. The best we
can do is to assume that the feature location is distributed
uniformly, conditional on a wrong corresponding p. For some
distance threshold rmax we define

di := min {d(T (cpi)− cqi), rmax} (2)

and adopt Equation (1) to

f(q|T,p) ∝ exp− 1

2σ2

n∑
i=1

d2i . (3)



which corresponds to (truncated) normally distributed errors
if the correspondences are found within a radius rmax and
uniformly distributed errors if not (with the density equal
to that of the truncated normal at its boundary). Note that
this is actually an improper pdf, because the integral over
every single pi is unbounded. Nevertheless, we can use it
for calculating the importance weights in sampling importance
resampling.

Therefore, each particle’s transformation T is scored with
incoming feature points Q as follows. Each point qi of Q is
classified according to the class borders of the template and
is transformed to T−1(cqi). Then, the nearest feature point
pi with the same feature class is searched in the template
model and the distance di is saved. If no such point is found
within the search radius rmax, the distance is set to that radius
(di = rmax). When all distances di are calculated for the n
feature points, we determine

w(t) = exp(− 1

2σ2

n∑
i=1

d2i ) (4)

Scoring Variants: Theoretically, a particle filter uses only
statistically independent measurements for each update, that
is only new incoming feature points are utilized for Qi. In
practice, the particles tend to show improvable convergence
results, as will be shown in Sect. VIII. Improved convergence
can be achieved, if all previously measured feature points
are used for Qi, that is Qi =

⋃
i

Qi. To distinguish the

two scoring variants, we call the former streaming particle
filter registration (SPFR) and the latter streaming Monte Carlo
registration (SMCR) in the remainder.

VII. TEST SETUP

In this section, experiments with real data are demonstrated.
First, the concept is verified and the procedure of streaming
pose estimation is visualized with one selected object. Sec-
ond, we compare the results to available state-of-the-art pose
estimation algorithms.

A. Hardware

As the utilized laser striper is heavy and rather large, the
experiments are carried out on an industrial robot. Here, a
6 DOF industrial robot, the Kuka KR16-2, with mounted
laser striper is utilized (see Fig. 1 top). For the KR16-2, the
absolute positioning error is in millimeter range. The streaming
Monte Carlo registration is run on an external computer with
Quad Xeon W3520 2.67 GHz CPUs and 6 GB RAM as the
Kuka Robot Control 4 (KRC4) is not designed for additional
modules. The communication between KRC4 and the external
PC is performed at 250 Hz using the Kuka Robot Sensor
Interface. The laser striper is a Micro-Epsilon ScanControl
2700-100 which obtains a stripe of 640 depth points in a range
of 0.3 m to 0.6 m at 50 Hz with a maximum measuring error
of approx. 0.5 mm. During laser scans, the robot pose and
range data are synchronized. Note that the depth measurements
of the laser striper are very accurate in contrast to RGB-D
cameras [2].

(a) The test objects

(b) The template models
Fig. 2. The test objects with corresponding template models used for the
experiments: bunny, wooden chevron, Zeus bust (from left to right). Colors
describe the different feature classes: light/dark red occur in convex regions,
blue/purple in concave regions (plane regions were removed).

B. Test Objects and Data

All tests were performed with scans from three objects: a
bunny, a wooden chevron, and a Zeus bust (see Fig. 2(a)).
These represent different application domains, namely house-
hold, manufacturing and cultural heritage. The approximate
height of the bunny and chevron is 18 cm, and of the bust
22 cm. Ground truth surface models were generated with a
commercial 3D modeling system. Based on these models,
feature points were calculated in a preprocessing step. Each
feature point set was classified with 5 classes and the middle
class was removed. The reduced feature point sets served as
template models (see Fig. 2(b)) and were used for registration
during the laser scans. The template models of the bunny,
the chevron and the Zeus consisted of 6714, 13075 and 8771
feature points, respectively.

The method has been evaluated with 10 different scan paths
of the Zeus bust, 8 scan paths of the bunny and 5 scan
paths of the chevron. The different numbers of scan paths
is a consequence of the differences in object shape and the
chevron’s symmetry. The scan paths were placed all around
the objects, in order to ensure independence of the results. In
order to achieve a meaningful number of test runs, we repeated
each test 100 times. As it is not be feasible to repeat the whole
scanning process so often, the tests were performed once on
the real robot and the scan data was saved. Then, the tests
were repeated on the saved data.

Concerning the quality of the acquired 3D models, the
robot’s pose error during a scan is usually negligible, However,



TABLE I
OVERVIEW OF USED PARAMETER VALUES

rr rn tht thR rT /rt nP /np rS/rs
1 mm 5 mm 5 mm 3◦ 10/1 mm 100/10 50/8 mm

significant differences of robot configurations between two
different scans lead to considerable pose errors between the
acquired 3D scan data. Typically, there are gaps up to 3 mm
in between different scans. Thus, ground truth estimation was
necessary for each scan, because the resulting pose estimation
accuracy was in the range of millimeters.

