European Gravity Service for Improved Emergency Management - Status and project highlights

Torsten Mayer-Guerr, Jäggi Adrian, Ulrich Meyer, Yoomin Jean, Andreja Susnik, Matthias Weigelt, Tonie van Dam, Frank Flechtner, Christian Gruber, Andreas Güntner, Ben Gouweleeuw, Andreas Kvas, Beate Klinger, Jakob Flury, Sean Bruinsma, Jean-Michel Lemoine, Hendrik Zwenzner, Stephane Bourgogne, and Tamara Bandikova

EGU General Assembly 2016

Vienna, April 20th
European Gravity Service for Improved Emergency Management - Status and project highlights

Torsten Mayer-Guerr, Jäggi Adrian, Ulrich Meyer, Yoomin Jean, Andreja Susnik, Matthias Weigelt, Tonie van Dam, Frank Flechtner, Christian Gruber, Andreas Güntner, Ben Gouweleeuw, Andreas Kvas, Beate Klinger, Jakob Flury, Sean Bruinsma, Jean-Michel Lemoine, Hendrik Zwenzner, Stephane Bourgogne, and
EGSIEM Project - Three services shall be established

- **Scientific combination service**
- **Near real-time/regional service**
- **Hydrological service**

Altimetry
- Hydroweb (Topex/Poseidon, Jason, ENVISAT, GFO, Sentinel 3)

Gravity & GNSS & SLR
- GRACE
- GRACE-FO (future missions)
- GPS, Gionass, Galileo
- LAGEOS, Starlette, Stella, AJISA

Copernicus
- ENVISAT/ASAR, TerraSAR-X, Radarsat-2, Sentinel 1
Scientific service

EGSIEM Analysis Centers (ACs):
- GFZ
- CNES
- AIUB
- TUG - ITSG
- University of Luxembourg
- More in the future ...

1. Improvements of the processing
2. Integration of complementary data
3. Harmonization of processing standards
4. Combination of the solutions
1. Improvements of the processing

A lot of tests, comparisons, discussions: instruments, calibration, background models
1. Improvements of the processing

A lot of tests, comparisons, discussions: instruments, calibration, background models

G4.2 09:00
Beate Klinger et al.:
The new ITSG-Grace2016 release

Poster X3.40
Saniya Behzadpour et al.:
Robust estimation of error covariance functions in GRACE gravity field determination
2. Integration of complementary data

- Reprocessed GPS orbits and clock corrections
- SLR for low degree gravity field
- POD from non-dedicated satellites
2. Integration of complementary data

- Reprocessed GPS orbits and clock corrections
- SLR for low degree gravity field
- POD from non-dedicated satellites
3. Harmonization of processing standards

- Common reference frame and GPS orbit constellation
- Ensemble of different background models
- Distribution of solutions at normal equation level in standard SINEX format

```plaintext
% = SNX 2.02
+ FILE/REFERENCE
+ FILE/COMMENT
+ SOLUTION/STATISTICS
+ SOLUTION/NORMAL_EQUATION_VECTOR
+ SOLUTION/NORMAL_EQUATION_MATRIX U
+ SOLUTION/ESTIMATE
+ SOLUTION/APRIORI
% ENDSNX
```
4. Combination of the solutions

- Only one product for the user
- Reduced noise
4. Combination of the solutions

- Only one product for the user
- Reduced noise

Poster X3.35
Ulrich Meyer et al.:
EGSIEM: Combination of GRACE monthly gravity models on normal equation level

Poster X3.48
Yoomin Jean et al.:
Simulation study on combination of GRACE monthly gravity field solutions
4. Combination of the solutions

Poster X3.38
Martin Horwath et al.:
Evaluation of recent GRACE monthly solution series with an ice sheet perspective

Poster X3.43
Lea Poropat et al.:
Validation of EGSIEEM gravity field products with globally distributed in situ ocean bottom pressure observations

Tuesday Poster X2.309
Zhao Li et al.:
Validation of the EGSIEEM combined monthly GRACE gravity fields

- Reduced noise
EGSIEM Project

Scientific combination service

Near real-time/regional service

Hydrological service

Mayer-Gürr et al.: European Gravity Service for Improved Emergency Management - Status and project highlights

