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I. INTRODUCTION

An autonomous household robot passively observes the
environment while navigating, possibly while performing other
tasks, and has spare processing power to identify the different
objects it encounters. For example, while setting the table for
breakfast, the robot might spot a cup somewhere. Later, when
the robot is asked to fetch a cup, it does not need to actively
start searching for it, but instead retrieves the cup’s location
from memory.

We investigated such a passive world-state logging during
long-term operation in household environments in the context
of object classification [1], [2], [3]. However, manipulating
these objects also requires the estimation of object poses. In
recent work, we described a method to estimate an object’s
orientation using Bingham Mixture Models [5] based on stan-
dard local Fast Point Feature Histogram (FPFH) shape features
[6] which can deal with high uncertainties and ambiguities.

In this work, we focus on analysing which object views
and object parts are ambiguous, respective informative, with
respect to estimating the object’s orientation in the world.
Being able to tell which object views and, more specifically,
which object parts are informative is valuable information
for active perception (view planning especially in the face of
occlusions) as well as passive perception (saving computation
by purposively selecting the images to do computation on).
Encouraged by the performance improvement and simplicity
of the approach to feature selection for categorization by [7], a
similar approach, but targeting feature selection for orientation
estimation, will be presented and applied to orientation esti-
mation. In our previous work [5], an approach to orientation
estimation based on viewing direction classification was pre-
sented. This viewing direction classification is motivated by
the idea, that the classification allows an insight into which
viewing directions and also which object parts are significant
for the orientation estimation of the object. This work now
investigates this idea for the simulated datasets and shows
how a local model of informativeness is obtained using the
previously described classification framework.

II. RELATED WORK

In the work of [7], a system for category recognition of
objects is presented which improves over several other meth-
ods by incorporating a measure of feature informativeness.
Standard features (they also used FPFH) describing the local
geometry around a point are computed densely over training
views of several objects in different categories. The imple-
mented classification pipeline in this work is conceptually
similar, except that we train probabilistic logistic regression

(LR) classifiers and are interested in informative object parts
for orientation estimation rather than classification.

A different approach, specifically targeted towards feature
selection for pose estimation is presented in [8]. Their pose
estimation is an extension of [9]. This is a voting approach
based on a hash table which maps point pair features to object
poses. Despite the approaches for feature selection described
in [7] and [8], a probabilistic model of the feature distribution
over the object’s surface would also lend itself towards an
analysis of surface point informativeness. In [10], a dense
probabilistic model over 3d features is built by clustering the
feature descriptors into words and estimating a distribution
over feature orientation and position on the object for features
belonging to one word. Such a formulation was presented in
[5], and will be used in this work.

III. VIEW INFORMATIVENESS

As described in detail in [5], the classification pipeline
is trained to predict the training view direction a feature is
observed from. As the used LR classifier outputs a probability
over training view directions p(D = m|f) given a single
feature f , the classification pipeline implicitly encodes a model
of view-related surface ambiguity. The broader and more
uniform a feature’s view distribution is, the less it tells us
about how the object is oriented with respect to the camera.

We can exploit the classifier’s model of surface ambiguity
by evaluating which training view directions have features
which identify the view correctly. The training view which
results in the most unambiguous classification in this sense is
the most informative for estimating the object’s orientation.
For every training direction m′ separately, the training views
are analyzed by first extracting features with the same settings
as used by the online applied classifier. The features are ranked
according to the entropy of their classification distribution and
the top Nfeat features are selected to estimate the view’s infor-
mativeness. This basic feature ranking and selection procedure
is the same as performed before orientation estimation and
described in [5]. The selected feature’s view distributions are
summed and a measure of correctness is obtained by calculat-
ing the discrete Kullback-Leibler (KL) divergence between the
correct distribution p∗ and the extracted summed distribution
psum. The KL divergence measures the difference of the
extracted distribution from the theoretically correct distribution
and is defined as

dKL(p
∗||psum) =

∑
m

p∗(m) ln
p∗(m)

psum(m)
(1)

= ln
1.0

psum(m′)
(2)



where the correct distribution is defined as 1.0 for the training
view direction of concern m′ and 0.0 everywhere else. The
simplification in the second equality is thus possible due to the
form of p∗. We can see that the KL divergence is zero for a
perfect summed feature distribution with psum(m′) = 1.0 and
goes to positive infinity as psum(m′) approaches zero. For an
expected informativeness ranking of a viewing direction, the
KL divergences of all training point clouds for that direction
are averaged and ranked in ascending order. The resulting
ranking is illustrated in figure 1 using simulated data for the
cartoon and mug model. For interpretation purposes, some of
the viewing directions are illustrated by means of a rendering
of the object observed from that viewing direction.

