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Abstract

Soft soil contact models developed for planetary exploration rovers play an important role
in the study of rover mobility. Nowadays, most of the existing contact models are based
on Bekker theory which requires the evaluation of several soil parameters usually measured
via bevameter tests. However, substantial differences existing between the plate-soil contact
scenario and the wheel-soil contact scenario, along with large variability associated with the
bevameter experiments, give rise to large uncertainty in the choice of the model parameter
values. In this paper a Bayesian procedure is proposed to deal effectively with the presence
of uncertainty. In the proposed approach model parameters are random variables with
prior distributions derived from bevameter measurements. The prior distributions are then
enhanced to posterior distributions through single wheel test data. At the end the procedure
identifies a set of possible model parameter configurations that result in high experimental-
numerical matching.

1 Introduction

Past experience has shown that rover mobility on sandy soil is a key point in planetary exploration with
wheeled vehicles. Indeed, due to loose soil, the rover may get stuck for a long time and, in worst cases,
be unable to recover its mobility. One such famous example is connected with the NASA Mars rover
Spirit, that got completely stuck after five years of very successful operations on Mars’ surface. Therefore,
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in the terramechanics community it is well accepted that a good knowledge of the wheel-soil contact
interacting forces is a prerequisite for successful rover design and in-situ operations. In this context,
computer simulations may represent a valid tool for predicting contact forces. At present, most of the
existing contact models for sandy soils are based on Bekker theory (see e.g. (Wong, 2010; Ishigami et al.,
2007; Leite et al., 2012; Krenn and Gibbesch, 2011)). This semi-empirical approach, although dating back
to the 1950s (Bekker, 1956), surprisingly seems to be the modeling method still preferred for soil contact
modeling. Indeed, it ensures a very good compromise between sufficient accuracy and speed of simulation
runs. However, despite its large usage, several concerns arise when applying Bekker approach to wheel-soil
contact models. Bekker parameters, often assessed through bevameter tests, are proved to be highly
sensitive to the test setup, such as for instance soil preparation, plate shape or velocity (Apfelbeck et al.,
2011). Thus, inherent variability in the testing process results in significant uncertainty about the measured
parameters. Furthermore, Bekker theory is based on uniaxial pressure-sinkage and symmetric plate shear
tests. Its extension to tridimensional and generally more complex wheel-soil contact geometry is not fully
justified. This also gives rise to uncertainty about the correctness of the model itself.

In this paper, the Bayesian framework is employed to identify adequate model parameters in the presence
of both model and parameter uncertainty. The procedure, recently proposed in (Gallina et al., 2012), is
presented here with comprehensive analyses. In the Bayesian framework model parameters are considered to
be random variables whose distribution, initially defined by limited information, is progressively improved
as soon as new experimental evidence is made available. In the presented case study, initial parameter
knowledge, given by bevameter measurements, is corrected by experimental data from single wheel tests. A
non-deterministic description of the parameters gives the researcher a deep insight into the model behavior
and allows him or her to make robust decision when uncertainties are considered.

The structure of the paper is as follows. First, general theoretical aspects of Bayesian model updating are
given. Second, the soil contact model, whose parameters are identified via Bayesian approach, is presented.
Third, the Bayesian procedure setup for the specific terramechanics problem is described. Finally, two
application cases are illustrated.

2 Theoretical fundamentals of Bayesian parameter identification
procedure

The choice of the model parameter values is one of the fundamental steps to be addressed when computer
models are used to describe physical processes. The parameters should be chosen such that they are consistent
with real physical values and at the same time produce results in good agreement with experimental evidence.
This problem, referred to as parameter identification, is not trivial at all as only a very limited knowledge
of the phenomenon under study is usually available. In a Bayesian approach the uncertainty affecting the
model parameter is described by random variables. Thus, the model parameters are denoted by the vector
θp, where θp is a random vector with probability density function p(θp). This probability distribution is
called prior distribution and its shape reflects the available initial knowledge on the parameter values. Yet,
in a Bayesian framework it is assumed that uncertainty occurs also in the computer model and is expressed
through the model prediction error ε defined by

