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System Wide Information Management (SWIM), as envisioned by the Single European Sky Air Traffic Management Research (SESAR)
program, is the application of service oriented architectures to the air traffic management domain. Service oriented architectures
are widely deployed in business and finance but usually tied to one specific technological implementation. SWIM goes one step
further by defining only the semantic layer of the application integration and leaving the implementation of the communication
layer open to the implementer. The shift from legacy communication patterns to SWIM is fundamental for the expected evolution
of air traffic management in the next decades. However, the air traffic management simulators currently in use do not reflect this
yet. SWIM compliance is defined by semantic compatibility to the Air Traffic Management Information Reference Model (AIRM)
and a SWIM service may implement one or more communication profiles, which specify a communication layer implementation.
This work proposes a SWIM-compliant communication profile suitable to integrate SWIM-compliant tools into human-in-the-
loop simulations for air traffic management research. We achieve this objective by implementing a SWIM communication profile
using XML-based multicast messaging and extending the message format to support distributed human-in-the-loop simulations.

We demonstrate our method by the evaluation of Hamburg Airport operations.

1. Introduction

The way air traffic management information is exchanged
between stakeholders is changing. Legacy point-to-point
connections and proprietary data formats as shown in
Figure 1(a) shall be replaced by System Wide Information
Management (SWIM) as illustrated in Figure 1(b). SWIM is
the technical term for service oriented architectures in the air
traffic management domain. Service oriented architectures
are an approach to the integration of heterogeneous systems
that is widely deployed in the industry [1]. SWIM was
envisioned by the Single European Sky Air Traffic Manage-
ment Research (SESAR) program. This program defines a
framework for the sustainable modernization of the Euro-
pean air transportation system. It aims to increase capacity,
improve safety, and reduce environmental footprint and
costs. The improvement of air traffic management procedures

by embracing SWIM [2] and automation [3] shall be one of
the key enablers to achieve these objectives.

Changing the way air traffic management information
is shared will also fundamentally change how air traffic
management is performed. However, changes of air traffic
management procedures and tools need to be evaluated care-
fully, often by simulation, before they are applied. Zellweger
[4] identifies several stages from the early exploration of new
concepts to the final evaluation of air traffic management
procedures and support tools. All but the final stage involve
the use of simulation for safety and cost reasons. The effects
of potential changes are first assessed with fast-time simula-
tions. Secondly, the details of the concept are explored with
real-time simulations and evaluated in human-in-the-loop
simulations. Only in the final stage real-world operations
are considered in the form of shadow mode operations (in
shadow mode operations, the new procedure is conducted
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FIGURE I: (a) The current Air Traffic Management (ATM) systems use legacy point-to-point connections with proprietary data formats. (b)
This shall be replaced by the SWIM service oriented architecture for air traffic management.

in parallel to the established procedure). Human-in-the-loop
simulations therefore provide an important contribution to
the identification of the strengths and weaknesses of new air
traffic management procedures and tools.

In this vein, Kaltenhduser [5] identified the need to
support standard air traffic control interfaces as an important
quality of a flexible air traffic management simulation envi-
ronment. Flexible, easy to adapt interface software was thus
identified as a primary task for further research. Adelantado
[6] addressed the use of standard interfaces by the use of
the High Level Architecture (HLA) to implement a distributed
airport simulation environment for the French Aerospace
Research Center ONERA. The simulation was implemented
with HLA federates, each simulating different aspects of the
airport environment, connected to a central HLA runtime
infrastructure. However, HLA was not universally accepted.
Prevot et al. [7] indicate that the NASA Ames Research
Airspace Operation Laboratory was implemented on the
basis of the “Aeronautical Data Link and Radar Simula-
tor” communication network and Edinger and Schmitt [8]
report that the German Aerospace Center DLR implemented
its air traffic management simulation environment on the
basis of a client-server approach employing a “Data Pool”
server process as communication hub. Shifeng and Danxia
[9] developed a cost-effective approach to constructing a
flight control tower simulation using commercial-of-the-
shelf hardware. They also introduced the use of multicast to
distribute simulation state encoded in “primitive commands”
proprietary to their implementation.

A lot of work has thus gone into the creation of flexible
and easy to adapt simulation interface software, but the
support of standard air traffic control interfaces has not yet
been fully realized. One major reason for this is certainly
the multitude of legacy point-to-point connections and data
formats used by air traffic management systems. However, we
argue that with the specification of SWIM an opportunity
to support a universal standard air traffic control interface
becomes available. In addition, new air traffic management
procedures and software will have to be SWIM-compliant
and should therefore be evaluated in a SWIM-compliant
environment. In our view, air traffic management simu-
lation environments shall therefore support SWIM’s Air

Traffic Management Information Reference Model (AIRM)
and SWIM’s message passing based communication pattern
to evaluate proposed air traffic management procedures and
tools in a realistic simulation environment. SWIM compli-
ance is achieved by supporting the AIRM semantic [10].

The objective of this paper is to present a SWIM-
compliant method for human-in-the-loop air traffic man-
agement simulation that (1) uses the air traffic management
information reference model as semantic interface, (2) uses
multicast message passing as communication interface, and
(3) therefore enables the evaluation of SWIM-compliant air
traffic management software in complex simulation scenar-
ios. The SWIM AIRM is already intended for real-time
information sharing and can therefore be extended to support
human-in-the-loop simulation. Using message passing for
communication supports the integration of existing SWIM-
compliant air traffic management tools. In addition, the
use of multicast is attractive because it is efficient and
offers the additional opportunity to replace the client-server
architectures of the current simulation environments with a
decentralized approach not requiring centralized simulation
infrastructure.

