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Abstract

Intelligen Transportation Systems (ITS) are envisioned to improve road safety, traffic

efficiency, sustainable transport and information services, through multi-modal means

of transportation and its integration across an Information and Communications (ICT)

platform. In this sense, many location-based services demand the support of specific source

of georeferenced data and its modeling. Due to the nature of the spatial data, Geographic

Information Systems (GIS) and techniques are required for the analysis and manipulation

of geodata. Moreover, given the intrinsic relationship between ITS and the geo-sciences,

the terms GIS-T or Geo-ITS have been coined in the last years.

Major challenges regarding the transport networks generation include the heterogeneity of

the data and the diversity of the sources, as well as, different content and formats. In addition

to this, the geodata require accuracy and precision, particularly for simulation purposes and

real-world implementations. In this context, the spatial data are key components for the

simulation and the spatial processing engines in the ITS sphere. Nevertheless, one problem

is the few available geotools for management and visualization of the data, for one of the

most used simulation formats: the OpenDRIVE standard.

OpenDRIVE is considered the standard de-facto for the driving simulation community,

however, few management tools have been provided to facilitate the manipulation and

visualization of these data. For this reason, this master thesis focuses on the conceptualiza-

tion, modeling and implementation of the XODR-Driver ; a geo-processing toolbox for the

OpenDRIVE data format. The XODR-Driver provides the functionality to translate the

OpenDRIVE files to the standard GIS vectorial representation. XODR-Driver also enables

the general GIS framework and its inherit vectorial operations for the OpenDRIVE format.

The contribution of this work is the OpenDRIVE XODR-Driver, a functional software

module, with a modular architecture which implements the mathematical models for the

road layout descriptions of the reference line or track.
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Introduction

In a broad sense the Intelligent Transportation Systems (ITS) aim four major goals: safety,

efficient, comfortable and environmental friendly means of transport. These objectives can

be achieved through the integration and the interoperability of the transportation systems,

the infrastructure, the technological platforms and the information systems.

In this context, the management of the spatial information plays a relevant role for the

ITS applications. Due to the nature of the geographic data, an special treatment, muss be

given to the geo-information. In this sense, the geodata and the transportation systems

are intrinsically linked; therefore, rise the need of handling the spatial data to operate

over the datasets and to performs the inherited function of the Geographic Information

Systems (GIS) domain, such as data acquisition, modeling, integration to the visualization

and analysis.

On the field of Intelligent Transportation systems, the applications based on geo-

referenced data are exponentially growing [Miller and Shaw, 2001]: from the traffic man-

agement tools and control systems, traffic and driving simulator to the individual mobile

applications in our daily life and the future autonomous driving technologies.

The applications of the GIS on the transport field are innumerable, because the GIS not

only respond to the where question, but explain the phenomena related to specific locations.

In this scope, the world of GIS demands complex analysis operations and visualization

techniques over datasets. For many years the commercial and the open formats are part of

the vast number of digital data formats: typically raster or vector. In that order of ideas,

the OpenDRIVE standard provides the format data for road networks representation. As a

matter of fact, OpenDRIVE is consider as the de-facto standard for the driving simulation

industry.
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Furthermore, transportation systems like driving assisted systems, autonomous driving

depends on models and simulations of the vehicle dynamics, the traffic flow and the driving

behavior for testing and calibrating purposes. In this respect, these ITS systems demand

advanced techniques of mapping, merging, 3D visualization and images processing, in order

to offer a realistic simulation in urban scenarios.

In addition, OpenDRIVE offers a broad range of applications in the transportation

area: for city planners, for public transport authorities, for traffic and control engineers,

etc. OpenDRIVE provides the flexibility to manage and process geodata, in combination

with other sources and content. Some examples are the navigation and routing systems,

the optimization of the transport networks, planning activities, and so forth. Nevertheless,

one problem is advised with the OpenDRIVE format: the data representation of the road

networks are given by a non-standard format.

Thus, this master thesis addresses to model, design and implement the vectorial format

of OpenDRIVE; by means of a software converter or XODR-Driver for general use on

the ITS and GIS spheres. This work comprehends the mathematical conceptualization

of the reference lines of the roads and the elements along. Also, the software design and

characterization of the driver modules and the development and integration of the XODR-

Driver in the Geospatial Data Abstraction Library (GDAL). Therefore, three parts are

distinguished on this investigation: the analytical model, which refers to the mathematical

abstraction of the OpenDRIVE components, secondly the software design and development

of the XODR-Driver and lastly, the use cases proposed for the evaluation and application

of this work on the ITS context, particularly for Traffic Management and Control.



Chapter 1

Research Question and Gap

At the German Aerospace Center (DLR)-Institute of Transportation Systems, the geodata

are vital component to operate different driving simulators and test vehicles so as to

develop and evaluate driver assistant and automation systems. In this context the road

description format OpenDRIVE R© evolved as the de-facto standard for geometrical and

logical representation of complex road networks. The increasing demand for generating

OpenDRIVE from real-world scenarios requires an accurate and suitable integration of

OpenDRIVE in Geographic Information Systems (GIS) applications. As well as the

combination with traffic control elements on the sphere of Intelligent Transportation Systems

(ITS).

Seeing that OpenDRIVE is a potential source of geographical data for different purposes,

it was possible to oriented this work to some open issues on this topic. So a research problem

is presented as the start point of this thesis for the Master of Science in Transportation

Systems (Verkehrstechnik), of the Technische Universität München in collaboration with

the Deustches Zentrum für Luft- und Raumfahrt e.V (DLR). The reminder of this work is

organized as follows. Section 2 presents the State of Art. Section 3 introduces and describes

the modeling and software design of the OpenDRIVE GDAL-Driver. Section 4 describes

the results and discussion. Finally, Section 5 concludes this work.
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1.1 Problem

The few available OpenDRIVE tools and editors are mostly commercial and offer insufficient

support of common geodata or even none at all. In the GIS domain the modular open

source library Geospatial Data Abstraction Library (GDAL/OGR) serves as a standard

interface between heterogeneous raster and vector geo-formats. An extension of GDAL/OGR

to support OpenDRIVE networks natively will close the gap between both the driving

simulation and the GIS domain to offer completely new approaches of OpenDRIVE creation

and processing to the driving simulation community.

The OpenDRIVE format describes the track-based road networks and the features along

using an analytical formulation, this differs form the typical representation of geodata:

vector or raster formats. This mathematical representation from OpenDRIVE hinders the

manipulation, management and the storage of the road network data with conventional

GIS methods. Furthermore, the standard GIS operations and further analyses, such as

geostatistics, can not directly be performed on datasets or databases implementing this to

the format and data representation.

In order to overcome these issues and gaps, it has been proposed under the supervision

of the the DLR-Institute of Transpotation Systems the extension of the Geospatial

Data Abstraction Library (GDAL/OGR) for OpenDRIVE support in GIS Ap-

plications for Visualization and Data Accumulation for driving simulators.

1.2 Objectives

1.2.1 Main Objective

To extend the Geospatial Data Abstraction Library GDAL/OGR by a driver offering read-

support for OpenDRIVE files by converting its mathematical representation to Simple

Features (vectorial representation) as defined by the Open Geospatial Consortium (OGC).

1.2.2 Sub-Goals

This objective has been divided into the following sub-goals:

• To generate the OpenDRIVE schema version 1.4 as an object representation from the

mapped XML files.
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• To model the mathematical representation for each element of the OpenDRIVE format

as follows:

– Points, for objects related to OpenDRIVE roads and roadside facilities, e.g.

signals, controllers and traffic signs,

– Polygons, for OpenDRIVE lanes, ramps and intersections, and,

– LineStrings and MultiCurves, for the OpenDRIVE reference lines and lane

boundaries (tracks).

• To integrate the OpenDRIVE XODR-Driver as a GDAL/OGR driver (functional

prototype).

1.3 Research Question

As a result of the previews analysis, some key questions arise and its deep understanding

can be helpful through the research process. At first sight, it is important to remark the

expected outcomes for this master thesis: the mathematical model (geometries conversion),

the software architecture (software model) and the code implementation of the OpenDRIVE

driver and related geotools for complete data flow.

As a matter of fact, the mathematical model plays a fundamental role on the entire

data process, since it describes the road network and the elements along as geometrical

features on the vectorial plane. For instance, points, lines, polygons, multi-lines and so

forth; therefore, some key research questions arise at this point:

• Which functions can be used for the definition of each OpenDRIVE element as Simple

Feature on the vectorial plane?

• How the continuous function from OpenDRIVE can be discretized and moreover, how

to define an accurate sample rate for this discretization process?

• After the validation of the models, how can be the XODR-Driver integrated to GDAL?
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1.4 Methodology

The chosen methodology for conducting this investigation is based on Waterfall model

[Larman and Basili, 2003]: the incremental development and design process for extensive

projects. Following this approach, this investigation has being phased over three stages:

from the conception of the problem to the implementation of the solution. The Figure 1.1

summarizes the requirements for the application design.