ε = x− y , (1)

with y denoting generic model response and x the corresponding experimental data. The model predic-
tion error is also assumed to be a random variable. In the absence of information about the model error
uncertainty, ε can be assumed to be a Gaussian random variable with probability density

p(ε) =
1√
2πσ

exp

(
− (ε− ε̄)2

2σ2

)
, (2)



where the mean prediction error ε̄ is usually considered to be equal to the numerical solution y and the
standard deviation σ is fixed to a particular value or is considered an additional parameter to estimate. The
choice of Gaussian distribution is very common because it maximizes the model uncertainty, according to
the principle of maximum entropy (Beck and Katafygiotis, 1998). Plugging Equation (1) into Equation (2)
the following conditional probability can be written

p(x|θ) =
1√
2πσ

exp

(
− [x− y(θp)]

2

2σ2

)
, (3)

where the dependency of y on the parameter vector θp is made explicit. In Equation (3) the vector θ
represents the parameter vector extended with the prediction error standard deviation, namely θ = [θ′p σ]′

(where the sign ‘′’ denotes the transpose). Equation (3) is referred to as likelihood function and represents
the probability of observing the experimental response x when the corresponding numerical model has
parameters θp and prediction error standard deviation σ. In other words, the likelihood function measures
the fitness of the model response to the experimental response. Using the Bayes rule it is possible to evaluate
the inverse conditional probability p(θ|x) as

p(θ|x) =
p(x|θ)p(θ)

p(x)
. (4)

p(θ|x) is called posterior distribution and estimates the parameter distribution given the experimental data x.
From a different perspective, the posterior distribution is the prior distribution corrected by the experimental
data x. In Equation (4) the probability p(x) is a normalizing factor that does not affect the p(θ|x) shape.
When a set of experimental data D is given, Equation (4) can be more generally written as

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (5)

with the likelihood function p(D|θ) defined by

p(D|θ) =

N∏
i=1

1√
2πσi

exp

(
− [xi − yi(θp)]2

2σ2
i

)
, (6)

where xi, yi, σi denote the i-th experimental response, numerical response and prediction error standard
deviation, respectively, with i = 1 . . . N and N the number of observed responses. In Equation (6) indepen-
dence among the N model prediction errors has been assumed. Under this assumption, the prediction error
covariance matrix is diagonal with diagonal terms defining the vector σ = [σ1 . . . σN ]′. Thus, the extended
parameter vector becomes now θ = [θ′p σ

′]′.

The evaluation of the posterior distribution is called inference problem and represents the goal of a parameter
identification problem. The inference problem is challenging because the distribution of p(D|θ)p(θ) is usually
very complex and because the normalizing factor is a multidimensional integral that may not be solved in
practice, either analytically or numerically. In literature, three different approaches have been presented
to make inference: exact methods, deterministic approximation, stochastic approximation (Bishop, 2006).
Even though the first two methods have several advantages in terms of computational burden, they are not
universal and sometimes difficult to apply. Conversely, stochastic approximation methods, based on sampling
strategies, are simple, universal and ensure asymptotic convergence to the right solution. In this paper a
particular procedure, which belongs to the class of Markov Chain Monte Carlo (MCMC) methods (Metropolis
et al., 1953), is employed to calculate the posterior distribution. Markov Chain Monte Carlo is a powerful
technique for efficient sampling from complex probability distribution that is widely used to make inference.
Limitations of the conventional Metropolis-Hasting MCMC algorithm in Bayesian parameter identification
are due to the fact that p(θ|D) is usually very peaked. Therefore, an MCMC approach will be effective as
long as a large number of samples is chosen in the neighborhood of the important (but unknown) region of
the parameter space, that is the region where the likelihood function is high. In an attempt to alleviate this
problem, Transitional Markov Chain Monte Carlo (TMCMC) algorithm has been recently proposed (Ching



and Chen, 2007). TMCMC entails a sequence of Bayes′ problems where the posterior distribution of the
previous step is used as the prior distribution of the current step and the amount of exploited experimental
data is gradually increased. This sequential approach favors the movement of the posterior distribution
toward highly important regions of the parameter space. TMCMC has been already successfully applied to
Bayesian updating (Ching and Chen, 2007; Goller et al., 2011) and model classification problems (Muto,
2007), and it is proposed here in the context of soil contact model parameter identification. Theoretical
aspects of TMCMC can be found in (Ching and Chen, 2007).