Each ground truth estimation was calculated by utilizing
the global method from [10], followed by an ICP working
on all acquired raw points. A visual inspection by a human
operator assured correct results. Additionally the coordinate
root mean square error after the ICP was checked to be lower
than 0.2 mm in every case.

C. Parameters

The feature point calculation radii (as denoted in Sect. IV),
the thresholds for the movement detection (Sect. III), the
sampling radii (Sect. V) and particle numbers are summarized
in Tab. I.

VIII. RESULTS

The comparisons in this section are done with respect to the
median of rotational and translational error, denoted mt and
mR, respectively, and a success rate. A success is defined,
if the final error in translation and rotation is below 8 mm
and 8◦. The ratio between successful runs and total runs is
called success rate and denoted sr. For the presented objects,
the given bounds proved necessary for the ICP to converge
reliably (differing from the bounds given in [10]).

A. SPFR vs. SMCR

Fig. 3 depicts the typical convergence progress of SPFR
and SMCR. Clearly, the convergence is better with SMCR,
compared to SPFR. This impression gets confirmed by the
convergence characteristics of mt and mR, depicted in Fig. 4.
Therefore, we used this generalized implementation in the
remainder and also propose it for small scale objects. How-
ever, if too many feature points are used for weighting, the
computation can slow down too much. In most cases this can
be avoided by using a stricter particle reduction: if the particle
number decreases sufficiently, the weighting process for all
particles will not slow down too much.

B. Comparisons with Offline Methods

We compared our method to a Monte Carlo registration
(MCR) [10], and to Sample Consensus Initial Alignment
(SAC-IA) [9], the method that performed best in the com-
parisons therein. SAC-IA is a method based on sampling
consensus, that is sampling the parameter space based on
correspondences selected based on a similarity metric. In our
previous work, we used the same features as for our method,
but here we also tested FPFH as well, a multi-dimensional

(a) collected feature points after after 0, 1, 10 and 50 steps

(b) particle distribution after 0, 10, 20 and 48 steps for SPFR

(c) particle distribution at steps 0, 1, 20 and 46 steps for SMCR
Fig. 3. Particles in SPFR and SMCR. Top row: approximate scanning progress
for the depicted particles and online fit to a surface model. Lower rows: the
particle distributions, colored from blue to red, with blue being the best and
red the worst particle.
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Fig. 4. Exemplary error convergence of SPFR (red) and SMCR (blue) for
100 runs on a bunny (top) and a Zeus (bottom) scan. Left: translational error
in mm. Right: rotational error in degree. X-axis: step number. The straight
blue line represents the success threshold of 8 degrees or 8 mm.

feature proposed in [7]. It is important to note that SAC-IA is
not taking any prior information into consideration, so it needs
to perform many trials, resulting in long computation times. As
discussed in [10], introducing prior information is possible, but
the rejection sampling approach tested there makes the method
even slower. Again, we found that SAC-IA works well with
3000 iterations (results can be improved when using tens of
thousands of trials, but we did not find that feasible). Tab. II
shows the result for 100 runs with all scans. The bi, wi, zi
denote the scans of the bunny, the wooden chevron and the
Zeus bust, respectively. Unlike in [10], here we have high-
quality scans, so the results for SAC-IA were best when using



TABLE II
100 RUNS: SR, mt , mR AND THE MEAN COMPUTATION TIME t FOR

SMCR, MCR AND SAC-IA.
SMCR MCR SAC-IA

data sr mt/mR sr mt/mR t sr mt/mR t
b1 77 3.7 / 4.4 90 2.9 / 2.3 6.1 2 9.8 / 18.0 28.4
b2 71 3.9 / 4.0 57 2.2 / 7.4 7.4 6 8.2 / 13.0 30.3
b3 61 4.6 / 5.8 93 2.4 / 2.5 6.8 42 5.4 / 8.4 28.5
b4 44 3.9 / 9.2 78 2.7 / 6.1 4.3 22 6.8 / 11.9 23.0
b5 26 6.7 / 10.5 22 5.3 / 9.0 4.1 70 4.1 / 5.8 28.8
b6 15 13.9 / 10.1 58 4.6 / 4.9 4.4 20 7.5 / 10.4 27.7
b7 69 3.8 / 5.6 37 4.2 / 11.2 4.4 17 7.5 / 12.3 27.6
b8 43 6.0 / 8.5 45 4.6 / 8.7 4.7 2 11.0 / 28.0 23.4
w1 15 14.8 / 10.5 66 3.2 / 4.1 30.8 15 13.9 / 8.1 82.5
w2 33 11.8 / 7.6 96 1.4 / 1.7 23.7 14 13.3 / 9.7 77.0
w3 22 14.7 / 6.6 99 1.6 / 3.9 16.4 4 19.2 / 13.2 63.5
w4 17 18.7 / 8.6 52 7.5 / 4.3 15.9 1 39.7 / 170.0 59.2
w5 6 21.8 / 11.0 32 11.8 / 6.0 15.1 0 43.0 / 26.8 54.5
z1 51 5.7 / 5.8 60 5.9 / 6.0 8.6 4 11.3 / 15.6 120.4
z2 59 6.0 / 5.7 92 3.8 / 3.3 14.1 26 7.9 / 11.1 113.1
z3 49 7.1 / 7.8 58 4.5 / 6.9 14.4 24 9.1 / 9.2 109.0
z4 50 7.0 / 7.0 80 2.7 / 4.2 14.1 47 5.5 / 7.8 131.7
z5 25 9.4 / 13.5 22 17.8 / 52.4 10.4 92 2.5 / 3.4 125.8
z6 0 16.5 / 27.1 0 19.2 / 176.9 7.5 44 5.6 / 8.2 114.1
z7 34 9.3 / 9.5 0 20.6 / 169.5 7.6 58 5.2 / 6.0 114.8
z8 0 28.3 / 22.0 82 6.2 / 3.8 8.9 11 9.3 / 12.8 143.2
z9 41 7.6 / 7.6 69 4.1 / 4.8 10.3 5 21.5 / 24.8 80.4
z10 4 27.3 / 11.8 0 23.7 / 124.3 6.9 6 14.3 / 143.3 79.0
units % mm/deg % mm/deg s % mm/deg s

