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Abstract
This paper describes a data-driven, stochastic car-following model. From a data-base of car-following 
episodes, the acceleration of the following vehicle is modeled as drawn from a distribution that is 
sampled directly from the data. To make this work, the input variables speed , speed difference ,
net space headway (gap), and acceleration of the lead vehicle are discretized, and in each of the 
resulting bins a different acceleration distribution  , , , ( ) is estimated. In most cases, the 
acceleration values are distributed according to a Laplace distribution. Missing data-bins are 
interpolated. This model is then tested; it is found, that the resulting distributions of safety surrogate 
measures reproduce the ones found in reality.   
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1 The Concept
Most existing car following models are deterministic and do not consider the uncertainty and 

fluctuation of human perception and behavior (Helbing, 2001), (Nagel, et al., 2003), (Treiber, 2013).
Therefore, safety-relevant aspects may differ from reality in simulations which could also be seen by 
the fact that car following models are designed to be accident free. This constraint reduces the 
usability of these models for traffic safety research significantly. Nevertheless, some investigations 
regarding traffic safety are still possible. For example, the model of Krauß (Krauß, 1998), (Krauß, et 
al., 1997) allows very strong braking deceleration in critical situations, which can be used for traffic 
safety related investigations.

Note also, that the overwhelming majority of car-following models are essentially one-
dimensional, which restricts traffic safety analyses to rear-end-crashes. This is also the case for the 
considerations here. However, surrogate safety measures (SSM) like TTC (time-to-collision, Eq. (1)
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and DRAC (deceleration rate to avoid a crash, Eq. (2)) which are used here have a similar limitation. 
For reference, these two SSM are defined as:=   =             (1) =  = ( )2    (2)  
where is the net headway between the lead and the following vehicle, and =   is the speed 
difference with the speed of the lead and the speed of the following (subject) car. 

Here, we follow the approach of (Yang, et al., 2010), in which a non-deterministic car following 
model was developed based on a huge data set. We developed a stochastic car following model that 
enables reasonably realistic simulations of the human driving behavior, in particular with respect to 
traffic safety relevant aspects. That means, for example, that the distributions of the SSM reflect the 
ones found in reality.

In this model, the acceleration of a following vehicle will be determined. It is assumed that 
depends on the velocity of the following vehicle, the velocity difference between the subject and 
the proceeding vehicle, the gap between the two, and finally, on the acceleration of the lead car. 
The acceleration will be drawn from a probability distribution, whereby this distribution depends on , , and . That means, for every tuple ( , , , ) there exists a distribution function , , , ( ), and will be drawn from it. These distribution functions will be determined by the 
mentioned data set of the naturalistic driving study (see Section 2). For that, the data for , , and 
will be binned. For each bin, the expected value, the standard deviation as well as the distribution class 
of the acceleration will be determined. However, this will be done only if the bin contains at least 
100 data-points. If the bin has a smaller number of values, the expected value will be determined by an 
alternative car following model. For the standard deviation, a constant will be assigned and a Laplace 
distribution will be chosen for this bin. The parameters of the reference model will also be determined 
from the data-set under consideration.

The Laplace distribution is defined as:

, ( ) = 12  ( |  |/ )              (3)
where and are two parameters, its center and its width, respectively. For the data-set below, the 

type of the distribution has been found by testing in each of the bins the empirical distribution against 
a several distributions via a g-test and a -test. In 86% of the cases, a Laplace distribution was found 
to provide the best test-result.

2 The data set
For determining the distribution function described in Section 1, the data of the Intelligent Cruise 

Control Field Operational Test (Fancher, et al., 1998) was used. This field operational test was 
conducted between 1996 and 1997 in Michigan, USA. For that, 10 vehicles were equipped with 
various sensors and instruments to measure driving dynamic parameters as well as the distance to the 
preceding vehicle. The vehicles were given to 108 volunteers for two to five weeks, in which the data 
was constantly recorded. Although the purpose of the experiment was to investigate the comfort of 
adaptive cruise control (ACC), a sufficiently large amount of recorded trips without ACC was present. 
(Originally, they were used to compare the performance of the ACC against natural conditions.) More 
precisely, there are 8,690 trips of 102 drivers adding up to 1,821 driving hours and 88,000 kilometers, 
in which no ACC was used. 80% of the trips were used to create the model and 20% to verify it.

The following data was extracted from the trips:

Running time: time since ignition switch was turned on
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The velocity of the vehicle
Distance: the distance to the detected target in front of the vehicle. If no target was 
detected, the distance will be assigned to NA.
Backscatter: integer value between 0 and 1023, stating the relative amount of transmitted 
laser energy scattered back by the ambient conditions, and that is received by the sensor. 
High backscatter values indicate low quality of distance data.

These data were recorded with a frequency of 10 Hz, i.e. with a time resolution of = 0.1 s, see 
(Fancher, et al., 1998) for a more detailed description. Furthermore, the acceleration of the vehicle and 
the rate of change of the distance (i.e., the velocity difference between the vehicle and the detected 
target) were derived from velocity and distance data, respectively. However, the quality of these 
derived data is often not very good. Therefore, this work used a different approach to compute these 
two variables which is described in the following subsection.