The application of our method is demonstrated with
human-in-the-loop simulation experiments evaluating air-
port operations at the Hamburg Airport. The experiments
discussed in this paper were originally performed in the
context of the SESAR Work Package E Project “Zero Failure
Management at Maximum Productivity in Safety Critical
Control Rooms” (ZeFMaP) by Zeh et al. [11] but were
extended to produce the results presented in this paper.
The objective of the extended simulation experiments was
to capture the decision process of the human air traffic
controllers in a rule-based model that shall provide the basis
for the development of automated support tools for airport
operations.

2. Definitions

In this paper we follow Stal [12] in the view that service
oriented architectures are loosely coupled “software islands”
with a common semantic layer interconnected through
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a communication layer. The communication interface may
have several different implementations.

Glickman [13] defines SWIM as the application of the
service oriented architecture approach to the air traffic man-
agement domain. Instead of developing and implementing
specific solutions for sharing data between application pairs,
SWIM specifies a semantic model, common infrastructure,
and set of processes for sharing and managing data in the air
traffic system.

According to Wilson et al. [10] particular implementation
is SWIM-compliant, if its entities and their properties can be
mapped to the semantic AIRM information reference model
defined by SESAR. A SWIM service need not implement
the complete semantic model. It is sufficient to implement
the relevant parts of the semantic model. SWIM compliance
does also not depend on a specific implementation of the
communication layer. Any communication layer available to
the SWIM services is acceptable.

3. Background on SWIM

The air traffic management system is considered one of the
most complex systems ever built, but many parts of it were
not designed to be integrated with each other. This leads
to a multitude of point-to-point connections between its
subsystems using proprietary data formats.

SESAR aims to bridge this interoperability gap by the
introduction of service oriented architectures into the air
traffic domain. The SWIM service oriented architecture shall
provide the infrastructure, data formats, and protocols to
share information between all air traffic management sub-
systems in a scalable and interoperable way. SESAR defines
the semantic layer of SWIM in the AIRM information
reference model as described by Wilson et al. [10]. In
the communications layer it specifies the integration of air
traffic management applications by message passing systems.
Applications are outfitted with an interface to the message
passing system and the message exchange within the system
is handled by message brokers, which can scale from local
software libraries to federated networks of broker servers
shown in Figure 2(a). The actual implementation of the
messaging protocol and message brokers may vary and is
open to the implementer.

As of now, three SWIM implementation profiles have
been defined by SESAR. The “yellow profile” utilizes the
Hypertext Transfer Protocol (HTTP) as communication pro-
tocol with XML message formats defined in the Web Services
Description Language (WSDL). The “blue profile” utilizes
the Data Distribution System (DDS) protocol with a binary
message format. The “purple profile” utilizes the Advanced
Message Queuing Protocol (AMQP) as communication pro-
tocol with message formats defined in the web services
description language.

The SWIM implementation profiles developed in SESAR
are intended for pan-European operational use. They are
complex to implement and not intended for simulation
environments. It is therefore not always possible to use them
within the time and budget constraints of research projects.

Our method, called X23 (in this paper we use the
name “X23” interchangeably for the presented approach,
communication profile, and its software implementations),
is simplified implementation of SWIM suitable for research
and laboratory trials. We designed a scaled-down implemen-
tation with analogous information sharing capabilities but
extended for event-driven simulations. Our implementation
does not provide the same WAN scalability, security, and
safety mechanisms as the pan-European SWIM network but
provides semantic compatibility according to [10]. It can
thus be understood as a LAN-scale research-oriented SWIM
profile with extensions for human-in-the-loop simulation.

X23 integrates SWIM-compliant simulation and air traffic
management tools through a multicast messaging proto-
col as illustrated in Figure 2(b). Assuming wall-clock time
aligned simulation-time, as is usually the case with human-
in-the-loop simulations, our approach does not require the
configuration of a central instance for coordination. Shared
simulation state is injected into the multicast group for dis-
tribution; each simulation tool can then extract the required
information from the common information pool. Using IP
multicast for this purpose has the advantage that it is natively
supported without configuration in local area networks as
they are commonly deployed. No reconfiguration is required
when moving to a different network. Within the IP multicast
group a domain specific XML message format is used to
represent the simulation state.

4. Method for SWIM-Compliant Human-in-
the-Loop Simulation

Our X23 SWIM implementation utilizes a simple, layered,
and distributed architecture based on the OSI reference
model. It has been implemented as a software library in the
Java and Delphi programing languages. The Java library has
been used from within MATLAB by Hauf et al. [14]. A C++
implementation is under development by the authors.

The implementation covers the protocol stack from the
application layer down to the network layer as illustrated
in Figure 3. The application layer implements the interface
between the simulation application and the X23 stack. This
interface may be realized in different ways depending on
the type of the application. The presentation layer covers the
encoding of state changes in a machine-readable, platform-
independent XML representation. The session layer of the
stack establishes logical sessions that are robust against com-
munication interruptions or restarted simulation processes.
The transport layer encapsulates the XML information of
the upper layers for end-to-end transmission between the
connected processes. Finally, the network layer and the layers
below take care of the actual multicast transmission over the
network.

The application layer interface is specific to the appli-
cation but provides access to the same distributed AIRM-
compliant semantics and information for all applications.
The interface uses a local object cache storing and merging
the state of the distributed objects. This cache is constantly
updated with the messages coming from the lower layers
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FIGURE 2: (a) The SESAR SWIM infrastructure is implemented by a Wide Area Network (WAN) of message brokers implementing several
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FIGURE 3: The X23 implementation covers the protocol stack from the application layer down to the network layer. The application layer
implements the interface between the application and the X23 stack. The presentation layer covers the encoding of state changes in XML
messages. The session layer establishes logical sessions robust against communication interruptions. The transport layer encapsulates messages
in User Datagram Protocol (UDP) datagrams. The network layer and Ethernet take care of the actual multicast transmission.

of the X23 stack. The actual information is condensed into
objects implementing AIRM entities, for example, flight
objects, airport objects, or runway objects.