3 Wheel-soil contact model

The wheel-soil interaction dynamics implementation is based on the soil contact model (SCM) (Krenn and
Gibbesch, 2011), which is dedicated to multi-body dynamics simulations. It computes the contact forces
and torques between an arbitrarily shaped contact body and a soft terrain surface, as function of the body’s
motion state. The parameters of SCM can be divided in two categories: the first category of parameters
describes the surface shape geometries of the contact body (here a wheel) and of the terrain in form of a
CAD-like surface mesh for the contact body and of a digital elevation model (DEM) of the terrain. The
second category defines the dynamical soil properties that are to be identified by the Bayesian procedure. A
list of the soil parameters used in SCM is given in Table 1.

Parameter Variable Unit

Exponent of sinkage n [−]
Cohesive modulus kc [N/mn+1]
Frictional modulus kφ [N/mn+2]
Cohesion c [Pa]
Angle of internal friction Φ [rad]
Areal damping coefficient of soil Dsoil [Ns/m3]
Velocity specific Janosi coefficient J [m/s]

Table 1: Soil parameters used in SCM.

3.1 Contact dynamics computation

The first computational task of SCM is detecting contact between the moving contact body and the terrain.
This is solved using z-buffer and spatial binning techniques known from graphics renderers. Here, the mesh
grid nodes of the contact body are mapped onto the regularly spaced grid nodes of the terrain’s DEM and
the elevation coordinates of the mapped nodes are compared with the corresponding ones of the terrain
regarding penetration. In case of contact, one obtains a footprint profile in the soil, which is a subset of
the terrain DEM including all contact nodes. The elevation differences between the latest terrain surface
shape and the footprint profile define the local sinkages zi at each contact node i with location (xi, yi). The
corresponding contact velocity vi, with components vσ,i normal to the footprint surface and vτ,i tangential
to it, are computed by basic kinematics relationships for each contact node.
In the second step, SCM computes two additional variables that depend on the footprint shape: the effective
contact width and the pressure distribution in the contact zone. The effective contact width is calculated by
beff = 2Axy/Lxy, where Axy is the footprint area and Lxy the footprint contour length projected onto the
horizontal xy-plane of the DEM. Using the variables listed in Table 1 SCM computes the normal stress σi
and the shear stress τi at all contact nodes via the equations given below that represent an extension of the
well-known Bekker’s equations (Bekker, 1969)

σi = γi

(
kc
beff

+ kφ

)
zni +Dsoilvσ,i (7)

τi = (c+ σi tanφ)
(

1− exp−|
vτ,i
J |
)
, (8)



where γi is a scaling factor that amplifies the soil pressure in central footprint regions and lets it drop down
to zero at the footprint border. In addition to classical approaches, SCM also takes velocity dependent terms
into account. For normal stress calculation (Equation (7)) a linear damping component with areal damping
coefficient Dsoil is included. The inclusion of damping into the shear stress calculation (Equation (8)) is
given by an exponential function derived from Janosi and Hanamoto (Janosi and Hanamoto, 1961). However,
in SCM the original shear deformation term is replaced by a shear velocity term. Therefore, the so-called
Janosi coefficient J becomes here a reference velocity. Once the shear and normal stresses are computed,
the discrete contact force ∆Fi can be calculated by

∆Fi = (σini + τiti) ∆A , (9)

with ti = −vτ,i/|vτ,i| denoting the local tangent vector, ni the local normal vector and ∆A the DEM grid
size. Finally, the total contact force F and torque T vectors applied to the contact body are obtained by
integrals of ∆Fi over all N contact nodes with

F =

N∑
i=1

∆Fi and T =

N∑
i=1

(ri ×∆Fi) , (10)

where ri is the distance vector from the selected reference frame to the contact node i.