3 Data processing
Here, the most important steps of the data processing are presented. From now on, the following 

notation will be used: if is a time point of a time series, then + 1 is the next time point, i.e., the 
time point seconds after the time point (recall, that the data was recorded with 10 Hz). More 
generally, for a non-negative integer , + is the time point tenths of a second after and 
the time point tenths of a second before .

The following main processing steps were undertaken:

Computing the acceleration time series based on the velocity time series
Processing, filtering, and correcting the distance data
Computing the velocity difference and the acceleration of the lead vehicle on the distance 
time series

These steps are explained in the following.

3.1 Computing acceleration time series
A Savitzky-Golay filter (Savitzky, et al., 1964) was used to compute the acceleration time series of 

the vehicle. This is a filter that allows to compute a smoothed version of a time-series and a smoothed 
derivative of the time series. For computing the acceleration time series based on the velocity time-
series, a Savitzky-Golay filter with window size = 11 (corresponding to 1.1 seconds) and a 
polynomial order = 1 was chosen. It reads:

=
where the are the set of filter coefficients that can be precomputed, they depend only on the 

filter-width and on the order of the polynomial chosen to fit the data-points. There is no general 
rule how to determine these parameters to obtain the best results. While experimenting, = 5 and = 1 turned out to be most suitable. This is understandable, since a numerical inspection of the data 
indicates, that the speed is in fact mostly a linear function, at least over short time-intervals such as the 
window size of the filter. For the data here, there is a tendency that smaller numbers of yield less 
noisy results, but again this depends on the data at hand.
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3.2 Processing of distance data
These data have been used as they are, i.e. no smoothing by a Savitzky-Golay filter has been 

performed. However, an approximation of the speed-difference = (   )/0.5) has been 
used and from this, the gap for the next time-step is estimated as =   +  

If this estimated gap deviates too strongly from the actually measured one (this can happen 
if the lead vehicle changes, or if the distance sensor has lost its track), then this is noticed and the time 
series is divided at this point. After finding all the candidates for break points, it is tried to correct 
some of them. E.g., the sensor sometimes lost track only for a short period of time, after which it 
connected again to the same vehicle in front. This can be recognized, and then the break-point is 
interpolated to get a complete car following episode. Finally, only those episodes have been kept 
which are longer than 3 s at all. Note, that the approach put forward here is not restricted to car-
following, but in general to the interaction between vehicles, even if they do not follow each other for 
a long time.

3.3 Computing velocity difference and acceleration of the lead vehicle 
For the valid distance data of the step before, the speed difference is then computed again as the 

derivative of the gaps with the help of a Savitzky-Golay filter. The same holds also for the acceleration 
of the lead vehicle. The speed of the lead vehicle is of course computed from = + , the 
acceleration of the lead vehicle follows then from the (Savitzky-Golay) filtering of this speed time 
series.  

With the speed difference at hand, additional data-cleaning have been performed. For instance, 
sometimes the vehicle brakes strongly, but the speed difference is positive, or the driver stops but a 
lead vehicle is not recorded. Those episodes are eliminated from further considerations, too.

3.4 Binning
Different binning schemes have been investigated, without a clear result which is the best one. In 

the following, the acceleration of the lead vehicle has been binned into broad intervals of 0.5 m/s2, the
speed and distance into 4 m/s or 4 m, respectively, while the speed difference has been binned into 1 
m/s bins. In one particular example, this yields 6,054 hyper-cubes that cover most of the data in the 4D 
space. The boundary values of the four variables are determined from the data, typical numbers are [0,40] m/s, [0,120] m, and accelerations [ 5,5] m/s2.

Alternatively, one may came up with the idea to choose the binning non-equidistant so that each 
bin has roughly the same number of data-points in it, at least in one dimension. Which constitutes a 
quantile-based binning. This has not been tried here, but will be the topic of future research.

4 The Model
This model is updated as follows. Let the position of the vehicle at time denoted by , with a 

time-step size of (no need for this to be constant, but usually it is). Then, the position of the vehicle 
at the next time step is given by=  +  + 12  ( ) = + 2  (  + )  
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where the kinematic relationship = + has been used. What is needed is the 
specification of . Usually, this acceleration is a function of the input variables , , , and 
acceleration of the lead vehicle . In the model described here, this is not directly so. Instead, the 
acceleration is drawn from a distribution that has been sampled from the data described above. A 
number of methods can be used to do this. Here, within each bin defined by a certain set of bin-widths, 
the distribution is parameterized by its mean and standard deviation. As stated above, the distribution 
is a Laplace distribution. Alternatively, but this would have been numerically more demanding, one 
could approximate the distribution in each of the bins by a certain discretization of the sampled 
acceleration values. 

After drawing such an acceleration value, it is subjected to certain boundary conditions (i.e. the 
Laplace distribution may give an unrealistic value of the acceleration), i.e.  [ , ]; the 
same holds for the speed , which is constrained into [0, ]. No attempts are being 
made in making this model crash-free. 