These objects are presented to the applications through a
simple application interface or plugin realizing the message
patterns specified for SWIM. Note that although SESAR
specifies several message patterns, only two are actually
used in the currently defined profiles: subscribe/notify and
request/response. The application interface has thus only to
support these two modes of operation. In many cases only
one message pattern is required by a particular application.

Received messages are translated into AIRM-compliant
objects and stored in the local object cache. Messages con-
cerning the same object cause the object in the cache to
be updated. This applies also to messages providing partial
updates. If messages from different sources are received, this

results in a transparent fusion of the information. Different
sources may update the same attribute. However, in this work
information fusion has only been used for updates of different
attributes of the same object. This allowed X23 SWIM services
and simulation modules to augment objects generated by
different modules with additional information.

4.1. Message Format. Within our X23 stack, updates to
the AIRM objects are implemented by simulation events
distributed over the network as XML elements of the form:

<event_or_command attributel="..."

attribtute2="..." ... />.

Each XML element corresponds naturally to one simu-
lation event or simulation command. The properties of the
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FIGURE 4: The life cycle of X23 objects in the object cache. Object creation is triggered by create_object messages, attributes are updated
according to set_object messages, and objects deletion is finally caused by delete_object messages. As optimization cached objects may also be

updated by create_object messages.

event or command are reported in the attributes of the XML
element.

Simulation events report property changes of AIRM
entities. The XML representation of the simulation events is
analogous to the life cycle of the simulated objects as shown
in Figure 4. Objects are created, used, and finally deallocated.
A simulation module processing only selected simulation
objects subscribes to these objects by accepting only messages
reporting changes of these objects. This is best illustrated
with an example: each simulated flight is represented in the
simulation by a flight object the attributes of which can
be traced back to the properties of the AIRM flight entity.
A simulation module processing flight objects subscribes
to the <create flight ... />, <set_flight ... />, and
<delete_flight ... /> messages. The creation of a new
simulated flight is presented by a <create flight ... />
message. This message has various attributes like the position
of the flight, its departure airport, its arrival airport, and
several others defined in the air traffic management infor-
mation reference model. Analogous messages are defined for
other AIRM entities, for example, airport entities or runway
entities.

Simulation events conveying Controller-Pilot Data Link
Communication (CPDLC is used to exchange clearances
for the progress of the flight between the pilot and the
air traffic controller via air-ground data link) follow the
request/response message pattern and are represented by
<cpdlc_message ... /> messages based on the FANS-1/A
message definitions. FANS-1/A is an international standard
(specified in ARINC 622 and EUROCAE ED-100/RTCADO-
258) for CPDLC that is not part of SWIM. Each message is
specified by a unique identifier and its parameters.

Simulation commands are messages used for the coor-
dination of the simulation environment. They are also not

part of SWIM, but an extension introduced in our implemen-
tation. As our simulation environment is only intended for
wall-clock time aligned human-in-the-loop simulations the
simulation commands could be restricted to a small set of
messages. Five commands are supported: start, restart, pause,
resume, and stop. Start and stop are only used to initialize
or shut down the simulation environment remotely. Restart
causes all simulation processes to reinitialize and clear their
object cache. Pause and resume allow pausing human-in-the-
loop simulations without losing the current simulation state.

Examples of X23 messages can be found in the Appendix
of this paper.

4.2. SWIM-Compliance. Our method implements the rel-
evant entities of AIRM in X23 classes. For illustrational
purposes the semantic trace of two fields of the X23 Runway
class to the corresponding attributes of the AIRM runway
entity is displayed in Figure 5.

A semantic trace of the X23 classes to entities of AIRM
constitutes a formal proof of “level 17 SWIM-compliance
according to Wilson et al. [10]. A semantic trace of the fields
of the X23 classes to the attributes of AIRM entities is a proof
of “level 2” SWIM compliance.

Figure 5 provides thus evidence for the “level 2”7 SWIM
compliance of two fields of the X23 Runway class. Note that
the object under assessment need not implement all entities
and attributes specified in the reference model and may have
additional attributes, for example, for simulation purposes
that may be ignored.

4.3. Interfacing with SWIM-Compliant Applications. The
interface of an application with particular SWIM implemen-
tation is application-dependent. It follows, however, the logi-
cal approach that is central to the SWIM concept: application
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(top two arrows in diagram). This mapping provides evidence for the “level 27 SWIM-compliance the X23 Runway class. The semantic trace
of the X23 Runway class to the AIRM runway entity would only have provided evidence for “level 1” compliance (bottom arrow in diagram).

layer events are mapped to messages of the communication
layer according to a common semantic model. The properties
of the application layer event, AIRM entity state changes, are
mapped to the message format of the communication profile.
This is always possible as SWIM-compliant applications and
communication profiles must follow the AIRM semantics.
It is not necessary to change the application logic for this
purpose. However, it is required to add mapping logic.

In the case of X23 this means that it is required to
implement a bridge between the Application Programming
Interface (API) of the SWIM application and the X23 stack
mapping AIRM entities and attributes to X23 objects and
fields. Requests and responses are directly mapped to mes-
sages. Entity state changes are applied to the local object cache
triggering the distribution of the event by X23.