Analysis

System Inputs

System Interactions

Modeling Implementation

Class Diagram and Software Architecture

Logic & Algorithms 

Math & Geometric 

Dataflow

Testing & Validation

Calibration

Figure 1.1: Phases of the research for this Master thesis.

i Analysis and Definition phase:

In this first phase, the system should be analyzed and understood, as well as the

components, the characteristics and its interactions. The inputs and the desired

outputs should be clearly characterized, moreover, the internal processes and states

of the system identified. The Black Box model [Ljung, 1998] can help to have an

overall idea of the data flow and the behavior of the logic system are at each state.

This is shown by the Figure 1.2, which depicts the system dynamics from a general

perspective.
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Inputs Data process

DB

Outputs

DB

Inputs: Raw data, sensors and satellital info,
           digital maps and geoinformation.

Outputs: Proccessed geodata for 
ITS and GIS applications.

Figure 1.2: Black Box view of the data workflow for ITS and GIS applications.

ii Modeling phase:

In the modeling phase, the main tasks are to conceptualize and design the system

on the basis of the previews stage. In this phase, the technical consideration are

to be taken in account and precise definitions of particular states of the system

are determined. The models are build following the specification, requirements and

characterization of the definition phase and other observations. The purpose of this

exhaustive technical analysis from the modeled system, is to prepare the components

and the logic, for its implementation on a functional prototype.

In this case, for the mathematical model, different component must be considered,

e.g. the set of variables, types of variables and functions, operations and so forth. On

the other hand, for the the software models technical requirements must be stated.

This can include: parameters, types and sources of data, decisions regarding the

programming environment such as the programing languages, libraries, application

programming interfaces, available source code for the development and so forth.

iii Implementation and Testing phase:

Finally, this last phase consists on the implementation and validation of the models

as an software prototype. That is, the software design and development of the

OpenDRIVE driver, from now called XODR-Driver . In addition, testing and

validation tasks are required in order to find possible error and to verify the outcomes

of the system. For this sake, use cases will be employed; specially, for the verification

of the functionality and performance of the XODR-Driver as part of GDAL and its

applicability on the ITS field.
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Chapter 2

State of the Art

This chapter introduces the conceptual framework of this investigation; from the basis of

OpenDRIVE format to advanced techniques for geographical data manipulation and geo-

informatics . The first section offers to the lector an overview of the terms and definitions

used on this work. The following section presents the Literature Review regarding the

OpenDRIVE standard and lastly, the Related Work is presented in order to contextualize

the lector with the latest development on this research field.

2.1 Definition of terms

This master thesis have been conducted considering topics on the areas of informatics,

software design, mathematics, geographical information systems (GIS) and naturally trans-

portation systems. Therefore, the need to establish a solid conceptual baseline is essential

regarding the terms and thematics part of this research. Since each of these areas of

knowledge is a science per se, this section focusses on the specific terminology used along

this document. Nevertheless, the lector is invited to deeply explore the stated topics through

the references.

• Accuracy : is one of the most important criteria of any GI system, which indicates the

degree of closeness of a measured quantity to its actual value. In other words, the

degree of veracity [Taylor and Cohen, 1998].

• Class diagram: in software, it is the representation of the dependencies and rela-

tionships of the elements in the Unified Modeling Language (UML) of a system.
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This structure contains classes, attributes of these classes and its operations namely

methods [Booch et al., 2008].

• Data binding : in software, it is the process of extracting the data from a direct

representation of file and presenting it as as hierarchy of objects or events that

correspond to a document vocabulary [CodeSynthesis, 2014].

• Data model : A data model is a set of constructs for describing and representing parts

of the real world in a digital computer system [Longley et al., 2001].

• Driver or GDAL-Driver : in software, particularly in geoinformatics, it represents

a translator for a specific format. In this context, the XODR-Driver enables the

support of the OpenDRIVE .xodr files into the vectorial standard representation

[Rouault, 2015].

• Feature: in the GIS context, a feature is a geograhic entity encoded using a given

data model e.g. vector model. Features encapsulate the information regarding its

characteristics −attributes− and behavior −functions/operations. [Longley et al.,

2001].

• GDAL/OGR: “GDAL stands for Geospatial Data Abstraction Library, is a translator

library for raster and vector geospatial data formats that is released under an X/MIT

style Open Source license by the Open Source Geospatial Foundation. As a library,

it presents a single raster abstract data model and vector abstract data model

to the calling application for all supported formats. Traditionally GDAL used to

design the raster part of the library, and OGR -OpenGIS Simple Features Reference

Implementation- the vector part for Simple Features” [Rouault, 2015].

• Geographic Coordinate System (GCS): a GCS uses a three-dimensional spherical

surface to define locations on the earth, typically with the geodetic coordinates:

latitude, longitude and elevation. One of the common uses of the geographical

coordinate systems is to geo-reference elements to locations (e.g. observed phenomena,

geographical features and so forth) as well as to overlay data from diverse sources

and perform GIS operations like fusion, matching among others. [Chang, 2006]

• Object-Oriented Programming (OOP): in informatics, it refers to the software design

and programming paradigm in which the data structure is based on the concept of

objects and the associations among them. The idea behind this view, is to conceive
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the data abstraction of the real world into a software data model and eventually into

code; with the attributes, behaviors (methods) and relationships that represents the

real system [Pierce, 2002].

• Precision: according to [Taylor and Cohen, 1998], precision is the degree to which

further measurements or calculations show the same or similar results. In other words,

repeatability or reproducibility of a measurement.

• Polar Coordinate System: A two-dimensional system where each point is represented

as a distance r from the original and an angle θ. In the coordinate (r, θ), r is the

radial coordinate and θ is the azimuth coordinate in radians. For more details, please

refer to [Adams, 1991].

• Rotation matrix : in linear algebra, a rotation matrix is used to perform a rotation

given an angle in the Euclidean space. During the rotation the original vector is

rotated at an angle ϕ or rotation angle.

• Translation: in linear algebra, a translation is a parallel shift of the original vector.

In the an Euclidean coordinate system, a translation is a function that moves the

elements of a given vector a constant distance in a specified direction [Zimmermann,

2012].

• Vector : denoted by −→v is a quantity of more than one dimensions, that has magnitude

and direction. The magnitude is the length and the direction is determined by the

angle it makes with a horizontal line [Zimmermann, 2012].

• Vector and iterator : in informatics, a vector is a container or a storage location which

represents arrays and can change the capacity dynamically (size). In contrast with

the arrays, which are static. To access vectors are often used iterators, which are

commonly pointers to the elements with properties and operators [Meyers, 2014].
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2.2 Literature Review

2.2.1 Background

The OpenDRIVE project started when VIRES began building databases for driving simula-

tors some years ago. These databases contained interfaces to the vehicle dynamics, to the

simulated traffic flow and to the visualization elements conforming the road network and the

system logic. In the year 2005, VIRES and Daimler worked together on the Daimler Driving

Simulator in Berlin and proposed the standardization of the logical road description.

In this context, the need of a solid format and an standardized data container for the

road elements for transport networks, led to the proposal of the OpenDRIVE standard

revision on April of 2007. This new format aimed to facilitate sharing data between sources

and types of simulator. After couple of years, other automobile manufacturers and research

institutes joined to the OpenDRIVE consortium, at the moment are part of project the

following members:

– BMW Forschung und Technik GmbH, Germany

– Daimler AG, Germany

– Deutsches Zentrum für Luft- und Raumfahrt e.V., Germany

– Krauss-Maffei Wegmann GmbH Co. KG, Germany

– Rheinmetall Defence Electronics GmbH, Germany

– TNO, Netherlands

– VIRES Simulationstechnologie GmbH, Germany

– VTI, Sweden

Nowadays, the project is well known in the simulation, driving assistant and automated-

driving community. Currently, it is considered a de-facto standard in the simulation industry.

The Table 2.1 presents some of the companies and research institute using OpenDRIVE for

commercial and scientific purposes.
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Table 2.1: Some users and contributors of the OpenDRIVE project. Source: [VIRES, 2015].
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2.2.2 OpenDRIVE: an overview of the Standard

OpenDRIVE R© is the leading open format and de-facto standard

for the description of the road networks

in driving simulation applications.

Vires GmbH

OpenDRIVE is based on the Extensible Markup Language XML data structure. It

defines the element and its hierarchy by means of tree-structured information. OpenDRIVE

provides the detailed information of the road networks, organizing the data in categories

such as roads, junctions, controllers and so forth. Then each element contains subcategories

and associations between the elements e.g. a road segment contains traffic signs, and a

traffic sign is managed by a controller. These data can be stored on databases and employed

for different purposes, as shown on the Figure 2.1 some of the applications supported

by OpenDRIVE are: online and offline traffic simulation, real-time evaluation of vehicle

dynamics, real-time sensor simulation and driving simulation, among others [VIRES, 2015].

