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ABSTRACT: 
 
In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum 
wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle 
Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) 
and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is 
maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country 
which suits perfectly for this study because of its highly dynamic orography and various landforms. 
 
 

1. INTRODUCTION 

Storms are one of the major natural hazards, being responsible 
for about 80% of the 415 Billion US Dollar which insurance 
companies had to pay between 1950 and 2009 to meet their 
obligations (MunichRE). The damage potential for single events 
is extremely huge. Besides of the increasing number and 
denseness of ensured entities also changing weather pattern 
induced through the global warming of the atmosphere sign 
responsible for the rise in damages caused by storms. 
The accurate description of wind fields, their movement 
patterns over ground and the corresponding wind speeds, is still 
a challenging task. Various reasons contribute to this situation. 
First, wind flux responds very sensible on the roughness of 
surfaces (e.g. changing vegetation, buildings), this variable is 
under permanent change. Additional variation comes from 
orography (e.g. hills, mountains, valleys, canyons) causing 
suspension of air masses, turbulences and channelling effects. 
Such phenomena already occur on a small scale, meteorological 
measurement nets are mostly to coarse to record such local 
phenomena. 
In our study we focus on the estimation of maximum wind 
speeds based on remote sensing data. As in a previous study, we 
use a DEM and derived parameters of the DEM to give a 
detailed description of earth surface. We extend the number of 
DEM based parameters adding surface roughness and surface 
ruggedness to the predictors. As a further step we add land 
cover data to the predictors, namely the CORINE (Co-
ordination of Information on the Environment) Land Cover 
(CLC) dataset provided and maintained by the European 
Environmental Agency (EEA). 
As methodologic approach we use BRT, a non-parametric 
regression technique which is applied in a broad range of spatial 
applications during the last decade.  
  

2. PREDICTORS AND RESPONSE 

To reach the goal of predicting max. wind speeds, we need to 
resolve the linkage between the three dimensional earth surface, 
its describing parameters and the wind speeds which can be 
measured for locations. The formulation of this problem is 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖), where x are the predictors derived from 
remote sensing data, and y is the measured response. 𝑓𝑓 is the 

unknown functional dependency, which needs to be resolved. 
The predictors are mainly divided into two groups,  
 

1. DEM and DEM based parameters 
2. Land Cover  

 
Both data sources will be introduced in the following 
subsections. The response is given as gust wind speed, the 
detailed description of this parameter is given at the end of this 
section. 
 
2.1 DEM and DEM based parameters 

We use a DEM recorded by the National Aeronautics and Space 
Administration's (NASA) Shuttle Radar Topography Mission 
(SRTM), data access is provided via a website maintained by 
the U.S. Geological Survey. A detailed description of the 
SRTM data is given in (Farr et al., 2007). We derived a broad 
set of descriptive parameters from this dataset, an overview is 
given in table 1.  
 

Parameter Data class 
Slope Numeric 
Aspect Numeric 
Planform/Profile Curvature Numeric 
Terrain Ruggedness Index Numeric 
Terrain Roughness Index Numeric 
Topographic Position Index Categorical 
TOPEX Numeric 

Table 1. DEM based parameters  
 
A detailed description of most of the parameters is given in (Li 
et al., 2005), the methodology of landform classification is 
inspired by (Weiss, 2001), the TOPEX score is derived from 
(Chapman, 2000). 
  
2.2 CORINE Land Cover 

The CLC dataset, which was already introduced in 1990 and 
relied at that time on Landsat-5 MSS/TM scenes, is nowadays 
the primary spatial data source for EEA. The latest version of 
this dataset with a Minimum Mapping Width of 100 m is called 
CLC2012, as data source IRS LISS III and RapidEye scenes 



were used. The dataset gives detailed information about Land 
Cover for 44 classes with a thematic accuracy of > 85%. A 
detailed description of the data, the current status of the project 
and future steps is given by (Büttner, 2014). 
 