4.4. Multicast Communication Protocol. The X23 network
layer uses IP multicast over Ethernet. The rationale for using
multicast is threefold: first, multicast is the most efficient way
to exchange information between multiple nodes without
a central node in a local area network. Secondly, using
multicast enables self-configuring deployment. All simula-
tion modules join the same local IP multicast group and
listen on the same port for messages. This is the only
required configuration and can be performed automatically
and independently from the actual configuration of the
simulation network. If stateless autoconfigured IP addresses
are provided by the operating system, a deployment network
is not required and the simulation hosts can be connected
directly. This is of advantage if simulation experiments need
to be performed with partner institutions that cannot allow
external parties access to their internal networks. Thirdly,
using multicast offers additional flexibility in setting up
the simulation environment as simulation nodes may join
and leave the network during runtime without the need to
reconfigure other nodes.

At the transport layer UDP is used. At reception the
XML messages are extracted from the received multicast

UDP datagram and checked against a regular expression for
syntactic integrity. If the message is invalid, the message
is discarded with logging. Each XML message is tagged
with a unique sequence number and source identifier. XML
messages may be reordered or duplicated if applications are
deployed on multihomed hosts (in practice this typically
happens when simulation modules are deployed in virtual
machines, which create additional (virtual) network inter-
faces on the host). Thus, the X23 transport layer protocol on
top of UDP provides the deduplication of XML elements and
filtering according to the application’s subscription.

The X23 transport protocol header is transparently
added as additional XML attributes. It comprises four fields:
<event_or_command source="..." sequence_number =
"..." sender_uid="..."/>. The event_or_command field
specifies the type of the object conveyed in the message. It
may indicate either a state change of a simulation object
or a simulation command. The source field indicates the
logical source (e.g., HMI and air traffic simulation) of the
message to allow filtering without knowing the identity of the
sending process. The sequence number and sender_uid
fields uniquely identify the message in the network. The
sequence number is incremented for each message that
is not a retransmission. The sender_uid is a hash value
uniquely identifying the process generating the message as
several processes may implement the same logical source, for
example, multiple HMI instances.

Messages following the request/response pattern are sent
using acknowledgements, because single messages can get
lost or be corrupted from time to time. A request/response
is transmitted by the X23 transport layer until it is acknowl-
edged by the desired receiver identified in the source field,
or the maximum number of retransmissions is reached. A
message is considered acknowledged if at least one acknowl-
edgement message is received. Note that this protocol does
not support acknowledgements from multiple receivers for
now. The acknowledgement message is implemented as an
X23 message, because UDP does not support transport layer
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acknowledgements. The acknowledgment message is a XML
message with the sequence_number and sender_uid of the
original message and the source of the receiver. This allows
the sender of the request/response to identify the acknowl-
edgement unambiguously and other receivers to discard it
silently. The acknowledgment message is not forwarded to the
upper layers of the stack and not identical to the response to a
request that is often called “logical acknowledgement,” which
is a higher layer message.

Messages available through the subscribe/notify message
pattern are sent unacknowledged and are never retransmitted
as the session layer redistributes them in regular intervals as
described in the next paragraph.

The session layer uses a soft-state pattern allowing
restarted simulation applications to recover lost simula-
tion state. This is realized by redistributing the essen-
tial parts of the simulation state needed for recovery
in regular intervals. In the case of flight objects this is
implemented by the retransmission of the complete state
vector of all flight objects currently in the simulation
through newly generated <create_flight ... />messages
every thirty seconds. Retransmissions for individual flights
are randomly offset to avoid message bursts. Airport and
runway information is retransmitted in an analogous way.

This applies to all information available through the sub-
scribe/notify message pattern. Request/response messages
may be retransmitted several times to recover from lost
packets but have to be reinitialized if the session breaks.

The presentation layer takes care of the creation and
updating of X23 objects according to the received messages.
The objects are stored in a local object cache accessible by the
application layer.

The application layer notifies SWIM services and simula-
tion modules of received requests, responses, or state changes
according to the application-specific SWIM-compliant inter-
face.

The processing of received X23 messages is illustrated
in Figure 6. The processing of transmitted X23 messages is
performed analogously and in reverse order.

5. Application to Human-in-the-Loop
Simulation of EDDH Airport Air
Traffic Management

The simulation experiments illustrating the application of
our method were originally performed within SESAR Work
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Package E. The project was called “Zero Failure Manage-
ment at Maximum Productivity in Safety Critical Control
Rooms” (ZeFMaP). It investigated effects of the Failure Mode
and Effects Analysis (FMECA) productivity improvement
processes on the performance of air traffic management as
reported by Zeh et al. [11].

The objective of the simulations was to provide the test-
subjects of the study, trained air traffic controllers, with
a realistic environment to assess the improvement process
under evaluation. This was accomplished by the detailed
simulation of the Hamburg (EDDH) Airport, the interactive
simulation of realistic air traffic, and the integration of
commercial air traffic control tools into an authentic control
room environment and workflow. The simulation scenario
and control room environment are described in detail in the
Appendix of this paper.

The previous work was extended to produce the results
presented in this paper. The objective was to increase knowl-
edge on how the air traffic management performance of the
human controllers can be understood and modeled with
the intention to develop automatic decision support tools in
the future. To this end, the same scenarios were executed
with a rule-based simulated controller replacing the human
controllers.

The study was conducted using commercial-of-the-shelf
air traffic management software. Controllers managed air-
craft by entering messages into the air traffic management
tool, and the interactive air traffic simulation responded in
the same manner. All simulation modules and tools were
connected through our X23 SWIM implementation.