The typical data representation of a road network is given in terms of the center lines

or reference lines , which are commonly described by vectors or any other mathematical

representation. In the case of OpenDRIVE, the roads and the elements among of them,
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Figure 2.1: OpenDRIVE functional architecture. Source: [VIRES, 2015]

are defined by the arithmetical representation of straight lines, arcs, spirals and polynomial

functions. The Figure 2.2 illustrates the disposal of the roads and the elements on the

OpenDRIVE standard. Moreover, it is central to associate the OpenDRIVE components

with the theory of Geographical Information Systems, which states that, geographic data

link place, time and attributes [Longley et al., 2001].

In the OpenDRIVE context, the roads are defined by a reference line which defines the

layout by means of the geometries and its geo-reference. The elements and properties along

the roads such as lanes, traffic signs and elevation profiles, etc., are linked to a segment of

the road as attributes or to the junctions i.e. intersections.

It is important to mention that, all the signalization elements along the road belong

to a determined point linked to the reference line by the geographical coordinates. As an

illustration the Figure 2.2 presents the diverse components of an OpenDRIVE road network,

as mentioned before, the reference line containing the geo-location on the cartesian plane;

the lanes and geometries that define the road layout and the elements along, which are

traffic signals, traffic controllers, bus stops and other user-defined elements.

In addition to the elements provided by the standard, OpenDRIVE allows the extension

of the the elements by the user-defined components. Because of the parametrization of the

standard it is possible to associate or added new elements. This characteristic provides a

level of extensibility to the standard to further applications and to the customization of the

current version to certain types of simulation, studies on even vendor requisites.
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® 

Date: February 16, 2015 Title: OpenDRIVE® Format Specification, Rev. 1.4 
Name: Marius Dupuis e.a. Document No.: Issue: Page: 

VIRES GmbH VI2014.107 E 19 of 102 

Refer to protection notice DIN/ISO 16016. Use of this data is subject to the OpenDRIVE public license policy 

3 Road Layout 

3.1 General 

The following figure depicts the principles of road layout covered by this specification: 

All roads consist of a reference line which defines the basic geometry (arcs, straight lines etc.). Along 
the reference line, various properties of the road can be defined. These are, e.g. elevation profile, 
lanes, traffic signs etc. Roads can be linked to each other either directly (when there is only one 
connection possible between two given roads) or via junctions (when more than one connection is 
possible from a given road to other roads). 

All properties may be parameterized according to the standards laid out in this specification and, 
optionally, by user-defined data. 

The convention applies that properties of the same type defined along a single reference line must be 
listed in ascending order. This means that the start co-ordinate (parameter s, see above) of a property 
must either be the same or greater than the start co-ordinate of the preceding property of same type 
on the same track. 

Figure 2.2: Components of the Road. Source: [VIRES, 2015].

2.2.3 OpenDRIVE for Traffic Management and Control

Considering the framework of this thesis, on the Intelligent Transportation Systems, new

features are included on the latest version of the OpenDRIVE Standard Revision 1.4. These

are especially useful for the definition of static and dynamic controllers, the signal programs,

variable messages signs, as well as, other control components for traffic management and

traffic simulation.

For this sake, according to OpenDRIVE Rev.1.4: “a controller provides the states for

a signal group. A set of signals within a junction or a set of dynamic speed restrictions on

a motorway. The control entry record provides information about a single signal controlled

by the corresponding controller. This record is a child record of the controller record.”

[Dupuis and et. al., 2015]. As an illustration of the disposal of these control elements, the

Figure 2.3b shows the controllers, traffic lights and signalization on a road intersection;

in the same way the Figure 2.3a presents the 3D view of a typical intersection on the

simulation models. In addition, the traffic signals may have Country Codes for the following

countries: Austria, Brazil, China, France, Germany, Italy, Switzerland and USA.
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(a) Signalization at a intersection (b) Railway Stations

Figure 2.3: Traffic Control components of the part of the OpenDRIVE Standard
Revision 1.4. Source: [VIRES, 2015].

For generic use, the code “opendrive” will be the default value. For individual signals,

the signal type indicates the corresponding operational mode. For complete definition of

the signal states provided by OpenDRIVE, please refer to the complete standard revision

[Dupuis and et. al., 2015].

The way to group a set of traffic light is by means of a junction. A junction group

record can be used to simulate a coordinated intersection (Figure 2.5a) and roundabouts

(Figure 2.5b). The extensibility of the OpenDRIVE format in the field of Traffic Management

and control is owned to the wide range of signalization and control elements available in

addition to the user-defined components. The elements regarding public transport networks

are also part of the OpenDRIVE standard such as train and bus stations, railways and

tunnels (Figure 2.4c). Furthermore, the visualization of the traffic signs are illustrated on

the Figure 2.4d within a 3D simulation scenario with OpenDRIVE.



16 2. State of the Art

(a) Signalization at a intersection (b) Juction Group for a roundabout

(c) Railway Stations (d) Simulation of traffic lights

Figure 2.4: Traffic control elements at OpenDRIVE. Source: [VIRES, 2015].

Considering the traffic control and management processes, the Figure 2.5 depicts the

mechanism of the traffic control on all the levels: regulation and control, recommendation

and guidance and information services. Linking the OpenDRIVE components with the

ITS for traffic control mechanisms, it can be denoted that, for urban traffic and motorways

section control, the standard provides the key elements for traffic control systems.
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OpenDRIVE
Header

GeoReference
versioning, dates

Controller
Control 

Signals
Signal 
Signal reference

JunctionGroup
Station
Road

Link 
Type
Planview  
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Figure 2.5: Comparison of OpenDRIVE components and the Traffic Control Sphere

2.2.4 Related Work

In the recent years the use of the OpenDRIVE standard have notably increased, in

consequence, the scientific research on this area follows the same tendency. In order to have

a close examination of the previous work, this section presents some related investigations

on the topics of modeling and visualizing the OpenDRIVE standard. This study will provide

the baseline, namely the State of the Art concerning the geotools to manage and handle

the OpenDRIVE data format.

Open-source road generation and editing software [Kurteanu and Kurteanu, 2010].

This work examines the domain of driving simulators and proposes an application,

which can be used to generate logical and geometrical road data from the OpenDRIVE

standard. The details of the standardized format used to store the logical road

representation is described, as well as, the process and the problems encountered

during the development of the application and its graphical user interface.

Automatic generation of OpenDRIVE roads from road measurements [Shi, 2011].

This project was part of the Swedish National Road and Transport Research Institute

(VTI) in the area of Human Behaviour Analysis for transport systems. The goal was

to integrate GPS data source and OpenStreetMaps [Haklay and Weber, 2008] with
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the OpenDRIVE format. The software traces the roads described by OpenStreetMaps

and converts the information to the OpenDRIVE data format. Citing the author:

“The result was reasonable and good enough so that VTI could use this way and

program to generate OpenDRIVE file that they want”.

HORN-Hank and OpenDRIVE Road Networks [Öberg, 2012]

This thesis describes the Road Network Editor program HORN (HANK and Open-

DRIVE Road Networks), developed for the HANKs scenarios (driving simulator of

the University of Linköping). HORN is a software which aims to implement scenarios

in a more efficient way, allowing to the user the ability to create larger scenarios.

Before HORN HANK the scenarios were mostly modeled by hand and HORN tried

to make the process more practical.

Design of a transport network for cognitive agents in virtual environments

Original title: “Konzeption einer Verkehrsnetzrepräsentation für kognitive Agenten in

virtuellen Umgebungen”[Haubrich, 2013].

This work was carried out under the Agent-Based Traffic Simulation (AVeSi) Project,

the traffic simulation for virtual environments. The target was to link the microscopic

and mesoscopic views of traffic within a simulation approach. The transition between

the two models required a transport (road) network which could be automatic

generated. For this sake, OpenDRIVE was use as the data network format.

The overall objective of AVeSi is the development and implementation of a realistic

traffic simulation for virtual environments through the use of psychological personality

profiles. So not only a functioning traffic simulation has to be created as a basis,

in which the participants adhere to the known traffic rules, but the behavior of the

agents should also be extended so that these rules as in reality in certain situations

and depending on the personality profile and the the driver’s mood also transgressed

[Seele et al., 2012].

OpenDRIVE Viewer The offered OpenDRIVE viewer is the official tool provided by

Vires to visualize the .xodr files. Currently, works under Linux and do not allow the

edition of the features of the road network. It is a simple tool to depict the XML

files with restricted functionality. It is available to download on the OpenDRIVE

download portal[VIRES, 2015].
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Different from the previews work, we propose the design and development of the

OpenDRIVE XODR-Driver providing a set of geotools for the data management and

edition. The implementation included the translation model from the arithmetical native

representation of the roads into the standard vectorial format of the GIS plane. As a result,

the OpenDRIVE Driver will translate the road networks to the conventional GIS data

container given by layers, datasets and the corresponding coordinate system. Thus, the

XODR-Driver will enable functions such as opening, handling, visualizing and managing the

files, on any GIS software platform like QGIS or ArcGIS. The contributions of this master

thesis closes the gap, concerning the few geotools available for OpenDRIVE manipulation.

