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Abstract

To serve the security of the maritime domain, ship self-reporting systems provide
information on the cooperative vessels. However, non-reporting ships should be also
monitored. Satellite images can be used to detect and classify non-reporting ships.
Synthetic Aperture Radar (SAR) offers monitoring capabilities regardless of clouds or
daylight, and hence it is used for satellite global monitoring. Different satellite SAR
systems are deployed, from European ones such as Sentinel-1, to national ones such
as TerraSAR-X, presenting very diverse characteristics from their coverage to their
image resolution. In this paper, two ship classification methods are presented, a
method developed for use on high (20 m) resolution SAR images (Sentinel-1 dataset),
and a method developed for use on very high (3 m) resolution ones (TerraSAR-X
dataset). In a cross-application experiment, both methods are evaluated on both
datasets. The exercise quantifies the methods’ performance across resolutions,
highlighting their pros and cons in this challenging application.
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1 INTRODUCTION

To ensure adequate security of the maritime domain, including the maritime borders, it
is necessary to be aware of the shipping activities in the relevant areas of sea. Some
areas are covered by shore-based monitoring and observation systems, but for those
that are not, satellite-based systems are an efficient alternative. The two main tools for
satellite-based maritime surveillance are (a) automatic ship reporting systems and (b)
imaging systems. Automatic ship reporting systems such as AIS (Automatic
Identification System), LRIT (Long Range Identification and Tracking) or VMS (Vessel
Monitoring System) let ships report their identity and position on a regular basis, and
are mandated for certain classes of ships by specific (national or international)
regulations [e.g., 1]. LRIT and VMS are restricted to government use, while satellite
AIS is more widely available on a commercial basis. Data from these systems, and in
particular from AIS that covers most ships in the world of 300 gross tonnes and up,
enable the tracking of most of the medium and large ships globally. However, not all
the AlS-carrying ships are successfully seen by satellite due to noise and interference
problems, and ships engaged in irregular activities might turn off their AIS to avoid
attention. Moreover, most of the smaller ships do not use automatic ship reporting
systems.

In order to also find non-reporting ships out of coastal sensor range, satellite imaging is
used, in optical or radar frequencies. The first step in analysing such images for
maritime surveillance is ship detection (finding the ships), the second step is ship
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classification (establishing the type of ship). Although optical images are more readily
interpreted for classification, they are hampered by clouds and are not available at
night. Radar performs regardless of clouds or daylight and is therefore often preferred
for maritime surveillance. Synthetic Aperture Radar (SAR) is the type of radar used
from satellite, synthesising the radar image during the few seconds that the satellite
illuminates the target.

The signature of a ship in a SAR image is, however, not easily interpreted, making
classification difficult. It depends on the detailed shape of the metal structures on the
ship, appearing differently depending on viewing geometry. The ship’s signature can
merge with radar backscatter from the ship’s immediate surroundings, and its motions
on the waves during the radar illumination time can introduce a blurring. Therefore,
classification based on the ship’s signature in SAR images is a challenge.

Satellite SAR systems can provide images with a range of spatial resolutions, from
over 100 meter to below 1 meter. While the high resolutions are obviously preferred for
their better classification power, the image sizes are inversely proportional to
resolutions, low resolution images covering up to 450 km as opposed to only 5 km at
the very high resolution end. Wide-area maritime surveillance can therefore not be
done at very high resolution.

Europe has several satellite SAR systems in operation. Among those, the European
Union’s Copernicus program offers the Sentinel-1 SAR [2], which provides daily routine
coverage of many maritime areas including the European seas. The most frequently
produced image type, suitable for maritime surveillance, is the Interferometric Wide
(IW) mode Ground Range Detected High resolution (GRDH) product that has 250 km
swath width at 20 m resolution.

Among the national systems, the German TerraSAR-X [3] can produce images on
demand with swaths between 270 km and 5 km and resolutions, respectively, between
40 m and 0.25 m. A good compromise between coverage and resolution is achieved by
the Stripmap imaging mode with a 30 km swath and 3 m resolution (Multi-look Ground
range Detected, MGD, product).