Slide 13
Daily updated gravity field solutions from GRACE

- Data distribution is a challenge
Daily updated gravity field solutions from GRACE

- Data distribution is a challenge

- Additional information is introduced in form of a **process model**
 - Prediction based on spatio-temporal correlations from geophysical models
 - Solution is weighted mean between GRACE observations and prediction

\[t - 2 \quad \Rightarrow \quad t - 1 \quad \Rightarrow \quad t \]

GRACE obs. \(l_{t-1} \)

GRACE obs. \(l_t \)

GRACE Kalman Filter (Kurtenbach et al. 2012)
Example: The Danube basin
Example: The Danube basin

River discharge at Bazias, 2006
Example: The Danube basin

River discharge at Bazias, 2006

Water storage: GRACE monthly solutions
Example: The Danube basin

Water storage: GRACE monthly solutions
Daily Kalman solutions

River discharge at Bazias, 2006

EWH [cm]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Q [m³/s]

CSR (350km Gaussian filter) ITSG-Grace2016
Example: The Danube basin

Water storage:
- GRACE monthly solutions
- Daily Kalman solutions

G3.2/CR2.4/HS11.7/OS4.9 Monday 14:30
Andreas Kvas et al.:
Near real-time GRACE gravity field solutions for hydrological monitoring applications

HS2.1.1 Monday Poster A.66
Ben Gouweleeuw et al.:
Evaluation of GRACE daily gravity solutions for hydrological extremes in selected river basins

River discharge at Bazias, 2006
Near real time (max. 5 days delay)

- Adapted daily gravity field processing scheme:
 - Rapid GNSS constellation and Earth orientation
 - forward only filtering → increased high frequency noise
Integration into automatic flood emergency management services

- Rapid mapping service request via end-users
- Satellite data ordering
- Flood peak
- 1st satellite acquisition
- 2nd satellite acquisition
- Satellite-based crisis response

Time [h]

-72 -48 -24 0 24 48 72
Integration into automatic flood emergency management services

- Satellite data ordering
- Satellite data acquisitions
- Rapid mapping service request via end-users
- Flood-alert via GRACE-based early warning indicators
- Flood peak
- Satellite-based monitoring of evolving flood situations and crisis response

Time [h]

-72 -48 -24 0 24 48 72
Summary (1/2)

Scientific combination service

Near real-time/regional service

Hydrological service
Summary (2/2)

- Much effort is going on
Much effort is going on

EGSIEM: Combination of GRACE monthly gravity models on normal equation level

Ulrich Meyer et al.

Simulation study on combination of GRACE monthly gravity field solutions

Yoomin Jean et al.

Validation of the EGSIEM combined monthly gravity fields

Lea Poropat et al.

SLR in the framework of the EGSIEM project

Andrea Maier et al.

Evaluation of recent GRACE monthly solution series with an ice sheet perspective

Martin Horwath et al.

Near real-time GRACE gravity field solutions for hydrological applications

Ben Gouweleeuw et al.

Validation of the EGSIEM combined monthly gravity fields

Martin Horwath et al.

Simulation study on combination of GRACE monthly gravity field solutions

Yoomin Jean et al.

Robust estimation of error covariance functions in GRACE gravity field determination

Saniya Behzadpour et al.

Gravity field models derived from Swarm data

João de Teixeira da Encarnação et al.

Saniya Behzadpour et al.

The new ITSG-Grace2016 release

Beate Klinger et al.

Evaluation of GRACE daily gravity solutions for hydrological extremes in selected river basins

Zhao Li et al.

Validation of the EGSIEM combined monthly gravity fields

Martin Horwath et al.

Evaluation of recent GRACE monthly solution series with an ice sheet perspective

Martin Horwath et al.
News and updates will be regularly published on various media, e.g., by the quarterly EGSIEM Newsletter.

www.egsiem.eu

EGSIEM is also present on social media:
https://twitter.com/EGSIEM
www.facebook.com/egsiem
https://egsiem.wordpress.com
This project is funded by the Horizon 2020 Framework Programme of the European Union under grant agreement No 637010.