3.2 Plastic soil deformation

Typical terramechanics phenomena like sinkage, bulldozing, digging of spinning wheels or multi-pass effects of
wheels rolling in line are caused by plasticity of loose soil. In order to adequately consider these effects SCM
continuously updates the DEM terrain shape in each simulation step as function of the contact kinematics.
In this step, SCM approximates the displacement of soil from the footprint area by defining horizontal radial
and parallel soil flow fields, which are functions of the local contact velocities in normal and tangential
directions. These flow fields remove soil from the footprint area and depose it around the wheel, where
finally an algorithm for thermal erosion keeps the DEM surface in a natural shape considering the angle of
response of the soil (additional SCM parameter not listed in Table 1). A snapshot of an animation taken from
a SCM supported simulation run of a rover cruising in soft terrain is presented in Figure 1. It exemplarily
shows the results of the DEM update process by means of the computed ruts of the profiled rover tires.

Figure 1: Visualization of rover locomotion simulation result using SCM.

4 Procedure setup

Bayesian approach has been used to calculate the posterior distributions of a set of SCM model parameters
for future ExoMars rover mobility simulations. The procedure makes use of both single wheel test (SWT)
and Bevameter tests. Bevameter tests supply the initial (prior) soil parameters assessment. The data from



SWT, involving real wheel-soil contact scenario, allow one to improve the parameter estimates. The following
subsections address important issues related to the Bayesian procedure setup for the current terramechanics
problem.

4.1 Experimental tests

A single wheel test of a flexible wheel designed for the ESA ExoMars project was carried out at the DLR
Institute of Space Systems in Bremen (Figure 2(a)). The geometric properties of the wheel include a nominal
radius of 125 mm, width of 112 mm and 12 straight grousers with 9 mm depth. During the experiment the
torque, drawbar pull force and sinkage of the wheel were measured while keeping the normal force and slip
ratio constant to 315 N and 0.2, respectively. The wheel was driven on a dry quartz sand named WF34.
The major chemical constituent of that sand was SiO2 (99.7%) composed almost exclusively of grains of
sizes between 180 and 355 µm (80%). Minor constituents were grains of sizes between 125 and 180 µm. The
bulk density has been measured to be approximately 1400 kg/m3. Bevameter tests of WF34 were previously
performed to measure the soil cohesion c ≈ 0 Pa, friction angle Φ ≈ 30◦, soil deformation exponent n ≈ 1.1
and soil deformation modulus k∗ ≈ 107 N/mn+2. k∗ is related to the Bekker coefficients kc and kφ appearing
in Equation (7) through

k∗ =

(
kc
beff

+ kφ

)
(11)

4.2 Computer model

A rigid-body model of the SWT has been created utilizing commercial software SIMPACK (Figure 2(b)).
SCM is compiled in SIMAPCK as a user-defined force element acting between soil and wheel. The rigid-body
model resembles the experimental SWT set-up except for the flexible wheel that is assumed to be rigid in
the simulation. The influence of the elastic deformation of the real wheel is accounted for in the simulations
by a wheel with increased radius. However, since the wheel deformation is not measured during tests, an
equivalent radius R of the rigid wheel is a parameter to be identified.

(a) (b)

Figure 2: SWT facility (left) and rigid-body model of the single wheel test (right).

4.3 Likelihood function

The definition of the likelihood function represents the core of the Bayesian procedure setup. In the current
analysis the likelihood is calculated by

p(D|θ) =

3∏
i=1

p(xi|θ) , (12)



with

p(x1|θ) =
1√
2π

exp

(
−ξ

2
1

2

)
(13a)

p(x2|θ) =
1√
2π

exp

(
−ξ

2
2

2

)
(13b)

p(x3|θ) =
1√
2π

exp

(
−ξ

2
3

2

)
. (13c)

In Equation (13) the terms ξi are standard normal variables calculated by

ξi = F−1(Ui) , (14)

where F−1 is the inverse cumulative density function of a standard normal random variable and the Ui terms
defined by

U1 =

∫ F̄ exp

−∞

1√
2πσF

exp

(
− (u− F̄num)2

2σ2
F

)
du (15a)