5.1. Integration of COTS and Custom Air Traffic Management
Software. The simulation experiments used a combination
of academic simulation tools and commercially available air
traffic management software deployed on commercial-of-
the-shelf hardware. The NAVSIM research air traffic simu-
lator (developed by “Mobile Communications R&D GmbH,
Salzburg” in cooperation with University of Salzburg) was

used for the interactive simulation of realistic air traffic.
The controllers taking part in the experiment used the
commercially available smartStrips electronic flight strips
tool (developed by Frequentis AG) as human machine inter-
face to interact with the simulated air traffic. smartStrips
was augmented by a simulated radar display (NAVSIM
ATC, developed by “Mobile Communications R&D GmbH,
Salzburg,” in cooperation with University of Salzburg) and
a generic arrival/departure manager (developed by the Uni-
versity of Salzburg) shown on auxiliary screens. The human
controllers were also provided with a virtual tower view based
on the graphics engine of the X-Plane simulation software
(developed by Laminar Research). This virtual tower view
was projected onto a 270° cylindrical screen.

The interface to X23 was implemented differently for each
application. The NAVSIM simulator was extended with an
X23 interface by the addition of mapping logic mediating
between its internal representation of AIRM entities and
X23 objects. The interface between smartStrips and X23 was
implemented in a bridge class extending the smartStrips
application with similar mapping logic. Frequentis AG pro-
vided guidance and compiled Java classes for this purpose.
The generic arrival/departure manager was built directly on
top of the X23 object cache. No mapping was therefore
required in this case. The X-Plane software supports plugins
that can be loaded at runtime. The X23 bridge was thus
implemented by compiling the X23 stack and the required
mapping logic into an X-Plane plugin. In all three cases the
implementation of the mapping logic was straightforward as
it concerned only the mediation between objects implement-
ing the same semantic model.

The information flow between the simulation compo-
nents is illustrated in Figure 7. NAVSIM ATC, smartStrips,
and the arrival/departure manager are actually present five
times in the experiment setup, once for each human con-
troller. The virtual tower application is present four times,
once for each projector to achieve a 270° field of view.
Note that the update messages of the simulation events and
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TaBLE 1: Controller performance for EDDH “high traffic” scenario,
60 A/C per hour, 1 h duration.

Human controllers Simulated controller

Avg. Stdev. Avg. Stdev.

Delay —64.78 446.06 10.55 145.66 §
(departures)

Taxi' time 25324 61.95 295.37 20.44 s
(arrivals)

Taxi time 14169 3838 13577 39.27 s
(departures)

Taxidistance 375 49 39347 254756 22555  m
(arrivals)

Taxidistance  ygg756 3345 179591 32410 m

(departures)

commands were not only distributed over the network, but
also stored in log files for further analysis. All computers in
the network were synchronized via NTP to have consistent
time-stamps in the log files.

5.2. Simulated Controller. In the extended experiment the
human controllers were replaced by a rule-based simulated
controller. Note that the only necessary change to the simula-
tion setup was to replace the smartStrips tool by the simulated
controller. Due to the SWIM-based simulation network, no
changes to the other parts of the simulation were required.

The rules for the simulated controller were derived from
the controller training material of Hamburg Airport which
take specific aspects of the airport into account. The selection
of the appropriate departure runway holding point was based
on taxi time duration, aircraft type, and available runway
takeoff length. The issuing of engine start-up clearances was
based on taxi time duration and calculated takeoff time
taking the current airport situation into account; that is,
the rules were formulated to issue “just in-time” start-up
clearances to avoid unnecessary fuel consumption, reduce
CO, emissions, and avoid congestion at runway holding
points. Runway line-up sequencing was then performed on
the basis of the calculated takeoft time. The takeoff clearance
was issued according to the wake classes of previously
departing, arriving, or landing aircraft. If reassignments of
the gates and parking positions were necessary, they were
calculated during the approach phase on the basis of the
currently available gates and the wingspan of the aircraft.
Landing clearances were issued taking currently departing
and arriving aircraft into account. The taxi routes of arriving
aircraft were calculated to minimize the taxi time duration in
the current airport situation. This included runway crossing
clearances giving way to landing and departing aircraft.

The key performance indicators of the taxiing perfor-
mance of the human and simulated controllers for one
selected simulation scenario are displayed in Table 1.

6. Discussion

Air traffic management tools and procedures will increasingly
interface using SWIM. It is therefore important to evaluate

them in a realistic SWIM-compliant simulation environment
to ascertain the validity of the results. Our work shows that
extending the SWIM air traffic information reference model
to include simulation specific information is straightforward
and does not conflict with SWIM-compliance. The benefits
of using SWIM as simulation interface were demonstrated
with the integration of commercial air traffic management
software into our research simulation.

Our method and X23 SWIM implementation were
applied to human-in-the-loop simulation experiments inves-
tigating the application of productivity improvement pro-
cesses to air traffic management and evaluating a rule-based
controller model against the performance of human air traffic
controllers.

The comparison of key performance indicators of the air
traffic management performance indicates a good agreement
of the rule-based model with the human controller perfor-
mance. It is, however, noteworthy that the rule-based model
accrued significantly later off-block times than the human
controllers. The controllers would typically plan ahead and let
aircraft leave the gate shortly before their planned departure
times. This was not reflected in the simulated controller rules
as they were formulated with the intent to meet the calculated
takeoff times as precisely as possible.

The flexibility of our multicast communication approach
proved of great practical value. Joining and removing simu-
lation nodes at runtime were helpful in the debugging of the
simulation software. Not relying on a configured deployment
network allowed the live demonstration of the simulation
environment at several external occasions.