This paper discusses approaches to classify ship signatures in images from these two
SARs. Although the minimum detectable ship size is an ill defined concept because it
depends very strongly on ship type, radar parameters, viewing geometry and ambient
conditions, as a rough indicator half of the resolution can be taken. In relation to the
use of AIS, the 300 tonnes limit very roughly corresponds to 45 m ship length. For
Sentinel-1 (IW-GRDH product), the size ranges of relevance are therefore (a) 10 m to
45 m, for the smaller ships that are still detectable but do mostly not report on AIS; and
(b) 45-400 m, for the medium and large ships that are subject to the use of AIS. At 20
m resolution, however, even the large ships do not show much detail. It is therefore too
much asked to do a classification into all relevant ship types, which would include
passenger ship, tanker, container, bulk carrier, fishing ship, patrol ship, tug, etc.
Instead, the ambition to perform classification into any possible ship type is reduced to
a classification problem into a restricted set of classes. In many maritime areas of
interest, the most frequently occurring types are tanker and cargo. It is still useful to be
able to distinguish between those two. The ship reporting data contains the ship type
(cargo or tanker), so a disambiguation between those two types in the SAR targets
allows deciding on a probable association between a known reporting ship and a target
found in the SAR image. Therefore, the classification problem for the Sentinel-1 images
is here reduced to a disambiguation between two ship types, cargo and tanker.

For TerraSAR-X, having more resolving power, the classification problem is
generalised to maritime object classification adding three further classes of maritime
targets: offshore platform, offshore wind turbine and harbour structure.
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Having available the two classification schemes, the 2-class disambiguation developed
for the lower resolution Sentinel-1 images and the 5-class classification developed for
the higher resolution TerraSAR-X images, it is also attempted to do a cross-application.
The paper will present results of applying each of the two algorithms to each of the two
data sets.

2 DATA

2.1 Sentinel-1 and related reference data

Four Sentinel-1 IW-GRDH images over the Western Indian Ocean were obtained
during a period where also AIS data from up to 17 satellites operated by four providers
were collected. The providers were exactEarth, SpaceQuest, ORBCOMM/LuxSpace
and the Norwegian Coastal Administration. The SAR images were subjected to ship
detection with JRC’s SUMO detector, which uses a Constant False Alarm Rate (CFAR)
algorithm, resulting in a total of 146 targets. Only co-pol (HH and VV) channels were
used, without making a distinction between the two. After visual verification of the
targets, correlation with AIS ship positions, and selecting only those AIS ships that
were unambiguously tankers and cargo ships, a total of 100 targets were retained, 71
cargo ships and 29 tankers. Image chips of 140x140 pixels were extracted around the
targets for the classification, and spatially upsampled by a factor of two, to 5 m pixel
spacing.

-~

Cargo Tanker

Figure 1. Examples of cargo and tanker classes from the Sentinel-1 dataset.

2.2 TerraSAR-X and related reference data

A total of 75 TerraSAR-X Stripmap MGD images, mostly over the North and Baltic
Seas, were acquired in areas that were covered by terrestrial AIS and where known
clusters of platforms and wind parks exist. As for the Sentinel-1 data, only co-pol
channels were used without distinction. While the full range of incidence angles
accessible to the TerraSAR-X Stripmap mode is 20° to 45°, a single such image covers
a much smaller range of incidence angles that a single Sentinel-1 IW image. The
relatively high number of acquisitions was necessary to capture the variations over
incidence angle and marine conditions. The ship detector used for the SAR image
dataset was DLR’s SAINT detector, also of the CFAR type. The detected targets are
automatically collocated with AIS and platform / wind park position databases. If no
match has been found, the SAR detected target is discarded from the classification
dataset. At the end of this process a total of 683 targets were extracted, representing
the 5 classes of interest, see Fig. 2 [4].

Ship Windpark Oil platform Harbor

Figure 2. Examples of target classes form the very high resolution TerraSAR-X data set.
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Additionally, a subset containing 185 cargo and tanker ship type (distribution 135 cargo
and 50 tankers) was extracted to pursue the disambiguation problem. Image chips of
128 x 128 pixels were extracted around the targets and resampled to a common 2.5 m
pixel spacing.

3 CLASSIFICATION METHOD

Two different methods for classification were applied to the data; one that was
designed for the lower resolution Sentinel-1 data, and one that was designed for the
very high resolution TerraSAR-X data.

3.1 Classification method designed for Sentinel-1 images

The image chips around the SAR signatures are first subjected to pre-processing to
separate the (brighter) ship signature from the surrounding (darker) background. This
consists of edge detection and morphological operations to delineate a contiguous
signature outline while discarding isolated bright pixels. The image chip is then rotated
so that the signature outline long axis points horizontally, and all pixels outside the
smallest rectangular box that contains the signature outline are removed. The result is
a reduced, rectangular, horizontal image chip that just fits the ship signature. The
reduced chip is split lengthwise into three parts that represent bow, middle and stern.

Two texture measures are computed, Local Binary Patterns (LBP) and Histogram of
Gradients (HOG). LBP analyses the immediate neighbours of each pixel, considering
local spatial patterns and grey scale contrast [5, 6]. LBP is computed for the entire
reduced chip and also for the bow, middle and stern parts separately. HOG calculates
the distribution of intensity gradients or edge directions [7]. HOG is computed only for
the entire reduced chip.