U2 =

∫ T̄ exp

−∞

1√
2πσT

exp

(
− (u− T̄num)2

2σ2
T

)
du (15b)

U3 =

∫ z̄exp

−∞

1√
2πσz

exp

(
− (u− z̄num)2

2σ2
z

)
du . (15c)

In Equation (15) •̄exp, •̄num and σ• denote respectively the experimental mean, numerical mean and pre-
diction error standard deviation of the generic physical quantity •. The Ui terms represent the likelihood
probabilities of the considered SWT response, obtained by integrating the likelihood functions of Equa-
tion (3). The normalization step proposed above enables efficient work with data with different orders of
magnitude, as in the present case for the drawbar pull force F (expressed in N), the wheel torque T (expressed
in Nm) and the wheel sinkage z (expressed in m). The use of average responses in the likelihood function
is dictated by the fact that numerical responses, although showing the typical fluctuations caused by the
grousers effect (see Figure 3), evidence poor point to point experimental-numerical correlations. Moreover,
SCM is not capable of predicting the initial transient behavior exactly. Thus, the signals are averaged after
an assigned offset when the steady state seems to be achieved. The offset is set to 40 s for F̄ exp, T̄ exp, z̄exp,
20 s for F̄num, T̄num and 1s for z̄num. Any simulation run lasts 50 s while SWTs last about 180 s. Figure 3
gives a pictorial description of the physical quantities used to define the likelihood function. The filtered
experimental and numerical signals are represented by thin solid lines, while the F̄ , T̄ and z̄ values, averaged
over the assigned time interval (colored background), are marked with thick solid lines. The three prediction
error standard deviations σF , σT and σz appearing in Equation (15) are unknown at the beginning of the
analysis and represent additional parameters to be identified.
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Figure 3: Filtered signals of experimental (only first 60 s) data and numerical solution for a particular model
configuration.



4.4 Sensitivity analysis

SCM requires the definition of the 7 soil parameters listed in Table 1. In order to reduce the number of
updating parameters, a global sensitivity analysis is performed. The analysis examines the influence of the 7
SCM soil parameters on the average response of the wheel sinkage, drawbar pull force and torque calculated
during SIMPACK SWT simulations. Morris method (Saltelli et al., 2000) has been employed for this aim.
For each parameter-response combination, the method returns two normalized indices which give insight
into the amount of linear and non-linear dependency of the response on the parameter, within the parameter
space defined in Table 2. Low values of both linear and non-linear indexes point out low influence of the
parameter on the response. The results, presented in Figure 4, are an evidence of the small influence of the
cohesion and soil damping on all considered responses (F , T , z) at low slip values. Therefore, no significant
loss of information is expected if these parameters are neglected in the parameter identification process and
fixed to the assigned nominal values. It should be noted that the influence of kc and kφ was jointly studied
through the k∗ parameter.
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Figure 4: Linear and non-linear index of the Morris sensitivity analysis.

4.5 Prior probabilities

The full set of parameters to estimate is composed of kc, kφ, n, Φ, J , R, σF , σT and σz. Each parameter is
assumed to be an independent random variable whose prior probability density function (PDF) is assigned
according to bevameter results, engineering considerations or, in the absence of any information, even mere
speculation. Prior distributions of n and Φ have been assumed Gaussian with mean values and standard
deviations resulting form repetitive bevameter measurements. Unfortunately, the same experiments could
not be employed to determine the prior distributions of kc and kφ, because they were used in the past to
estimate only k∗. Thus, the prior PDFs kc and kφ have been assumed uniform with bounds chosen according
to the experience gained while working with similar soils. The distribution of the Janosi coefficient as well as
the wheel radius were also considered uniform due to the fact that no information existed on more probable



values for these parameters. Finally, the prior PDFs of the model prediction standard deviations were again
uniform with the upper bounds function of the maximum expected prediction error. A summary of the
prior PDFs is given in Table 2. The column of the table entitled ”Nominal” defines the values used in those
analyses where the parameter is not changed, ”Par1” and ”Par2” stand for mean and standard deviation in
case of normal distribution and lower and upper bound in case of uniform distribution, while LB and UB
denote the lower and upper bound of the parameter space.