We were surprised by the quality of the scenery and navi-
gation databases used in the different commercial modules of
the simulation. The air traffic management simulation and the
virtual tower used independent databases for the geographic
layout of the airport. The navigation data for the air traffic
management simulation was provided by the European air
traffic authorities through SESAR. The origin of the X-Plane
10 scenery database, which is used by the virtual tower, is
unclear. Nevertheless the scenery and navigation databases
matched extremely well down to the level of individual taxi
lanes.

The simulation method presented in this paper provides
the features required for the SWIM-compliant distribution of
simulation state and simulation events in loosely real-time
synchronized human-in-the-loop simulations running in a
single local area network. It does not provide nor intend to
provide the scalability or security features required for large-
scale pan-European SWIM networks. It is intended for quick
deployment and rapid prototyping in research laboratory
settings.

It does also not provide or intend to provide the rich
distributed simulation capabilities of frameworks like HLA.
As of now, our approach is limited to wall-clock time aligned
human-in-the-loop simulations because no sophisticated
simulation time management was implemented. In theory,
this could be added; however, it is questionable whether the
coupling of commercial-of-the-shelf air traffic management
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software would still be possible with similarly low effort in
this case. Commercial-off-the-shelf air traffic management
software is obviously designed to operate in wall-clock time
and has no concept of simulation time.

Our method is functionally equivalent to the human-
in-the-loop simulation environments presented by Prevot et
al. [7] and Edinger and Schmitt [8]. The major difference is
the use of the semantic model the air traffic management
domain is currently converging to. It contributes therefore
to the realization of the need to support standard air traffic
management interfaces identified by Kaltenhauser [5].

With regard to the implementation our method builds
on the work of Shifeng and Danxia [9] to use multicast
to distribute the simulation state. However, we go one step
further by using multicast to build a completely decentralized
simulation communication architecture.

The method presented in this paper is currently limited
to the aeronautical domain because of the use of AIRM.
This model is not applicable to other application domains.
However, application domains where similar semantic mod-
els are specified can also be covered by our approach with
appropriate adaptations.

The limitations of the evaluation of the controller model
lie in the limited number of experiments that could be
performed with human controllers to collect the data. In
total, four measured experiments of approximately one-hour
duration each have been performed. Within this paper only
the “high air traffic” scenario was presented.

7. Conclusion

In this work we presented a SWIM-compliant method for
human-in-the-loop air traffic management simulation that
uses the air traffic management information reference model
AIRM as semantic interface and multicast message passing
as communication interface. By this, it enables the evalua-
tion of SWIM-compliant air traffic management software in
research laboratory settings without the need for specialized
infrastructure.

Air traffic management tools and procedures will increas-
ingly interface using SWIM as standard interface. It is
therefore of high interest to evaluate them in a SWIM-
compliant simulation environment to ascertain the validity
of the evaluation.

It has been shown that our implementation enables the
use of commercial-of-the-shelf air traffic management soft-
ware in simulation experiments improving the applicability of
the results. Our use of multicast allows distributed simulation
environments without a dedicated SWIM communication
infrastructure. This makes deployment more rapid and more
robust.

Our method was applied to human-in-the-loop simula-
tions experiments evaluating the performance of a rule-based
controller model against human controllers in Hamburg
Airport operations. Future work will investigate enhancing
the controller model towards an automated optimization and
decision support tool.
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TaBLE 2: The flight BER561K is created in the simulation approxi-
mately eight minutes before arriving at EDDH.

<create_flight

Attribute Description
source="navsim_tg_accs"
sequence_number="135" X23 protocol header

sender_uid="8437c549bc2eab0d"

time="57303.0"

Time in seconds since
midnight

id="6" Unique id and
f1lt_number="BER561K" callsign of the flight
cocr_phase="arrival" Flight phase and ATC
cocr_domain="TMA" domain

wpt_current="-"
wpt_next="PISAS"

wpt_next_timeover="57420"

Current and next
navigation waypoint

pos_lat="53.727817"
pos_lon="9.91923"
pos.alt="914.4"
pos_heading="69.126"
pos_climb_rate="0"

Current position,
orientation, and

s —nnan
I;Z:’;;E‘:"OS speed of the flight
pos_speed_tas="118.322"
pos_speed_gs="118.322"
pos_speed_ias="111.625"

s =n n
desired.alt="914.4 Desired altitude,

desired_heading="69.126"
desired_speed="118.322"

heading, and speed

flt_aobt="52510.435"
flt_eobt="52500"
flt_ctot="52860"
flt_stot="52860"

Actual and estimated
off-block time;
calculated time of
takeoft

apt_dept_id="LOWW"
apt_dept_time="52860"
apt_dept_rwy="29"

Departure airport and
runway

apt_dest_id="EDDH"
apt_dest_time="57780"
apt_dest_rwy="23"

Destination airport
and runway

ac_type="B733"
ac_gear="up"
ac_wake="M"
ac_squawk="A0001"
flt_ac_op="BER"

Aircraft type,
gear-status,
wake-category,
squawk, and operator

navsim ac_color="65535" Display color and
navsim_ac_label="___8min" label

/>

Appendix

A. Example X23 Message of Flight Object

Creation and Update

The creation of a simulated flight approaching EDDH airport
is illustrated in Table 2. Note that although the simulation
time is aligned with the wall-clock time, the offset of the
simulation time to the wall-clock time is included in the
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TaBLE 3: The flight BER561K is updated with a new position.

<set_flight

Attribute Description

source="navsim_tg-accs"

sequence_number="224" X23 protocol header

sender_uid="8437c549bc2eab0d"

id="6" Unique flight id

time="57304.11" Updated time

pos_lat="53.728237" .

pos_lon="9.921093" Upda.ted position and
heading

pos_heading="69.128"
/>

TaBLE 4: The flight BER561K is contacted by the GND controller.