The classification has two phases, training and testing. In the training phase, a training
dataset is analysed to build up a dictionary composed of a representative set of feature
samples from each of the two vessel classes, tanker and cargo ship, based on Bag of
Visual Words [8]. In the testing phase, the extracted features for each sample are
compared with the built-in dictionary to determine the vessel class by finding the
nearest neighbour. The general structure of the system is based on the work presented
in [9,10]. For each of the two ship types, 15 samples were used for the training. All 100
samples were used for testing.

Each of the classifiers (LBP overall, LBP bow, LBP middle, LBP stern, HOG overall)
gives a certain percentage result for correct disambiguation between the two classes
cargo ship and tanker. The disambiguation result can be further improved by combining
several classifiers. Several combinations using major voting as fusion method were
tried out to find the best combination.

3.2 Classification method designed for TerraSAR-X images

Also here, the image chips extracted from the satellite images are first subjected to
some pre-processing steps. The details can be found in [4] and consist in radiometric
calibration, removing the ocean clutter signature, isolating the target of interest in the
chip and normalising the intensity of the target's signal response. The classification
dataset is artificially enlarged performing a set of label-preserving transformations. The
resulting augmented dataset is composed of 500 samples per class providing a more
balanced classification dataset. For the training step 90% of the data are used and the
remaining 10% are used for testing.

The classification model proposed here is based on Deep Neural Network (DNN). In [4]
different DNN architectures have been analysed and the initial results encourages the
use of Convolutional Neural Network (CNN) for the maritime object classification
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problem. The initial results obtained using high resolution TerraSAR-X images show
that with an ensemble of CNN models an average f1-score of 93% for the considered 5
classes of maritime objects is achieved [4]. The advantage of DNN classifiers is the
possibility to learn complex non-linear problems without the need of extracting
handcrafted class features. However, the training process might be computationally
expensive and an optimal network setting needs to be found. Here we briefly introduce
to the final model architecture and topology developed in [4].

Fig. 3 shows the graph representation of the CNN model used. The input fed to the
network is the SAR image chip obtained after pre-processing. The connections
between neurons inside the network are achieved by a convolution operator and
optimised to work with images. The proposed CNN topology is composed of two
convolutional layers, alternated by pooling layers in order to reduce the dimensionality,
and a fully connected dense (D) layer followed by a softmax (S) layer with dimensions
provided in Fig. 3.
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Figure 3. CNN architecture. The input is the chip obtained after pre-processing. The output is
the class labels.

4 RESULTS

The classification performances are reported in terms of precision, recall and f1-score.

4.1 Classification results for the Sentinel-1 method

4.1.1 Sentinel-1 method on Sentinel-1 data

A pool of features was proposed to perform ship classification (disambiguation) for
Sentinel-1 data in Section 3.1. Averaged over the testing dataset, the five individual
classifiers (LBP overall, bow, middle, and stern, and HOG overall) scored 83 % in
precision, 69 % in recall and 75 % in f1 for cargo, while for tanker the classifiers
decreased their performance achieving 51 % in precision, 70 % in recall and 59 % in
f1. The outperforming features were LBP bow, BP stern and HOG. When evaluated
separately for cargo ships and for tankers, the scores differ by between 1 to 11
percentage points.

Table 1 summarises the results for combined classifiers. Three combinations are used,
being equally-weighted linear combinations of: (1) General LBP, LBP Bow, LBP Middle
and LBP Stern; (2) General LBP and HOG; and (3) LBP Bow, LBP Middle, LBP Stern
and HOG. As shown in the table, the results obtained by the combined classifiers
clearly exceed the individual classifiers, maximising the individual classifiers’
complementary information. The results show that Combination 3 gives the best results
achieving a 79.0 % in precision, a 77.9 % in recall and a 78.4 % in f1.

4.1.2 Sentinel-1 method on TerraSAR-X data

The same methodology presented in Section 3.1 is applied to TerraSAR-dataset. The
underlying idea is to study the performance of the Sentinel-1 method on a more
detailed dataset. The method, built for the analysis of low-resolution images, exploits
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mainly the texture characteristics of the targets since such features tend to be present
in low resolution images. However, it neglects local features or key points detectors
since such characteristics are not likely to be present in low resolution images.

Table 1. Sentinel-1 method on Sentinel-1 data.