For the mug model one can observe that the best viewing
directions lie on the plane defining the reflective symmetry of
the mug whereas the least informative views show large parts
of the body of the mug. This is intuitively correct as features on
the body of the mug can be observed from many directions.
Furthermore, as the features are rotational invariant and the
classification is based on individual features and therefore local
information, most views, even if they show the handle, are
ambiguous as the reflective symmetry cannot be resolved. The
most unambiguous views are therefore correctly identified as
the ones on the reflection plane which additionally show large
parts of the handle or the inside of the mug.

For the cartoon model there is no clear intuitive ranking of
views from a human perspective, but we will shed light on
which parts of an object are informative and thus the reason
for this ordering within the next section.

IV. MODEL SURFACE INFORMATIVENESS

The view ranking in the previous section was based on
accumulating information of several features of a view into
a summed distribution and assessing the correctness of this
distribution. This way we obtained information about the
informativeness of a viewing direction. In this section, we
accumulate information of features within a small neighbor-
hood of a point on the object’s surface and thus assess how
informative a surface point is.

For the method presented here, we assume the availability
of a set of points S = {s0, . . . , sN}, si ∈ R3 representing
the complete surface of the object. For the cartoon and mug
object in this evaluation, we have 3d models and thus the set
S was generated by sampling the surface of the 3d model
with uniform density using the stratified sampling approach
described in [11] and [12]. Our objective is now to score every
surface points si by means of how informative the point is or
more precisely, how informative features originating from that
point are. As a surface point may be visible from more than
one viewing direction, at first a scoring matrix K ∈ RN×M

is computed which ranks the N surface points separately with
respect to the M training view directions. For a given surface
point si and viewing direction m, the nearest neighbor points
NNm(si) within a radius of 0.5cm are obtained in the training
point clouds for that viewing direction. The corresponding
features NNFm(si) in the training point clouds are extracted
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Fig. 1: Training directions ranked by average view KL di-
vergence for mug and cartoon model. Below the bar charts,
selected views are illustrated by renderings of the object from
those views.

and the average KL divergence between the correct and the
predicted view distributions is calculated and stored

K[i,m] =
1

|NNFm(si)|
∑

f∈NNFm(si)

dKL(p
∗||p(D|f)) (3)

For further reference, the average KL divergence stored at
K[i,m] will be termed view-conditional score of surface point
i to viewing direction m. If a surface point is not observable
from a direction and hence no nearest neighbors could be
found, the score is set to -1 to indicate this. The scoring
matrix K thus encodes the visibility and view-conditional
informativeness of every surface point by assessing the average
prediction correctness of features computed at these locations.
A global, not view-conditional measure of a points informa-
tiveness is obtained by averaging the point’s scores for all
viewing directions it was observed from.

In figure 2 the view-conditional scores for a set of views
- the same views as in figure 1 - are illustrated through a
heatmap visualization. In other words, every pair of rendered



and heatmap images visualizes a specific column of the score
matrix K for that object. The colormap was chosen so that the
color white corresponds to a KL divergence of zero and black
corresponds to the median KL divergence of the complete
scoring matrix (ignoring the -1 for non-visibility). This way,
the same colormap is used for all shown views of an object
and the heatmaps can be compared to each other. White
color indicates, that features at this surface point are reliably
recognized as originating from the viewing perspective shown.
The views presented are ordered left to right by the overall
view ranking extracted in the previous section and thus we
clearly see which object parts make the most informative view
(most left) better than the least informative view (most right).
For the mug, our intuition that the handle is more informative
than the body is now quantitatively proved. For the cartoon
object, is seems that the concave regions within the character’s
hair as well as the rear part make the best view so informative.

Another interesting aspect is revealed when taking a closer
look at the two left-most views of the mug. The upper handle
part is colored white in both views which might seem contra-
dictory at first as this means that features originating from the
same physical region can be reliably classified to more than
one view. This behavior can be explained by remembering that
features are computed over geometry within a certain radius
(here 3cm) and thus encode the view-specific self-shadowing
of the object, which turns out to be very descriptive.

In figure 3, the global KL score is visualized by means
of averaging a surface point’s view-conditional score over
all viewing directions. The colormap is scaled on a per
object basis to show white for the lowest observed KL score
and black for the highest observed score (first column for
each object) or the median of the observed scores (second
column of each object). This measure and the illustration
show where distinctive features on the object’s surface can be
expected, independent of the viewing direction. For the mug
model, again, regions on and around the handle are generally
distinctive. For the cartoon model, a general observation is
the higher average classification correctness of features and
surface points. For the cartoon character the average KL
divergence over all model points is 1.69 versus 2.15 for the
mug model. Via the equation (2) this results in an average
probabilistic weight for the correct viewing direction of 18.4%
for the cartoon character versus 11.6% for the mug model.
Regions of high informativeness for the cartoon character
appear to be within the character’s hair, the hands and the
rear. Also, pointed surface regions like the feet and hair tips
show high ambiguity or wrong classification which is probably
due to unstable normal estimation in those areas.