Moreover, the integration of the XODR-Driver to the GDAL/OGR library extends the

functionalities and operations of the OpenDRIVE datasets.
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Chapter 3

Modeling and Implementation

The heart of any Geographical Information System is the data model,

which is a set of constructs for representing objects

and processes in the digital environment.

Paul Longley

This chapter presents the process of data modeling of the solution derived from this

investigation. According to the employed methodology, three phases are distinguished:

analysis, modeling and implementation, the Figure. 3.1 depicts the developing process

of this work in gradual phases. In this scope, the process starts at the standard-based

OpenDRIVE format and the understanding of the geographical and data model. The

second step, consists on the definition and conceptualization of the data model of the

OpenDRIVE road network and traffic control elements. The next stage comprises the

software development and implementation of the models: the mathematical and logical

abstraction of the geodata with an object-oriented design. The rest of this section will

introduce the technical aspects of the processing and handling of the OpenDRIVE data

for applications on the transportation sphere such as assisted driving, driving simulation,

geographic databases as well as GIS purposes.
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Figure 3.1: Phases of data modeling for the OpenDRIVE-Driver

3.1 Analysis: Data Model and Workflow

The process of data modeling specially on the area of geographical information systems

requires a deliberately identification of the components of the system: inputs, outputs,

processes and interactions. In view of the above, the physical model must be represent

the real-world phenomena the closer as possible to the reality. And moreover, this model

reproduce the phenomena in a logical and implementable system. For the context of GIS

and considering its role in the Intelligent Transportation Systems, the fundamental problems

with the spatial data are: what to represent the and how to characterize the geodata. In

this investigation, these and some other related problems were faced.

On the scope of driving simulation and assisted driving, and also other application such

as dynamic routing for individual of guided routing, traffic management and control, the

geodata play a fundamental role. As inputs for many real-time applications, the systems

demand accuracy, reliability and precision of the geographic information.

On the automotive field, OpenDRIVE is considered the standard de-facto for driving

simulation on the assisted driving testing; OpenDRIVE allows the data handling of transport

networks elements such as an inventory of the elements, its analysis, mapping and geo-

referencing. In this context, the source the spatial information are OpenDRIVE files, which

contain the road network information such as reference-roads lines, lanes, controllers and

so forth. The source data is represented as Extensible Markup Language (XML) and the

extension of the files are defined by Vires as .xodr .
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Figure 3.2: Data workflow for OpenDRIVE geodata

Hence, the standardization of this data format can lead to an effective and accurate

manipulation of the geodata, in addition, the aggregation with other sources of information

like cadastral data, Origen-Destination (OD) matrices, spatial distribution of particular

phenomena and so forth. So that, the aim of this work is to develop a driver or format

converser from OpenDRIVE to the standard GIS vectorial representation, namely XODR-

Driver. The data workflow of this investigation is depicted on Figure 3.2 and along this

chapter, where it will show how each phase and process were undertaken.

To start, an abstraction of the elements of OpenDRIVE is required, for this sake,

a suitable representation of the data on the vectorial domain should be modeled. In

other words, mapping from roads, tracks, lanes, control components, etc. to its vectorial

form recording the characteristics and its meaning. The coding of each road element

to points, polylines and polygons requires a detailed understanding and identification of

these components as features . All the roads are mathematically described by a reference

line, which is defined by a geometry representation as a continuous function. A long this

reference, all the elements are disposed: elevation profiles, lanes, junction areas, traffic

signs, control components and so forth.

Answering to the question of how to represent each road element in the standard GIS

data structure, the components were identified, from the OpenDRIVE schema with its

attributes. The Table 3.1 shows the variables used by OpendDRIVE and the corresponding

unit from the International System (SI) considered on this work. For the sake of this

investigation, only the elements regarding the track of the road and the controllers will be

considered. The OpenDRIVE format offers the description for the fields and elements that

are characterized the road and its elements.
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Table 3.1: Naming Convention and Units of the OpenDRIVE Standard

Category Description Unit

Distance
Meter m

Kilometer km

Speed
Meter per second m/s

Kilometer per hour km/h

Acceleration Meter per second squared m/s2

Angle Radians rad

Geo-Referencing Projection in Well-Known Text format WGS84

3.2 Data Structure and Logical Representation

The mapping from the pure XML data format to the GIS standard representation, implies

the modeling of the element of the OpenDRIVE domain. For this purpose, a parsing process

of the original XML schema to an object-oriented approach was performed. This process is

called data binding [Mutschler III and Stefaniak, 1999]. It consists on the generation of

a class diagram and instances of these classes as objects. This data structure represents the

vocabulary contained on the XML files, in this case, for the C++ programming language.

Figure 3.3: Data Binding Process

The advantages of creating an in-memory allocation data structure, with the hierarchy

of objects instead of reading theXML files for each software routine are: in first place, the

generation of the class diagram, with the relationships between classes and object. Secondly,

the disposal of the related relational model for databases e.g. PostGIS [Obe and Hsu, 2011].
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Moreover, the data are allocated in-memory, providing access during the runtime. The

data binding provides high performance, modularity, and scalability to the XODR-driver.

In terms of the data handling, it is fundamental to ensure the the integrity of the data, for

this sake the object-oriented data structure provides the capabilities for maintaining the

data tree-structure of OpenDRIVE.

For this master thesis and the development of the XODR-driver, two open source

libraries have been used for the data binding process: CodeSynthesis and Xerces.

CodeSynthesis [CodeSynthesis, 2014]

“It is an open-source, cross-platform XML schema to C++ data binding

compiler. Provided with an XML instance specification, it generates C++

classes that represent the given vocabulary as well as XML parsing and

serialization code.”

Xerces [Xerces, 2015]

Xerces-C++ is a validating XML parser written in a portable subset of C++

by the Apache Software Fundation. This library provides the ability to read

and write XML data. Moreover, this robust shared library provides C++

and Java methods for parsing, generating, manipulating, and validating

XML documents.

As a result of the data binding process of the OpenDRIVE schema, the comprehensive

class diagram was generated (See Section 3.4). With the classes and data structure, the

capability of read the information from the “.xodr” files is enable. Subsecuently, the

next step is to model the geodata on the geometrical plane, in other words, to build the

mathematical abstraction of the geo-referenced phenomena i.e. road elements, contained

on the OpenDRIVE standard.
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3.3 Modeling OpenDRIVE: An analytical approach

This section focuses on the mathematical model of the OpenDRIVE reference lines. First, the

classification of spatial phenomena i.e. roads and the elements along into their mathematical

representation. Second, the discretization and sampling to the vectorial plane and finally,

the construction of the GIS model from OpenDRIVE.

From the theory of GIS, is known that there are four types of model for representing

objects on the geometrical plane: vector, raster, graph and hybrid models. The election of

the type of model depends on several criteria, e.g. the properties of the set of data, the

functionalities, the structure of the geodata and its applications. Following this selection

method, the election of a particular style of the data model i.e. vector model, relays mostly

on the use and applicability of OpenDRIVE. In this case, the simulation purposes for

driving and traffic models, assisted driving and data fusion and data completion point to

the vectorial representation of the OpenDRIVE standard.

3.3.1 The Geometry of OpenDRIVE

As it was mentioned before, OpenDRIVE describes the geometry and disposition of the roads

and the elements that are part of it. For this aim, the essential component of OpenDRIVE

is the Reference Line (Track). The track provides the analytical formulation of the

geometry of roads as well as features along the roads (e.g. lanes, signs, signals).

On a global scope, the reference line can provide all the information to create the road

network, including the geographical coordinates and the location of the elements in the

track. The Figure 3.4 is a satellite image of a roundabout, it depicts an sketch of the

reference lines as an illustration of the track configuration. It is possible to observe the

geometry and the geometrical structure of the track: straight lines, curves, circles and

arcs (semicircles) provides the mathematical formulation of the reference line. Another

observation from this areal photo, shows that a set of functions (geometrical figures) shape

the roads, lanes, intersection and so forth.

In the case of OpenDRIVE, the geometries are given by continuos functions that define

the layout go the reference line in the x/y-Plane or Plan view. Consequently, four

geometric elements record the position arrangement of the track: straight lines, arcs, spirals,

and cubic polynomials.
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Figure 3.4: Foto Satellital

• Straight lines : this element is given by the start position for the dimension x and y

and the length.

• Arcs : a constant curvature [1/m] describes a semicircle of a given length. The arcs

circumscribes the curves on a road segment. When the curvature is positive, then it

forms a left turn; for the case of a negative curvature, a right turn is described.