If the dynamics hit upon a region in , , , where no data had been available (which
happens rarely, in less than 1% of the cases), then a conventional car-following model is used. Two 
are currently implemented, the Helly model (Helly, 1959), Eq. (4) and the one of Krauß (Krauß, et al., 
1997), Eq. (5). They are given as:=  +  +                                                 (4)     =  min + 2 + + 2 , + ,      (5) 

where the are the parameters of Helly’s model, and , , are the parameters of the Krauß
model.

Both models are subject to the restriction in speed and acceleration, this is not included explicitly 
in the equations to simplify notation. Obviously, this creates discontinuities at the boundaries between 
the stochastic model and the conventional models, which can be seen e.g. in the plot of Figure 1.
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Figure 1: Acceleration function of the model. Speed has been fixed at = 20 m/s and = 0, respectively. 
Then, acceleration can be plotted as ( , ).

As mentioned, this model is not crash-free. The Figure 2 displays an example where the model 
produces a crash. This happens rarely, and in this case even by changing the initial condition of the 
random number generator may eliminate this crash or produce another one.
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Figure 2: One example for a crash. Plotted are the acceleration (top left), speed (top right), velocity difference 
(bottom left) and the gap (bottom right) of the following vehicle (blue lines), together with the empirical values 
(in red).

5 Running the Model
The model has then tested in two different instances. In the first, the FOT data-set above is used 

once more. In the second test, the fundamental diagram of the model is compared to the one of the 
Krauß model.  

5.1 Microscopic test
Again, the car-following trajectories as found in the data-set above have been used. In order to 

compare it with the real data, for each of the 3,748 clean trajectories the model is set at the beginning 
of each episode to the empirical values of speed, gap, speed-difference and lead acceleration. From 
this, the model computes its acceleration, and then, together with the data of the lead vehicle (mostly 
lead vehicle's speed), also the updated speeds and distances. In each subsequent time step, the vehicle 
is fed only the speed and acceleration of the lead vehicle, the distance and its own speed are a 
consequence of the model. To clarify this: from , , , ( )  = +   
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= + 2 ( +    ) 
with the initial condition , taken from the data. 

In each time-step the two SSM's , are computed, too. Their distribution is compared in Figure 3
to the empirical distributions.

Figure 3: The distribution of TTC (left) and DRAC (right) in red, compared with the empirical distributions 
(in blue).

It could be seen, that the model can reproduce to a certain degree the empirical distributions. While 
the distribution of the DRAC values is reproduced very well, there are visible differences in the TTC 
distributions. 

5.2 Macroscopic test – the fundamental diagram
The fundamental diagram has been computed by running a varying number of vehicles (N=40, 

120, 200, 280, 360) behind each other in a circle of fixed length. Along this circle, 8 loop detectors 
have been placed with a distance of 500 m. They aggregate the data into 3 min averages. Note, that 
from these simulated loop detectors all the important variables like speed and distance can be obtained 
which are needed to compute the flows, densities, and average speeds. All the variables are local 
variables, which can be seen e.g. from the density. The global density would give just five different 
values, see Figure 4 for a plot.
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Figure 4: The fundamental diagram as average speed versus density as sampled from the synthetic loop 
detectors along the circle. The green points represent the stochastic model, while the purple ones are the results of 
the Krauß model.

While the general form of the fundamental diagram looks fine, the values obtained are way off. 
Especially the maximum flow, and the density where the speed starts to decline, are roughly a factor 
of two too big for the stochastic model. So far, there is no good explanation available why this 
happens. 

6 Conclusions
It has been demonstrated, that a stochastic car following model that is constructed by a purely data-

driven approach can at least approximately reproduce SSM's like TTC and DRAC. However, a lot of 
work remains to be done. Most importantly, as has been shown, this model cannot fully reproduce the 
fundamental diagram. To remedy this, the model has to be re-analyzed to find the point where it 
deviates from real drives, albeit microscopically it looks good. It seems, that human drivers so far are 
more carefully than what the model does. Also, it could be that the filtering conditions has been too 
restrictive. In addition to this, the current implementation of the model is very slow, which makes 
additional tests very time-consuming. 

Then, it might be interesting to investigate the relationship between the distribution of the SSM 
and crashes in the model into more detail. For this to make sense, it is a good idea to find a good 
method to produce synthetic trajectories of lead vehicles (more precisely: its speed and acceleration) 
so that such a test is not restricted to the data recorded in reality, which are known to be simply not 
enough in order to compare it with real accident rates. For instance, in Germany a vehicle must drive 
on average 280,000 km until it experiences one crash, and this is not necessarily a rear-end crash. 
Therefore, a powerful method to create those lead vehicle data is needed so that a large number of test-
cases can be tested.
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Let us end with a warning: the approach chosen here is one that uses very few assumptions about 
the underlying human behavior, since in the first place it uses only data, and no assumptions. This 
makes it very attractive. However, to make it finally work, a considerable number of additional safe-
guards had to be implemented, and still not anything is as good as one could expect. And clearly, there 
are still a number of things that are not well dealt with, such as the acceleration memory and the fact 
that subsequent draws from the acceleration distributions are uncorrelated. Unfortunately, it is not so 
easy to say how to remedy this. 
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