Param Dim Dist Nominal Par1 Par2 LB UB

kc [N/mn+1] uniform - −109 109 −109 109

kφ [N/mn+2] uniform - 1 1010 1 1010

n [−] normal - 1.1 0.2 0.8 2
Φ [◦] normal - 30 5.7 11.5 37.3
J [m/s] uniform 0.001 0.001 0.1 0.001 0.1
R [m] uniform 0.125 0.125 0.155 0.125 0.155
σF [N ] uniform - 0 5 0 ∞
σT [Nm] uniform - 0 10 0 ∞
σz [m] uniform - 0 0.005 0 ∞

Table 2: Prior distributions and parameter space definition.

5 Application cases

The analyses presented in this section are: (case 1) a TMCMC with θ = [kc kφ n Φ J σF σT σz]
′ and (cases

2a and 2b) two TMCMC repetitions with θ = [kc kφ n Φ R σF σT σz]
′ . Each TMCMC analysis involves

altogether 16000 samples split in a sequence of 2000 samples per step. The 2000 initial samples are generated
according to the prior PDF while the resultant 2000 final samples describe the posterior distribution. The
procedures identify parameter configurations that ensure good experimental-numerical correlation for the
single wheel test responses. An example of such a correlation for a highly plausible choice of SCM parameters
identified by the Bayesian procedure is depicted in Figure 3. Although the Bayesian procedure produces
various results, in the following subsections we will focus only on the posterior distributions of the SCM
parameters, namely kc, kφ, n, Φ, J and R.

5.1 Case 1

The histograms of the prior and posterior distributions of the 5 soil parameters are drawn in Figure 5. It is
visible here how the additional knowledge provided by SWT data markedly shrinks the parameter region of
plausible models with respect to the prior solution.
Bivariate contour plots of the resultant posterior distributions are also presented in Figure 6 for selected pairs

of model parameters. The posterior PDFs are constructed from the posterior TMCMC samples via kernel
estimation method (Bishop, 2006). These plots allow one to disclose the existing parameter correlations, as
for instance the one appearing in the kc-kφ case. Figure 6 also shows the level of agreement of the posterior
PDFs with the mean values of the experimental bevameter measurements. In particular, the dashed gray
line in Figure 6-left denotes the kc-kφ combinations for which k∗ = 107 N/mn+2 and beff is equal to the
average value observed in the SWT simulations. Good correlation between the bevameter measurement and
the estimated value exists for cohesion modulus, friction modulus and sinkage exponent. This means that,
at least for the analyzed soil, pressure-sinkage bevameter testing is an effective way for assessing kc, kφ and
n values. Conversely, shear bevameter tests yield Φ values that, if used in SCM, would lead to significant
overestimates of the real torque and drawbar pull force.
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from bevameter measurements (mean values).

5.2 Cases 2

The aim of this second analysis is to study the influence of the wheel flexibility in the updating process and
to assess the reliability of the parameter identification procedure. As in the previous subsection, the bivariate
posterior distributions for the most interesting SCM parameter pairs are presented in Figure 7 (case 2a) and
Figure 8 (case 2b) via contour plots and compared with bevameter measurements. In this case the outcomes
can be summarized by the following statements:

• Both TMCMC simulations yield very close results. Yet, kc, kφ, n and Φ posterior PDFs appear very
similar to those obtained in case 1. Either fact indicates a good level of reliability of the procedure.

• The posterior PDFs of n appear narrower than in case 1. This is most likely caused by the variability
of the Janosi parameter removed in the second analysis.

• The flexibility of the wheel can be accounted for by increasing the wheel radius of the multi-body
model. However, the level of importance of this parameter seems to be low. This assertion is
motivated by the fact that many different R values have a similar level of plausibility and that R
has no significant correlation with any of the analyzed parameters.
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Figure 7: Bivariate posterior distributions of kc-kφ, n-Φ and n-R pairs compared with prior information
from bevameter measurements (mean values) for the case 2a.
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Figure 8: Bivariate posterior distributions of kc-kφ, n-Φ and n-R pairs compared with prior information
from bevameter measurements (mean values) for the case 2b.