• Spirals : the parameters used to compute the clothoids are the initial curvature and

end curvature for the Euler Spiral [Adams, 1991] or other if specified. Spirals in

OpenDRIVE are used as transition curves on the road.
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• Cubic polynomials : The polynomial is calculated in the local coordinate system given

by the Equation 3.1, where a, b, c, and d are coefficients.

vlocal(du) = a+ b ∗ du+ c ∗ du2 + d ∗ du3 (3.1)

Figure 3.5 depicts the geometric elements to describe the reference line of the roads on

the OpenDRIVE domain. It can be observed that the reference line is shaped by a sort of

geometries of different kind. The roads are identified with the reference line segment, which

provides the geographical coordinates by continuos functions. The concept of curvature

provides the direction of the turning points (curves), it will be deeply explained further on

in this document.

                    ® 
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3.2 Reference Line (Track) 

The geometry of the reference line is described as a sequence of primitives of various types. The 
available primitives are: 

 straight line (constant zero curvature) 

 spiral (linear change of curvature) 

 curve (constant non-zero curvature along run-length) 

 cubic polynom 

 parametric cubic curves 
 
The following figure illustrates the composition of a reference line from some of the above mentioned 
elements. 
 

 
  

Figure 3.5: Geometry of the OpenDRIVE reference line.

The following subsection explains the discretization and sampling processes and methods,

employed for the conversation of these continuos functions to the R2 vectorial plane.

3.3.2 OpenDRIVE on the Vectorial Plane

The geographic representation of data enables tasks like mapping, visualization, querying

databases, spatial pattern identification and performing analysis over the datasets. So that,

the geodata models must provide the suitable types of data and object representation to

undertake this functions and applications. In this context, OpenDRIVE provide a set of

discrete objects such as roads, signs, signals, etc; therefore the more suitable alternative
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to represent OpenDRIVE road networks is the discrete conceptual perspective i.e. Vector

Model.

The road layout from OpenDRIVE, as previously discussed, comprised by the set of

geometries of the reference line and provides an analytical formulation on the mathematical

continuous domain. So discretization of the geometries through sampling processes

are required. In addition, due to the nature of OpenDRIVE the geo-referencing of the

data must be conducted on the Two-dimensional plane (Coordinates x, y) namely R2 Plane.

For this thesis, we have modeled the mathematical and geometrical baseline for the

discretization of straight lines and arcs from the reference lines, this was conducted as

follows:

Lines to vector

For the straight road segments, two points are required: the start and the end

point. The start point is given on the geometry description as (xi, yi). On the other

hand, the end point (xe, ye) is calculated from the given polar coordinates with the

value of the heading (hdg) in radians and the length according to the Equation 3.2:

Coordinates(xe, ye) =

xi + cos(hdg)× length

yi + sin(hdg)× length

 (3.2)

Given the starting and the ending coordinates of the straight line, a linear interpolation

between these points defines the points in between.

Arcs to vector

The arcs are semi-circles that circumscribes the turns of the road with a given

constant curvature C. The start point (xi, yi) and heading (hdg) in radians are

also known values of the geometry. In order to sample this segment of circle, three

main points are to be calculated: the initial point (xi, yi), middle point (xm, ym) and

end point (xe, ye). The discretization algorithm will select the points along the arc

according with a given sample rate . The OpenDRIVE standard provides the initial

coordinates on the X-Y plane and the heading as polar coordinates with center of

circle (x0, y0). Thus, some Euclidean geometry concepts and linear algebraic operation

over the vectors are required so as to find the middle and the end point. The arc
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(a) Arc Geometry (b) Road geometries

Figure 3.6: Geometrical representation of OpenDRIVE

belongs to the circle with radius r and circumference given by the Equation 3.3

and depicted on the Figure 3.6.

Circumference = 2 ∗ π ∗ r (3.3)

The radius r can be derived from the curvature C from the Equation 3.4:

|C| = 1

Radius
(3.4)

The angle θ of the arc is calculated with the segment length L and the radius r as

follows in the Equation 3.5:

θ =
Length

Radius
(3.5)

Based on these equations and considering the value of the curvature (positive or

negative), the coordinates for the start, middle point and end points are calculated

within the Polar Coordinate System by the following equations:
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For positive curvature (C > 0):

Start Point (xi, yi) =

 r × sin θ

−r × cos θ

 , with θ = 0 (3.6)

Middle Point (xm, ym) =


r × sin

θ

2

−r × cos
θ

2

 , with θ =
L

R
(3.7)

End Point (xe, ye) =

 r × sin θ

−r × cos θ

 , with θ =
L

R
(3.8)

Owing to the design of the the turns of OpenDRIVE, the sign of the curvature

indicates where to start the drawing of the chord: if positive, from −π/2 and for

negative from π/2. The equations for negative C (C < 0) are given as follows:

Start Point (xi, yi) =

r × sin θ

r × cos θ

 , with θ = 0 (3.9)

Middle Point (xm, ym) =


r × sin

θ

2

r × cos
θ

2

 , with θ =
L

R
(3.10)

End Point (xe, ye) =

r × sin θ

r × cos θ

 , with θ =
L

R
(3.11)
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It is important to remember that, at this point the vectors belong to the polar

coordinate plane and three operation must be performed in order to obtain the

coordinates on the Cartesian Coordinate System . The operations are part of

the vectorial geometry and are explained as part of the OpenDRIVE discretization

process: translation, rotation and translation in the vectorial plane to the OpenDRIVE

domain.

In the first place, the Translation vector ~T operates the Start Point, Middle Point

and End Point. These vector points will be notated from now on as ~P (from Points),

as a result the Translated Vector ~P T is obtained by the Equation 3.12:

PT = T + P (3.12)

with T =

[
0

r

]
for C > 0 and with T =

[
0

−r

]
for C < 0.

Secondly, we need to rotate the vectors ~P in function of the orientation ϕ, in this

case given by the heading in radians. For the two dimensional plane, the Rotated

Vector ~PR is given by the product (matrix multiplication) of the the Rotation vector

~R and the Translated vector ~P T by the Equation 3.13:

PR = R ·PT, with R =

[
cosϕ − sinϕ

sinϕ cosϕ

]
(3.13)

Finally, one last translation operation is required. The translation from Polar Coor-

dinates with center on the origen ~OC (0, 0) to the OpenDRIVE coordinate system,

namely Cartesian Points vectors ~P TT . The Translation Vector ~T is given by the

Equation 3.12 and the points for the arc on the cartesian coordinates are given by

the following Equation 3.14:

PTT = PT + T (3.14)

As mentioned, the mathematical and geometrical models of the OpenDRIVE layout lead

to have a set of scattered points (geographical coordinates) which portraits the elements of

a road network. Nevertheless, we do not have any object presentation from the geodata so

far. Seeing that, the next phase consists on the creation of ‘content-meaningful’ objects

better known as features in the field of Geographic Information Systems.
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3.3.3 OpenDRIVE to Simple Features

This section explains the construction of the digital model for the OpenDRIVE standard,

in order to code the geographic information - vectors or coordinates (x, y) - into features .

The term features is linked to discrete objects namely entities, with characteristics or

attributes on the conceptual vector model. From this perspective, we can coin the concept

of feature to the object of this study: the roads belonging to OpenDRIVE; thus, in this

context, a road will be connoted as a feature.

The datasets encoded under the vector approach are classified in: points (a pair of X

and Y coordinates). When these points are connected by straight lines, comprise polylines,

which can describe curves. And polygons, for the representation of areas. So, the features

are vector objects which can be represented by these types of geometries namely Simple

Features . In consequence, this representation method is considered an efficient technique

to capture and portray an accurate abstraction of the real world. The XODR-Driver

employs the geometry classes and the architecture provided by the Open Geospatial

Consortium (OGC) to represent the OpenDRIVE components. It is depicted on the

Figure 3.7.
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representation, and open version of the same classes may be used in other circumstances, such as topological 
representations.  

Geometry

+ dimension() : Integer
+ coordinateDimension() : Integer
+ spatialDimension() : Integer
+ geometry Ty pe() : String
+ SRID() : Integer
+ env elope() : Geometry
+ asText() : String
+ asBinary () : Binary
+ isEmpty () : Boolean
+ isSimple() : Boolean
+ is3D() : Boolean
+ isMeasured()() : Boolean
+ boundary () : Geometry
query
+ equals(another :Geometry ) : Boolean
+ disjoint(another :Geometry ) : Boolean
+ intersects(another :Geometry ) : Boolean
+ touches(another :Geometry ) : Boolean
+ crosses(another :Geometry ) : Boolean
+ within(another :Geometry ) : Boolean
+ contains(another :Geometry ) : Boolean
+ ov erlaps(another :Geometry ) : Boolean
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+ locateAlong(mValue :Double) : Geometry
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+ distance(another :Geometry ) : Distance
+ buf f er(distance :Distance) : Geometry
+ conv exHull() : Geometry
+ intersection(another :Geometry ) : Geometry
+ union(another :Geometry ) : Geometry
+ dif f erence(another :Geometry ) : Geometry
+ sy mDif f erence(another :Geometry ) : Geometry
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ReferenceSystems::ReferenceSystem
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+ axisName() : String[]

+mesureRS
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«realize»

«realize»
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1

 
Figure 2: Geometry class operations 

6.1.2.2 Basic methods on geometric objects 

⎯ Dimension ( ): Integer — The inherent dimension of this geometric object, which must be less than or equal 
to the coordinate dimension. In non-homogeneous collections, this will return the largest topological 
dimension of the contained objects.  