<cpdlc_message

Attribute Description

source="smartstrips"

sequence_number="36" X23 protocol header

sender_uid="8437c549bc2eab0d"

flight_id="6" Unique flight id
CPDLC message

cpdlc_message_standard="FANS-1/A"
cpdlc_message uid="UM117"
cpdlc_message_param="GND; 0"

standard, message
type, and message
parameters

/>

message to allow the postprocessing of aircraft arrival and
departure times.

While the aircraft is cruising, the current position
and some other attributes of the flight are updated via
<set_flight ... /> XML elements. Note that only changed
attributes are updated as illustrated in Table 3. Unchanged
attributes are not retransmitted in the <set_flight ... />
message. When the aircraft finally arrives at its destination
airport, the flight object is removed from the simulation (after
taxiing, etc.) with the <delete_flight id="..." /> XML
message (not shown in the table).

B. Example X23 Message of
FANS-1/A CPDLC Message

Table 4 provides an example where the flight BER561K is
contacted by the ground controller using the FANS-1/A
UM117 “CONTACT [unitname] [frequency]” message. In the
CONTACT command, the ground controller indicates the
“0” voice frequency enforcing data link operations. The simu-
lated flight has then to respond with a “WILCO,” “UNABLE,
or “STANDBY” message to the request (not shown in the
table).

C. EDDH Simulation Scenario

Hamburg Airport (EDDH) is a typical medium-sized Euro-
pean airport. It has two crossed runways for takeoft and

1

Aprbn 1

Apron 2

FIGURE 8: Hamburg Airport. RW33 is approximately oriented in
north-south direction. Apron 11is to the east of RW33 and apron 2 to
the west; both aprons are south of RW23; screenshot from NAVSIM
air traffic simulator as presented to the air traffic controllers.

landing and two apron areas for parking aircraft. Figure 8
displays the layout of the airport as it was simulated.

The NAVSIM air traffic simulator was used to simulate the
air traffic at Hamburg Airport. The air-ground communica-
tion with the simulated aircraft is performed at LAN speeds
and does not yet involve an air-ground data link emulator
introducing the increased communication delay expected by
the wireless air-ground link. NAVSIM is an event-driven
simulator providing detailed worldwide runway-to-runway
(resp., gate-to-gate for those aerodromes for which taxi and
gate information is available) air traffic simulation; it offers an
X23 interface and can be integrated with human-in-the-loop
simulation environments for human factors experiments
[15], the development of novel meteorological air traffic
routing algorithms [14], aeronautical communication fre-
quency planning, and aeronautical communication volume
estimation [16].

The simulated aircraft have a flight management system
that simulates the movements of the aircraft according to the
characteristics of the aircraft type. This flight management
system is controlled by a set of rules reflecting the flight
plan of the aircraft. The simulated pilot will therefore contact
the controller for clearances of the next steps of the flight
plan. Having received a clearance the pilot will implement the
flight-plan using automatic path-finding, following the rules
for taxiing on an airport and avoiding obstacles like other
aircraft and buildings. The flight-plans used in the simulation
exercise were based on real flight-plans of Hamburg Airport,
but modified to create stressful situations for the controllers
by adding additional flights.

In the presented simulation scenario the number of
aircraft was set to 60 aircraft per hour, which is close to
the theoretical maximum capacity of Hamburg Airport.
Instrument meteorological conditions were used during all
simulation runs. The simulated wind component was 10 kts
from 270. Due to this, the simulation operated with IFR traffic
only.

Five trained air traffic controllers were assigned the task
to manage aircraft arriving and departing from Hamburg
Airport and the movement of all aircraft taxiing on the
ground. Air traffic sectors adjacent to Hamburg Airport
were automatically controlled by the NAVSIM air traffic
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* Other sectors

/ Controlled by

1'1~1VI
g AUrcy, f} Terminal maneuvering area

aft X .
0% 2F simulation

ILS captured i ﬁ

Q"““

Human/simulated
‘ Leaving TWR frequency | controller

Hamburg Airport

FIGURE 9: Distribution of air traffic management responsibilities between the air traffic simulation and the human controllers/simulated

controller.

dehvel y

—colitrole

FIGURE 10: Control room of the Hamburg Airport human-in-the-
loop simulation exercise. Each controller workstation is labeled with
the controller’s function in the experiment.

simulator. The traffic in the Hamburg terminal maneuvering
area was also controlled by the air traffic simulator. Arriving
aircraft were handed off to the human Hamburg tower con-
troller when capturing the Instrument Landing System (ILS);
clearance-delivery, apron 1, apron 2, and the taxiways were
also controlled by humans; departing aircraft were handed
oft by the human controllers to the air traffic simulator when
leaving the tower frequency. This is illustrated in Figure 9.

The control room used for the experiment is displayed in
Figure 10.

D. Simulation Human Machine Interface

D.1. Controller Workstations. The controller working posi-
tions comprised a radar screen, a flight strip tool, and an
arrival/departure manager. The radar screen was a modified
version of the NAVSIM air traffic simulator stripped down to
the graphical user interface for the display of the simulated
radar image.

The electronic flight strips tool “smartStrips” was supplied
by Frequentis AG and used to display the state of the
simulated aircraft and to exchange CPDLC messages with
the simulated pilots. Command messages generated by the
flight strips tool were sent over the simulation SWIM network
to the air traffic simulator to request the appropriate aircraft
behavior.