A comment can be made also about the accuracy of the posterior PDFs given by TMCMC. Although it
has been proved that TMCMC yields a solution that converges asymptotically to the true solution (Ching
and Chen, 2007), a very large number of samples may be sometimes needed to achieve exact posterior
distributions. In this study the number of samples of each TMCMC simulations seems to suffice to solve the
inference problem. However, the accuracy of the outcomes can be improved by enlarging the sample sizes.
Indeed, since in the kc-kφ contour plots all points on the dashed lines produce identical contact forces, it
is expected that an exact posterior distribution would follow such a trend that is only outlined by a single
TMCMC solution. If the posterior sample points of the three TMCMCs are gathered in a unique set and the
posterior distribution is evaluated, then the result appears much more accurate, as presented in Figure 9.

5.3 General comments

Contrary to deterministic model updating that yields parameter point estimates, the Bayesian approach
identifies a set of highly plausible models. Posterior PDFs are much more informative than point estimates
as they give a more comprehensive description of the model behavior by disclosing the existing correlation
and localizing many different potentially good model parameter setups. The appropriateness of any model
defined within the parameter space is measured by the corresponding posterior PDF value that represents
the model plausibility level, which is the capability of the model to match experimental data and prior
information. If this information is integrated into a decision theory framework, then the full power of the
Bayesian approach can be used to take robust actions in condition of uncertainty.

The procedure is also a useful tool for model validation purposes. In this context, the study pointed
out positive and critical aspects of SCM. On the one hand, the good agreement of the pressure-sinkage
parameters identified by the procedure with those of bevameter tests proves the correct extension of
the pressure-sinkage Bekker formula to tridimensional contact scenarios. On the other hand, substantial
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Figure 9: Bivariate kc-kφ posterior distribution obtained by agglomerating the three TMCMC posterior
sample sets.

mismatching in the friction angle warns the researcher against unreasoned use of the bevameter assess-
ments in SCM. Interestingly, the same SCM behavior has also been observed in preceding analyses with
different soils (Krenn and Hirzinger, 2008). Nevertheless, it is still unclear if the mismatching is due to
modeling defects or to physical wheel-soil contact phenomena that cannot be caught by bevameter shear tests.

Another advantageous feature of Bayesian inference is its capability to efficiently handle data flows. Although
calculation of posterior PDFs is generally challenging due to massive sampling, starting from a prior PDF
shape not too different from the posterior one would require significantly smaller computational burden than
a general case. For this reason, it is expected that Bayesian approach could be considered for on-board soil
parameter estimations. Indeed, when solving close-in-time identification problems, in the absence of marked
soil property discontinuities, successive posterior distributions should not be very different. This means that
actual posterior PDFs could be determined with reduced computational effort. Significant computational
speed-up can also be obtained by resorting to surrogate analytic models (Simpson et al., 2001) of the original
Bekker-based contact models. This technique, already adopted in rover mobility prediction in condition of
soil parameter uncertainty (Ishigami et al., 2009), is deemed to bring benefit also to the inference problem
presented here.

6 Conclusions

Soil parameters of Bekker-based contact models for planetary rover mobility analysis are commonly estimated
via bevameter tests. In this paper an alternative procedure is presented which makes use of both bevameter
and single wheel experiments. The identification problem is addressed through a Bayesian procedure in
which the initial guess on the soil parameters given by bevameter measurents is corrected by means of single
wheel measurements. The analysis shows that, at least in the present case, bevameter measurements of the
soil parameters can been reliably used in the contact model only to a certain extent. Major problems exist
with regard to the friction angle for which the usage of bevameter measurements would lead to sensibly
higher contact forces with respect to the values measured via single wheel tests. An advantage of Bayesian
approach presented in the paper with respect to classical deterministic procedures is that it ensures a better
treatment of uncertainties, which if integrated within a decision-making framework, may lead to robust
actions in condition of uncertainty.
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