⎯ GeometryType ( ): String — Returns the name of the instantiable subtype of Geometry of which this 
geometric object is an instantiable member. The name of the subtype of Geometry is returned as a string. 

⎯ SRID ( ): Integer — Returns the Spatial Reference System ID for this geometric object. This will normally be a 
foreign key to an index of reference systems stored in either the same or some other datastore. 

Figure 3.7: Geometry class description. Source: Open Geospatial Consortium
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As discussed on the previews sections, the reference line can be distinguished by the

geometrical shapes given as straight lines, curves and transition curves. At this points, we

count with a set of points recording the geographical location under a certain Geographical

Coordinate System. The current phase consists to create Simple Features instances from

each discretized road given its spatial coordinates (xk, yk). The process of discretization

and sampling of the road sections according to their geometry types is described by the

Algorithm 1. The procedure starts with the reading of the .xord files and the data binding

of the road networks as in-memory objects (See Section 3.1).

Algorithm 1 Creation of Simple Features from OpenDRIVE

procedure Load: OpenDRIVE Road Network
for each Roadk do

Look for the Collection of Geometries
for each Geometryn do

Look for the Class and cast
if Geometryn equals Line then

Create OGRLineString with:
StartPoint and EndPoint [(xi, yi),(xe, ye)]

end if
if Geometryn equals Arc then

Create OGRLineString with:
StartPoint, MiddlePoint, EndPoint [(xi, yi), (xm, ym), (xe, ye)]
SampleRate (in grads), Type of discretization.
with the function: OGRGeometryFactory::curveToLineString(args[ ])

end if
Store: OpenDRIVE Geometryn → OGRLineString

end for
Store: OpenDRIVE Roadk → std::vector<OGRMultiLineString>

end for
end procedure

Due to the sampling process, the reduction of the data volume is prominent in comparison

to the raster model. Moreover, the optimization of the in-memory access lead to faster

computational time despite the data volume and complexity. Afterwards, with the C + +

data structure and data loaded, it is possible to iterate a collection of Roads, this task

is performed using a powerful programing tool called vector<iterator>. For each Roadk

element, a cast method is performed. In oder words, to identify and convert to the original

class type based on the corresponding geometry type.
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Figure 3.8: Intersection of the City of Braunschweig represented as Simple Features.

After the verification of the type of geometry for this section of road, the parameters

of the reference lines are retrieved from the memory with a pointer from the address

in-memory of the system. With the parameters and the type of geometry, the points are

calculated defining the geometry for each segment of the track. To end up, with a collection

of OGRLineString contained on a OGRMultiLineString.

The application of the described optimization techniques contribute to the performance

of the XODR-Driver. Particularly, in terms of the computing time and the memory

allocation required for the data storage. These are critical requirements for an effective

system operation, taking in mind, that in general, geodata consist in a remarkable amount

of information. As an illustration of the capabilities of the developed XODR-Driver, the

Figure 3.8 shows an intersection of the City of Braunschweig represented as Simple Features

employing the logic of the Algorithm 1 (the original .xodr file was provided by the German

Aerospace Center).

3.4 Software Development of the OpenDRIVE Driver

After the modeling of the geometrical representation of the roads as Simple Features, it is now

convenient to integrate the logical functionality into the Geospatial Data Abstraction
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Library (GDAL). So, providing advanced techniques for the spatial analysis and GIS

data management. This section undertakes the technical approach concerning the software

development and implementation of the proposed theoretical model for the data workflow,

called the XODR-Driver (See Figure 3.2).
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Figure 3.9: UML Class Diagram for OpenDRIVE

The software architecture of the XODR-Driver is based on the Class Diagram, in

which is possible to observe from an object-oriented perspective, the logical structure of

OpenDRIVE. This includes the whole set of road elements, and what it is more important,
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the relationships and behavior that shapes the OpenDRIVE context. The Class Diagram

is presented as part of the of software design phase and due to its complexity, only the

relevant elements for this thesis are shown on the Figure 3.9.

These objects and its attributes and functionalities i.e. methods, provide the facilities to

access, compute and modify the values of the GIS entities such as the road parameters and

the controllers information. The objective is to extended the GDAL-OGR library (which

can read-write many of the standard and well-known raster and vector formats of geodata)

by means of the software implementation of a new module, namely driver, which adds the

XODR format to the OpenGIS Simple Features Reference Implementation GDAL/OGR

library as part of the core source code.

Geometry
ReferenceSystems::

SpatialReferenceSystem

Point Curve Surface GeometryCollection

MultiSurface MultiCurve MultiPoint

MultiPolygon MultiLineString

LineString

Line LinearRing

Polygon PolyhedralSurface

ReferenceSystems::
MeasureReferenceSystem

TINTriangle

+spatialRS

1
+mesureRS

0..1

+element0..*

+element

0..*

+v ertex
2..*

+ring
1..*

+patch1..*

+patch 1..*

 

Figure 1: Geometry class hierarchy 
Figure 1 is based on an extended Geometry model with specialized 0-, 1- and 2-dimensional collection classes 
named MultiPoint, MultiLineString and MultiPolygon for modeling geometries corresponding to collections of 
Points, LineStrings and Polygons, respectively. MultiCurve and MultiSurface are introduced as superclasses that 
generalize the collection interfaces to handle Curves and Surfaces. Figure 1 shows aggregation lines between the 
leaf-collection classes and their element classes; the aggregation lines for non-leaf-collection classes are 
described in the text. Non-homogeneous collections are instances of GeometryCollection.   
The attributes, methods and assertions for each Geometry class are described below. In describing methods, this 
is used to refer to the receiver of the method (the object being messaged). 

6.1.2 Geometry 

6.1.2.1 Description 

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class. 

The instantiable subclasses of Geometry defined in this Standard are restricted to 0, 1 and  
2-dimensional geometric objects that exist in 2, 3 or 4-dimensional coordinate space (ℜ2, ℜ3 or ℜ4). Geometry 
values in R2

 have points with coordinate values for x and y. Geometry values in R3
 have points with coordinate 

values for x, y and z or for x, y and m. Geometry values in R4
 have points with coordinate values for x, y, z and m. 

The interpretation of the coordinates is subject to the coordinate reference systems associated to the point. All 
coordinates within a geometry object should be in the same coordinate reference systems. Each coordinate shall 
be unambiguously associated to a coordinate reference system either directly or through its containing geometry.  

The z coordinate of a point is typically, but not necessarily, represents altitude or elevation. The m coordinate 
represents a measurement.  

All Geometry classes described in this standard are defined so that instances of Geometry are topologically 
closed, i.e. all represented geometries include their boundary as point sets. This does not affect their 
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Figure 3.10: Simple Features class hierarchy Source: Open Geospatial Consortium

To start with the election of the programming languages. Given that GDAL/OGR

is written in C++, it was adopted as the programming language for the source code of

the OpenDRIVE XODR-Driver. Following this decision, the election of the programming

framework was also decided based of the applications of the OpenDRIVE driver. In this

case, the command-line tools and the vectorial operations on a Windows environment for

further uses led to select Visual Studio C++ as the programming framework. Nevertheless,

it is fundamental to mention, that since we developed the source code of the XODR-Driver,
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the compilation setup and the program configuration, it is totally platform independent,

giving portability and robustness of the XODR source code. In short, the XODR-Driver

can be compiled, linked and build under any platform or operating system.

The system architecture of the XODR-Driver is shown on the Figure 3.11, where the

the level of integration of XODR to GDAL/OGR can be observed. The developed XODR

modules were coupled to the core of GDAL, allowing the access to all native functionalities

of the geospatial library, which includes the processing engine and the techniques for data

analysis and handling methods.

      Users of GIS

GDAL/OGR

Raster
Drivers  GDAL Core

Vector
Driversxodr XODR DRIVER

Paquete

Driver Architecture

DataSource::Dataset

        XODRLayer

     Geodata  
   Processing 
      Engine

  The new XODR 
     vector format!

         QGIS/ArcGIS

         Geotools          Databases 

         GIS Applications

     The Simple Features factory 
      for OpenDRIVE xodr. files.

Figure 3.11: OpenDRIVE XODR-Driver Architecture

The following chapter presents the the results of this work from an implementation-

oriented perspective: on the areas of ITS and Traffic Management and Control.



Chapter 4

Results and Discussion

In the previews chapters we identified, represented, and distinguished some of the Open-

DRIVE elements as Simple Features on the vectorial GIS standard format with its corre-

sponding georeference system; up to this point, following a theoretical and scientific method.

Now in this chapter, we test and conduct experimental applications using our developed

XODR-Driver on the Intelligent Transportation Systems field from a practical approach.