The auxiliary screen was generic implementation of an
arrival/departure management tool providing the controller
with increased time awareness. A controller working position

Aircraft requestlné,

C e

* [ Inactive aircraft-at
\ gates

FIGURE 12: NAVSIM ATC simulated radar display. Aircraft request-
ing clearances are highlighted in color. Inactive aircraft are muted in

grey.

is displayed in Figure 11. The radar screen is on the top left, the
flight strips tool on the bottom left, and the arrival/departure
manager on the right.

The airport controllers were supported in their task
by a nonintrusive level of automation. The controller user
interfaces were extended to display state information, using
additional text and color codes; for example, aircraft request-
ing clearances were highlighted while aircraft at parking
positions were displayed in muted colors.

A detailed view of the radar screen is shown in Figure 12.
It displays the runways, taxiways, and parking positions of
the airport. Aircraft are displayed with a position vector
and a label indicating their callsign and a unique simulation
internal identifier for postprocessing. Altitude and heading
can be displayed optionally. In our simulations additional
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FIGURE 13: Simulated arrival/departure manager. The timeline for
RW?23 is on (a); the timeline for RW33 is on (b). The top of the
timeline is 15 minutes in the future; the bottom is 15 minutes in the
past. Arriving aircraft are displayed on the left of timeline (a) and
departing aircraft on the right of the timeline (b).

information was displayed within the label to assist the con-
troller. Aircraft with unanswered requests were highlighted
by changing the color and the last CPDLC request was
displayed. Flight state and communication state originate
from different simulation modules but were consolidated
through our X23 SWIM implementation.

The auxiliary screen showing the arrival/departure man-
ager is displayed in Figure 13. This tool provided the con-
troller with a time line for each active runway. In our
experiments runway 23 was used for arrivals and runway 33
was used for departures; hence two time lines were displayed.
Flight labels on the time line provided the controller with
time awareness for the planned arrival (a) and departure (b)
times of the past ten minutes and the future fifteen minutes,
that is, one-slot duration. The labels used identical color-
coding as on the radar screen and display the last data link
messages.

The data link commands for air traffic control were
entered into the electronic flight strips tool shown in
Figure 14. Each flight is represented by a flight strip autogen-
erated from the SWIM data, and flight strips could be shared
by different controllers or stored in bays only accessible to
a single user. Commands entered through the user interface
were injected into X23 SWIM where they could be accessed
by the other simulation components, for example, the air
traffic simulator responding to the commands or the various
human machine interfaces.

D.2. Virtual Tower. In addition to the individual controller
working positions a virtual tower view was provided to all
controllers. The virtual tower view comprised a 3D visualiza-
tion of the Hamburg Airport projected onto a 270° screen as
shown in Figure 15. The 3D view was generated by an adapted
version of the commercially available X-Plane 10 software
integrated into the simulation’s SWIM network. Color-coded
labels attached to each flight enhanced the rendering.

13

Flight strip in

FIGURE 14: Electronic flight strips (smartStrips by Frequentis AG).
The electronic flight strips are dynamically generated and updated
according to the progress of the simulation. Flight strips are placed
in different bays according to controller responsibility. The bay
configuration displayed in the image is used by the tower (TWR) and
ground (RWY) controller. The tool uses the X23 SWIM interface to
connect to the simulation.

Viéwport control

FIGURE 15: Virtual tower view of Hamburg Airport (X-Plane by
Laminar Research). The viewport control is used to pan and zoom
the projection. Aircraft are augmented with labels containing air
traffic management information.

The SWIM interface of the virtual tower was imple-
mented in the Delphi programing language. We used the
X-Plane 10 plugin interface to access the simulator’s 3D
rendering engine. The X-Plane 10 simulation logic was not
used. Commercially available high-detail Hamburg Airport
scenery was used; therefore our plugin focused on the display
of aircraft 3D models and air traffic management information
at the positions and with the orientation provided by the
simulation. In the current implementation three models,
small (Beach Baron), medium (A320), and large aircraft
(B747), were used to approximate the aircraft type. To provide
smooth display of aircraft movements, position and orien-
tation were interpolated with Catmull-Rom splines between
simulation state updates according to Barry and Goldman
[17]. In addition to the full 270° view, the plugin supported
zooming in on a selected aircraft. This is similar to how a
controller would use binoculars in the tower.

D.3. Flight Simulator (Not Used in EDDH Simulation Sce-
nario). In addition to the air traffic simulation piloted flight
simulators can be used as additional sources of air traffic, too.
As of now the X23 stack has been outfitted with an application
interface to the Diamond DA-42 flight simulator displayed
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(a)

International Journal of Aerospace Engineering

FIGURE 16: (a) Diamond DA-42 flight simulator and (b) X-Plane flight simulator coupled with X23 into the EDDH scenario.

in Figure 16(a) and the X-Plane flight simulator shown in
Figure 16(b). Using these simulators a human pilot can take
part in the simulation indistinguishable from the simulated
air traffic for the controllers.

Acronyms and Abbreviations

AIRM: Air Traffic Management Information
Reference Model

AMQP: Advanced Message Queueing Protocol

APL:  Application Programming Interface

ATM:  Air Traffic Management
DDS:  Dynamic Distribution System
HLA: High Level Architecture
HMI: Human Machine Interface
HTTP: Hypertext Transfer Protocol
IP: Internet Protocol

LAN: Local Area Network

NTP:  Network Time Protocol

OSI:  Open Systems Interconnection

SESAR: Single European Sky Air Traffic
Management Research program

SWIM: System Wide Information Management

UDP:  User Datagram Protocol

WAN: Wide Area Network

WSDL: Web Services Description Language

XML: Extensible Markup Language.
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