V. EVALUATION OF INFORMATIVENESS VALUES

In order to show the practical value of the extracted model
surface informativeness, a proof-of-concept experiment using
the simulated mug model under varying degrees of occlusion
was conducted. The visible part of the mug was manually
chosen to consist of regions of high informativeness according
to the findings in the previous section and figure 3. 20
random view sequences with 20 views per sequence have been

Fig. 2: View-conditional KL scores for chosen example view-
ing directions. For comparability, the same viewing directions
as shown in figure 1 are shown. The view-conditional KL
scores are shown via a heatmap-visualization, with white
representing a KL value of zero (low classification ambiguity)
and black representing the median view-conditional KL value
of the score matrix K.

Fig. 3: Global KL score obtained by averaging view-
conditional scores over all viewing directions for every surface
point. For each object a view along x-axis, y-axis and z-axis
are given. Bright colors signal low values. Values greater than
the median are shown in black for clarity.

generated and the development of the maximum a posteriori
(MAP) rotational error after each view is analyzed.

To simulate the occlusion of parts of the mug which have
been found to be uninformative (mainly the body of the mug),
two points on the mug handle where selected manually, one
on the upper side of the handle and one on the lower side,
which together with a visibility radius rvis around those points
define the fixed observable region of the mug. The simulation
pipeline proceeds by first generating a complete point cloud
of the mug as seen from a given viewing direction and then
selecting the sub-cloud within the distance rvis around the two
selected points as final simulation output. Normal estimation
and feature computation is then done on the extracted sub-
cloud. The experiment was performed six times with visibility
radii in rvis ∈ [3cm, 4cm, 5cm, 6cm, 7cm, 8cm]. For radii of
6cm and larger, the visible part includes surface regions on the
rim and the inside of the mug, which allow a unique orientation
estimate in contrast to radii smaller than 6cm.

A summarizing comparison between all visibility radii is
given in figure 4 by displaying the median MAP error over all
20 sequences for the different visibility settings. As observable
in the median plots, the sequential estimation converges slower
as the visible surface region gets smaller. For visibility radii of
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Fig. 4: Median MAP error over all sequences for all visibility
settings. The visible surface area for all is 100% naturally, and
30.8%, 24.6%, 18.1%, 11.4%, 7.7%, 4.9%, respectively.

8cm, 7cm and 6cm the error after convergence is comparable
to the baseline experiment with no occlusion (visibility radius
’All’). Starting with a visibility radius of 5cm and smaller,
the error of convergence gets significantly larger. For the
5cm setting, this is largely due to an ambiguity between
the upright (mug opening in positive z-direction) and the
flipped orientation (opening in negative z-direction) which
arises because the handle is symmetric and the visible surface
area does not include the rim and inner surface of the mug.
Due the orientation representation as Bingham mixture model,
an interesting question here is whether the flip-ambiguity is
present in the orientation estimate as two separate mixture
components. An investigation for the 5cm case revealed, that
this is, however, not the case and random sequences either
converge to a unimodal distribution with the mode close to
the flipped or the non-flipped orientation.

Overall, the results presented show the robustness of the
orientation estimation to occlusions of up to 81.9% respec-
tive rvis ≥ 6cm. This is achieved due to the local and
correspondence-less nature of the viewing direction classifica-
tion. It also shows that model surface informativeness ranking
extracts surface areas relevant for orientation estimation as
the increase in orientation error when occluding presumably
uninformative parts is small. Therefore, it seems valuable
to actively plan views in such a way that regions of high
estimated informativeness are visible.

VI. CONCLUSIONS AND OUTLOOK

In summary, we presented an information-theoretic ap-
proach for estimating the informativeness of an object’s local
geometry with respect to orientation estimation. Identifying
the regions and viewing directions which show the most un-
ambiguous local features is of interest for long-term autonomy
as it enables to actively plan to observe these features as well
as to actively select image frames out of passively acquired
image streams. In both cases, we expect an overall increased
computational efficiency of the autonomous agent and we plan
to integrate these results into our next-best-view and scene
analysis system from [4].

A remaining challenge for long-term autonomy is the use
of incomplete models that are built online on a mobile robot.
A subject for further evaluation would therefore be using an
online-trainable classifier, e.g. a Mondrian Forest classifier
[13], as internal model of view-related ambiguity together with
online surface models obtained with our approach in [4].

Another avenue for further research is how such local
models of informativeness can be used to more efficiently
guide sampling based pose estimation algorithms (e.g. [6])
which would potentially improve algorithm runtime as well
as model storage requirements at the cost of a more expensive
offline training stage.
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