For this sake, the Use Cases methodology was employed. Two cases are presented: in first

place, the conversion of OpenDRIVE to ESRI Shapefiles or other formats; and secondly, the

matching of traffic data with OpenDRIVE for Traffic Control and Management purposes.

Finally, the project Virtual World (Virtuelle Welt) of the DLR is presented.

4.1 Use Case: From OpenDRIVE to Shapefile

Starting with conversion of an OpenDRIVE (.xodr) file to ESRI Shapefile file format .shp,

this can be obtained from the GDAL OGR2OGR application within the command line

with the following instruction:

# ogr2ogr -f ’’ESRI Shapefile’’ output filename.shp input file.xodr

In this case, we will translate the OpenDRIVE files to Shapefiles, this is a well known

vector format in the GIS community. And the ogr2ogr − f command translate from any

data vector format to another one: the reason, working with different data containers and

vendors can be problematic. Therefore, using the standard vector representation provides

interoperability.
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For example, when the spatial analysis employs different sources of data such as

OpenDRIVE and other geodata such as cadastral information, public transport networks

and origin-destination (OD) matrices. The input to this system is an OpenDRIVE file,

the Figure 4.1 depicts the an example of an file with the extension .xodr corresponding to

“data FoKr.xodr” -Forschung Kreuzung in Braunschweig.

Figure 4.1: View of an OpenDRIVE file .xodr in the original XML format.
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The information regarding the XODR-Driver on the GDAL library is available once

it has been compiled and configured as a driver part of the GDAL core. This type of

integration allows the use of the native methods of GDAL/OGR for the OpenDRIVE files.

As an illustration of the functionality of XODR in the GDAL domain the information

of the driver is displayed as shown on the Figure 4.2 given the following command line

instruction bellow. The detailed data obtained, summarizes the information with respect

to the XODR-Driver as part of GDAL.

# ogrinfo --format xodr

Figure 4.2: XODR in GDAL: General information of the driver.

Moreover, the properties of the OpenDRIVE files can be displayed by means of the

XODR-Driver using the GDAL/OGR ogrinfo application. With the command lines given

bellow, GDAL use the XODR-Driver to provide all the information regarding the dataset

with read-only (ro) permission, including the standard version of the OpenDRIVE file.

# ogrinfo -ro data FoKr.xodr

Figure 4.3: XODR in GDAL: specific information when opening OpenDRIVE files.

Another interesting option is opening the file and show all (-al) the elements contained,

in terms of Simple Features. The information is read from the given input and with

the ogrinfo, which enumerates the type of elements after the discretization and sampling

processes. Figure 4.4 illustrates the results of performing the following command line

instructions:

# ogrinfo -ro -al data FoKr.xodr



42 4. Results and Discussion

Figure 4.4: XODR in GDAL: “all features” command (-al).

In addition, an script has been developed for visualizing the road network and its

geometries, called TestLineString. This command-line program support an important

tasks: exporting the .xodr files as Well Known Text (WKT). This capability provide

the validation and testing tools of the formerly described algorithms and models. Figure 4.5

presents the results of executing the the TestLineString.

To sum up, one of the objectives of this Master thesis was to convert the original

OpenDRIVE files given as XML text, into their accurate geometrical representation as

Simple Feature. This was achieved through the implementation of an OpenDRIVE XODR-

Driver in the GDAL/OGR domain.

Along this Use Case, it was observed the diverse potentialities to handle the OpenDRIVE

geodata, now that it can configured as part of the GDAL core. Probably, one of the most

relevant capabilities, is the flexibility to adopt other vector formats, such a container with

different layout and file extension, while mantaining the precise values and attributes of the

features.

A range of capabilities were enabled for the OpenDRIVE domain through the conversa-

tion of geometries to the vectorial plane by means of the XODR-Driver. Thus, this new

functionalities allows the extension of the functions and spatial analysis over OpenDRIVE

datasets such as:

– Data collection

– Data storage (geo-databases)

– Dara management

– Data querying

– Data analysis

– Data presentation

– Dara visualization
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Subsequently, given these functions, the native GIS engines provide the following

vectorial operations:

– Aggregation

– Merge

– Simplification

– Collapses

– Amalgamation

– Refinement

– Enhancement

– Smoothing

– Exageration

– Displacement

==================================================
TestLineString.exe

--------------------------------------------------
Usage: test_lineString.exe OpenDRIVE_datei.xodr

Author: Ana Maria Orozco
Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR
==================================================
GDAL Version: 2010000
 
Road id: 2

s:  0.000000 
  
Road id: 3

s:  0.000000 
  
Road id: 4

s:  0.000000 
 s:  1.777695 
 s:  2.812178 
 s:  15.443623 
 s:  16.478106 

              ... 
Road id: 17

s:  0.000000 
 s:  1.777695 
 s:  2.812178 
 s:  15.443623 
 s:  16.478106 
 
 Line       (Vector size):  24 
 Spiral     (Vector size):  16 
 Arc        (Vector size):  8 
 Poly3      (Vector size):  0 
 ParamPoly3 (Vector size):  0 
 
 Total Roads: 16 
 Total geometry elements:  48  
 OGR Geometry Collection Size :  32 
==================================================

Figure 4.5: TestLineString for validation, testing and exporting OpenDRIVE
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The GIS domain offers an extensive set of geoprocessing tools, one of them is the

QGIS software, a cross-platform and open-source desktop geographic information software.

Moreover, there are others similar tools in the market, for example ArcGIS from ESRI and

many others. With this in mind, the users of the OpenDRIVE standard will be benefit from

the developed XODR-Driver : bringing all the range of geotools and operations of the

GIS sphere to the OpenDRIVE domain. The Figure 4.6 presents the visualization of the

example data from the Forschung Kreuzung intersection in the City of Braunschweig, on

the QGIS Environment. The typical view of geodata employs: spatial data layers layers and

features, with the corresponding attributes and operations; so, OpenDRIVE data inherit

these characteristics as a result of the usage of the XODR-Driver.

Figure 4.6: Visualization of an XODR file (Forschung Kreuzung Intersection) in QGIS
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4.2 Use Case: XODR for Transportation and Traffic

Engineering

As a second use case, it has been proposed the direct applicability of the OpenDRIVE

standard and XODR-Driver to the area of Traffic Management and Control. This use

case is focused on the usability of the spatial information for traffic engineering, transport

planning and traffic control. In this context, the aimed users are transportation engineers

which use traffic data as critical source of information. Particularly, in combination with

other existing sources, such as public transport networks, cycling routes, pedestrians

behavior, governmental data and so forth. The use of these spatial information in regards

the mobility information, provides the context and framework for the study scenarios e.g.

traffic jams, travel demand behavior, peak-hours, among others. Then, the geodata provide

the accurate information and the tools to combine, merge and analyze the thematic layers

to understand the diverse phenomena on the transportation field.

transport authorities plan routes and schedules. dynamic to meet specified objectives.

monitoring transit vehicles planning

The idea behind this use case is to show the extensibility of OpenDRIVE format and

the benefits of use the geodata as spatial layers by means of the XODR-Driver. Transport

authorities can make use of OpenDRIVE for simulation purposes, which serves as a baseline

for decision-making for planners, transit authorities, traffic and transportation engineers.

So, the goal of this use case is to show the data matching with other sources regarding

traffic control; in other words, it presents the process of merging and accumulating geodata

regarding the urban traffic signalization and control.

As a start point, it is necessary to contextualize the situation regarding the use case

and its application to the traffic engineering area. The data correspond to the City of

Braunschweig owing to the fact that the Institute of Transportation of the German

Aerospace Center is located in Niedersachsen, northwest of Germany, where this Master

Thesis was conducted. So, the first map is given by Figure 4.7 and shows a general view

of the central zone of Braunschweig and its road network. The area is around 192 km2

with a population of 250.556 according to the City Statistics Office [Niedersachsen, 2015].