Combination 1 % Combination 2 % Combination 3 %

Precision = Recall fi Precision = Recall fi Precision = Recall fi
Cargo 85.0 76.1 80.3 80.9 82.1 815 85.5 88.1 86.8
Tanker 579 71.0 63.8 60.0 58.1 59.0 72.4 67.7 70.0
Avg/Total 715 73.5 72.0 70.4 70.1 703 79.0 77.9 78.4

Averaged over the testing dataset, the five individual classifiers scored 76 % in
precision, 73 % in recall and 77 % in f1 for cargo, while for tanker the classifiers
decreased their performance achieving 35 % in precision, 39 % in recall and 36 % in
f1. Amongst all individual classifiers, the feature that outperforms the others is HOG
achieving 74 % and 43 % in f1 for cargo and tanker respectively. Comparing HOG
performance in Sentinel-1 and TerraSAR-X datasets, its performance clearly improves
for TerraSAR-X dataset, obtaining the highest tanker representativity.

Table 2 summarises the results for the Sentinel-1 method on the TerraSAR-X dataset.
As in the results obtained in Section 4.1.1, Combination 3 presents a good
performance when compared with the individual classifiers. However, for TerraSAR-X
data, Combination 1 and 2 outperform Combination 3.

Table 2. Sentinel-1 method on TerraSAR-X data.

Combination 1 % Combination 2 % Combination 3 %

Precision = Recall fi Precision  Recall f1 Precision = Recall
Cargo 79.2 84.4 81.7 78.1 92.6 84.8 75.8 90.4 82.4
Tanker 48.8 40.0 44.0 60.0 30.0 40.0 45.8 220 29.7
Avg/Total 64.0 62.2 62.8 69.1 61.3 62.4 60.8 56.2 56.1

The obtained results reveal that the selected features performed better on the Sentinel-
1 dataset, maintaining performance on the TerraSAR-X dataset for the cargo class but
presenting a performance drop on the tanker class. The features selected for the
Sentinel-1 method neglect details and representative points due to absence of those in
the Sentinel-1 dataset and focus on general appearance, texture and edges.
Considering the obtained results, other features focusing more on key points and local
information might perform better on higher resolution TerraSAR-X data. This could be
further addressed in the future.

4.2 Classification result for TerraSAR-X method

4.2.1 TerraSAR-X method on TerraSAR-X data

Table 3 summarises the results for the 5-class problem obtained by an ensemble
model built training CNN architectures in Fig. 3 with input SAR image chips at different
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pixel spacing. It is important to note that the scores have been obtained using only the
test dataset (10% of the overall classification dataset) in order to have more reliable
performance estimation.

Table 3. CNN model on TerraSAR-X data. Score obtained for each class.

Precision % Recall % f1-score %
Cargo 100 92 96
Harbor 81 90 85
Platform 97 100 98
Tanker 98 97 97
Windpark 89 85 87
avg / total 93 93 93

4.2.2 TerraSAR-X method on Sentinel-1data

Table 4 summarises the results for the disambiguation problem (cargo ship - tanker
differentiation) using the CNN model on Sentinel-1.

Table 4. CNN model on Sentinel-1 data. Score obtained for the disambiguation classes.

Precision % Recall % f1-score %
Cargo 86 62 72
Tanker 45 76 56
avg [ total 74 66 68

These results have been obtained using the Sentinel-1 dataset described in the section
2.1 directly as test set to the model previously trained on TerraSAR-X images. In this
sense can be thought as an experiment of “Transfer Learning”. The option to train a
model using only Sentinel-1 data will be conducted when a larger classification dataset
will be collected and is therefore left for future work.

5 SUMMARY AND CONCLUSION

In this paper, two ship classification methods were presented and evaluated over two
datasets with different image resolutions. One method is feature-based, developed on
the lower resolution (20 m) Sentinel-1 IW images; the other is image-based, developed
on the higher resolution (3 m) TerraSAR-X Stripmap images. The Sentinel-1 method
exploits general appearance features, texture and edges, neglecting local features and
details. The TerraSAR-X method uses CNN for the classification, avoiding the
extraction of handcrafted class features and building the model directly from the
images. In a cross-application test for the sub-problem of disambiguation between
cargo ship or tanker (two-class classification), it was found that each method performs
best on the data for which it was designed. This is attributed to the fact that they exploit
their inherent benefits, i.e., the TerraSAR-X method was trained directly on its images,
which is possible due to their high quality, while the Sentinel-1 method uses feature-
based analysis to compensate for the lower image resolution. However, both methods
present promising results in this preliminary experiment.

The cargo-tanker disambiguation with Sentinel-1 data is successful, despite the fact
that the Sentinel-1 SAR IW signatures for cargo and tanker ships look quite similar by
eye. Nonetheless, the TerraSAR-X data have much more potential for classification
than the Sentinel-1 data. A classification into 5 classes that is possible with TerraSAR-
X was not attempted with Sentinel-1.
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In the future, a larger image dataset will be built and further experiments will be
conducted. Moreover, multi-class ship classifiers will be targeted in an attempt to
contribute to increased security in the maritime domain.
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