it on the complete point cloud (downsampled to a density of 3
mm) and the FPFH feature, so those are presented in the table.
In Tab. II we highlight one of the cases where both SMCR and
MCR perform poorly, but SAC-IA relatively well. Since the z6
scan captures a smooth surface at the back of the statue’s head,
it contains relatively few feature points, resulting in larger
errors. SAC-IA, however, uses all the points and manages to
find a good transformation in 44% of the cases. Nonetheless,
looking at the distributions of the errors, we can see that while
SAC-IA performed better, it failed completely in some of the
cases, which did not influence the median too much. In such
cases, more points should be considered by SMCR, in order
to increase performance at the cost of computation time and
introducing more uncertainty.

C. Interpretation

The results in table Tab. II yield no definite best method. But
they clearly show, that the method is competitive in accuracy
and robustness with available state-of-the-art methods in many
cases. The advantage of no extra computation time is clear,
as even for these simple objects the offline methods need up
to 2 minutes for getting similar results, whereas our method
does not need any extra computation time. This effect will
dramatically increase with larger objects, which could not be
investigated with the hardware setup in this paper, due to
kinematic constraints.

IX. SUMMARY AND OUTLOOK

A novel streaming feature based pose estimation particle
filter has been presented, comprising streaming feature calcu-
lation. Two variants for weighting have been presented and the
convergence behaviors on real data investigated. An extensive
comparison to existing offline state-of-the-art algorithms was
performed. The proposed method proved to be comparable
concerning accuracy and reliability. In contrast to offline

methods, the estimation process is carried out in parallel to
data acquisition and no time consuming post processing is
required.

In future, scanning time can be saved, if the method reports
convergence and data acquisition is stopped accordingly. Fur-
ther, a priori knowledge can easily be autonomously gathered
with depth cameras. In a forthcoming work [15] we apply
the method in autonomous 3D modeling and equip it with
an optimization in the weighting step. Finally, we want to
apply the method in mobile robot localization and integrate it
on humanoid or lightweight robots by utilizing more compact
laser stripers.
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Problemen,” it - Information Technology, vol. 50, no. 3, pp. 199–201,
2008.

[6] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3D object recognition,” in The Twenty-Third
IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
San Francisco, CA, USA, Jun. 13–18, 2010, pp. 998–1005.

[7] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in IEEE International Conference on
Robotics and Automation, ICRA, Kobe, Japan, May 12–17, 2009.

[8] A. Aldoma, Z. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,
R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point cloud library
– three-dimensional object recognition and 6 dof pose estimation,”
Robotics & Automation Magazine, vol. 19, no. 3, pp. 80–91, 2012.

[9] R. B. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning point cloud
views using persistent feature histograms,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Acropolis Convention
Center, Nice, France, Sep. 22–26, 2008.

[10] C. Rink, Z. Marton, D. Seth, T. Bodenmüller, and M. Suppa, “Feature
based particle filter registration of 3D surface models and its application
in robotics,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, Nov. 3–7, 2013, pp. 3187–3194.

[11] G. Barequet and M. Sharir, “Partial surface and volume matching in three
dimensions,” IEEE Transactions PAMI, vol. 19, pp. 929–948, 1994.

[12] J. Sturm, W. Burgard, and D. Cremers, “Evaluating egomotion and
structure-from-motion approaches using the TUM RGB-D benchmark,”
in Proceedings of the Workshop on Color-Depth Camera Fusion in
Robotics at the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct. 2012.

[13] T. Bodenmüller, W. Sepp, M. Suppa, and G. Hirzinger, “Tackling multi-
sensory 3D data acquisition and fusion,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. San Diego, USA:
IEEE/RSJ, Oct./Nov. 2007, pp. 2180–2185.

[14] T. Bodenmüller, “Streaming surface reconstruction from real time 3D
measurements,” Dissertation, Technische Universität München, Munich,
2009.

[15] C. Rink and S. Kriegel, “Streaming Monte Carlo pose estimation for
autonomous object modeling,” in 13th Conference on Computer and
Robot Vision (CRV). Victoria, Canada: IEEE, May 2016, accepted for
publication.