Furthermore, concerning the road network is important to mention that the main motorways

are: the A2 (Berlin - Hanover - Dortmund) and the A39 (Salzgitter - Wolfsburg). As part

of the study, we will focus on the intersection of two rings the Rebering and Hagenring

given their importance and impact on the traffic situation.
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Figure 4.7: Map of the central area of Braunschweig. Source: OpenLayers and Apple Maps

Figure 4.8: Map of the study area. Source: OpenLayers and OpenStreetMaps
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(a) Pure OpenDRIVE data (b) OpenDRIVE with some OSM Polylines

Figure 4.9: Road network of one intersection in Braunschweig. Source: DLR/XODR

The first step of the process of data fusion was to convert the original OpenDRIVE file

to a vectorial format. The ESRI Shapefile (.shp) [ESRI, 1998] was employed and by using

QGIS or ArcGIS, it is possible to visualize and interact with each feature that forms this

part of the network. In this case, the XODR-Driver plays the role as geometry or Simple

Feature factory. As it was mentioned before, the advantage of the vector representation

goes beyond from the visualization, but also allows the users to handle the data as single

objects with their respective properties. In this scope, a table of attributes contains all

the information of each road, with: geolocation, name, identification number or ID (for

database purposes), junction and length. Moreover, for each road a set of objects and

geometries describes its layout and configuration in the network. Figure 4.8 visualize the

intersections and roads in the study area, using the zoom and pam functions.
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Figure 4.10: Study area with the road network from XODR and Public Transport from
OpenLayers - OCM Public Transport

The fundamental role of the public transport networks in the decision-making regarding

the planning, operations, logistics and implementation of the transportation sector, de-

mands accurate data, mobility information and georeferenced statistics, among others. For

transport professionals, the handling and operation of the diverse sources of information

must be done under reliable techniques. Thus, data integrity, precision and accuracy,

are requirements that any GIS software must fulfill. In this context, the XODR-Driver

provides the precise information from the original sources and reliable GIS operations over

OpenDRIVE data. In the Figure 4.10 is possible to observed that the road network (green

colored lines) matches perfectly with the public transport network (red colored lines) ,

which denotes the precision and accuracy of the XODR-generated maps.
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Figure 4.11: Error on the geo-referencing of the data

At this points a critical question rises, which are the consequences of data error or

modeling error? To illustrate this point, the Figure 4.11 shows three overlaid maps with a

significant error on the coordinate system. At any point during the setup of the geographical

coordinates, there was a displacement of the actual geolocation information. Without the

comparison with other sources of data, this error can pass unadvertised, and what is more

problematic is that, any geographic error propagates to other thematics layers. After

debuging the XODR-source code, the error was found and corrected. The problem was the

different coordinate systems given by the version draft 1.4E and the actual released standard

1.4 of OpenDRIVE. While the the latest version use the proj4 projection definition the

previews versions use the WGS 84 reference system. Therefore, to overcome this problem,

a validation was implemented for the support all the versions of the OpenDRIVE standard.

However, not always the errors are visually perceptive, for example the numerical

representation error. In these cases, it is necessary to run a set of software quality tests

before releasing a functional module. When there are problems of any type, it is possible

to have mismatching data on the datasets, occasioning misleadings results.
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Following the same scenario and applying matching techniques for data fusion, we

(a) LSA - Traffic Lights added (b) StVO - Road Signs added (c) Signalization added

Figure 4.12: Road network of one intersection in Braunschweig. Source: DLR/XODR

will added traffic information to the XODR road network. The process consists on taking

the layer of the OpenDRIVE file, and throughout queries on the datasets of the City of

Braunschweig, provided by the DLR, it was possible to distinguish and differentiate on

independent layers the information of our interest. In this case, geodata regarding traffic

light (LSA), road signs (StVO) and signalization points (poles). As shown on the

Figure 4.12, each of the mentioned categories is represented by a layer, and each feature is

given by its geographical coordinates. The effective use of the properties and operation on

the geodata permit to accumulate, complete and extend the data and its meaning. These

other uses enriched the studied phenomena, since the users are able to link informations

to their own geodata, not only from different sources but from other thematics models.

A common example is the field of public transport, which take in count demographical

and cartographical studies for the transport demand management. On these series of

images, the sources are provided in different data formats and vendors. In Braunschweig,

Bellis [BELLIS, 2015] manages the data of LSA, StvO and poles. According to [BELLIS,

2015]: “BELLIS operates traffic lights, and is responsible for parking management, traffic

management, road signs and markings. BELLIS plans and organises traffic control measures,

as well as traffic backups at construction projects and events”.
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Figure 4.13: Data merging of Road Networks and Traffic Signalization

As depicted on Figure 4.15, the merging techniques of geodata in combination with

other capabilities like re-mapping , layers overlaying , data measuring , changing

the scale: zoom and pan , among others, are the fundamental geodata operations.

The XODR-Driver enables a geotoolbox for the user of OpenDRIVE to enhance, analyze

and management the data; this allows to handle , create , share , map, update and

maintain spatial and geographical-based models from the OpenDRIVE standard.
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4.3 OpenDRIVE in Driving Simulation

Figure 4.14: 3D City Model (Braunschweig) generated from diverse spatial data source,
including the OpenDRIVE standard. Source: DLR

“The interdisciplinary project SimWorldURBAN - initiated by the German Aerospace

Center (DLR) - aims to improve and to facilitate the generation of virtual landscapes for

driving simulators. It integrates the expertise of different research institutes working in

the field of car simulation and remote sensing technology. SimWorld will provide detailed
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virtual copies of the real world derived from air- and satellite-borne remote sensing data,

using automated geo-scientific analysis techniques for more efficiency and greater realism

for landscape models. The implementation of geo-databases and GIS technology within

the simulator will allow for further simulation and testing of new technologies like e.g.

radar-sensors, night vision systems as well as positioning systems such as GPS and Galileo.”

[Sparwasser et al., 2010].

In the context of the Car-to-X (C2C and C2I) communication and driver assistance

systems the simulation plays an important role. The use of realistic urban scenarios are

essential on the design, model and implementation of these systems. The project Virtual

World of the DLR, creates a digital atlas, for the representation of multi-modal metropolitan

regions considering the transport infrastructure (roads, railways, buildings, environment,

and so forth) [Richter and Friedl, 2015]. In this case, the OpenDRIVE standard provide

the road network description for driving simulation. In the Virtual World project the the

logical street descriptions generation is automated and the data completion is conducted

with the available spatial data (cadastre data, OpenStreetMaps, Navteq) [Scholz, 2014].

Figure 4.15: Driving Simulators and Virtual Reality-Lab at DLR. Source: DLR
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Chapter 5

Conclusions and Outlook

In this work, it has been proposed the conceptualization and software development of the

OpenDRIVE XODR-Driver : from the analytical representation of the roads geometries

to the definition of features on the Simple Feature model. Moreover, a new driver format has

been developed and integrated with the geospatial library GDAL. As a result, it extended

the operability of the OpenDRIVE datasets with other formats as well.

This master thesis combines the fundamental concepts of Informatics, Transportation

Systems and Geographic Information systems to model, develop and implement the Open-

DRIVE XODR-Driver. During the construction of the mathematical representation and its

subsequently code implementation novel design challenges were stated. A solid baseline on

linear algebra, euclidean geometry and vectorial mathematics were pre-requisites to model

the roads as vector. As well as the deep understanding of the C++ programming language

and the object-oriented paradigm played a key role.

The robustness and flexibility of the software architecture of OpenDRIVE XODR-Driver

lead to present as the result of this master thesis, the first functional prototype of the

XODR-Driver. In addition, efficient and elegant programming techniques were used to build

a high performance software solution. The use of the driver is extensible to other areas: like

transport planning and traffic control, realistic traffic and driving simulation, navigation

and assisted driving application, and other further application on the geoinformatics and

ITS scopes.

In the transportation field, the applicability of certain spatial information requires the

the geoprocessing tools for the accurate management of the geodata. Nowadays a broad

range of application employed geo-referenced data as an illustration, some geolocated-

service to mention are: route guidance (GPS), optimization of road networks whether
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for private or public transport, the simulation of adaptive control measure and its fur-

ther implementation, and many others. This thesis had provided a software solution

based on a discrete mathematical model, which is capable to generate a road network lay-

out and the components along, in the standard vectorial plane from the OpenDRIVE format.

Future Work

For the future work, the remaining set of elements (e.g. stations, user-defined objects)

and geometry components (i.e. spiral and polynoms) of the roads are to be completed. For

the case of spiral the euclidian form is an optimal way to describe the continuous function

and subsequently for the discretization to the vectorial domain. The spirals and polynoms

will provide the transition curves between arcs and straight sectors of the road. This, in

order to smooth the curvature.

Another interesting open issue is, the representation of dynamic traffic control elements.

At this point, the question would be how to include the user-defined tags and objects on the

files. Or even more interesting, how could OpenDRIVE be linked with other traffic control

simulators e.g. Sitraffic (Siemens), PTV Vissim, etc. This feature can provide more realism

at intersections and junctions on the driving simulator, even, the possibility of detection

mechanisms e.g. inductive loops on the road. Also, the real waiting times for pedestrians,

circle times, green and red time and the interaction with the coordination (green waves)

and signal plans could be included. By now, the Simulation of Urban MObility (SUMO)

[Behrisch et al., 2011] supports the OpenDRIVE standard.

On the other hand, regarding the software component, it has been observed during this

investigation that the integration to GDAL, is actually complicated to carry on. Because of

that, it has been proposed as future work, a simpler way to integrated XODR-Driver to

GDAL/OGR. The Plug-and-Play philosophy has been proposed as an alternative method

to make use the XODR-Driver, hence the continuity of this project is going towards the

development of an external Plugin. This solution does not require the compilation of the

core code neither the additional configuration in GDAL. This aims is to contribute to the

simulation community and bring the developed XODR-Driver as a ready-to-use software

module and its eventual release in the open source community.
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