2.3 Gust Wind Speeds 

As a rule of thumb, the higher the wind speed the higher the 
damage costs are. To target this, we decided to focus on gust 
wind speeds rather than mean wind speeds. The Swiss 
Meteorological Service Meteo Swiss maintains a network of 
160 stations spread over the country, collecting gust wind 
speeds with a daily granularity. 
We obtained this dataset and took the 98. Percentile of each 
station as input for our model, as this is known as a suitable 
descriptor of damage functions of storm events (Klawa and 
Ulbricht, 2003). 
 

3. ALGORITHM 

BRT is a simple yet powerful method from the statistical 
learning community. The algorithm is an ensemble method, 
wherein several single models are combined in an additive way 
to build up the final model. One of the core strength of this 
statistical method is the ability to handle numeric data (e.g. 
Height in metres, Slope in degrees) and categorical data (e.g. 
Landform, Land Cover). An in-depth description of the 
algorithm and its components is given in (Hastie et al, 2014), 
for completeness we give an overview about the main 
components and tuning parameters in the following three 
subsections. 
 
3.1 Regression Trees 

The core component of the algorithm are regression trees. Trees 
are a combination of decision rules derived from a set of 
training data. This set contains 𝑛𝑛 observations, each observation 
consists of a response 𝑦𝑦 and 𝑖𝑖 independent predictors 𝑥𝑥𝑖𝑖. The 
regression tree models the dependency between predictors and 
response, e.g. 
 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖). 
 
The building of the tree is an iterative process. During this 
process the predictor space is divided into 𝑚𝑚 regions 𝑅𝑅𝑚𝑚. At 
each iteration the algorithm tries to minimize the model error 
targeting a given error function, e.g. sum of squared error 
∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2𝑛𝑛
𝑖𝑖=1 . The modelled response value 𝑐𝑐𝑚𝑚 of a region 

is then simply the average response of all responses covered by 
this region, e.g.  
 

𝑐𝑐𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦|𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚). 
 
At initialization the tree consists solely of a root node. In each 
iteration a new decision rule is derived to separate predictor 
space, the rule is described by a split value 𝑠𝑠 and the subgroup 
of target predictors 𝑘𝑘. The rule can then be written as  
 

𝑅𝑅1(𝑘𝑘, 𝑠𝑠) = {𝑋𝑋|𝑋𝑋𝑘𝑘 ≤ 𝑠𝑠} and 𝑅𝑅2(𝑘𝑘, 𝑠𝑠) = {𝑋𝑋|𝑋𝑋𝑘𝑘 > 𝑠𝑠}, 
 
which yields a binary split point. The determination of the (𝑘𝑘, 𝑠𝑠) 
tuple is done by minimizing the overall error of both branches 
of the decision node, which is written as 
 

min
𝑘𝑘,𝑠𝑠

�min
𝑐𝑐1

� (𝑦𝑦 − 𝑐𝑐1)2
𝑥𝑥∈𝑅𝑅1(𝑘𝑘,𝑠𝑠)

+ min
𝑐𝑐2

� (𝑦𝑦 − 𝑐𝑐2)2
𝑥𝑥∈𝑅𝑅2(𝑘𝑘,𝑠𝑠)

� 

 
The decision node leads now to two leafs. In the following 
iteration one of the two leafs will also become a decision node, 
this procedure continues until a given stopping criterion is met, 
e.g. max. number of leafs, max. tree depth, min. number of 
samples per leaf or a reduction of the model error below a given 
threshold. 
 
3.2 Boosting 

Boosting is a possibility to extend the basic Regression Tree 
algorithm. Instead of growing one deep tree which aims to 
depict the in most cases quite complex interactions between the 
set of predictors, a big number of trees is sequentially build, 
each new tree aiming to minimize the residuals of its precursor. 
This strategy is widely known as Gradient Boosting. 
After the building of the first regression tree, the Loss function 
𝐿𝐿 of the regression tree model 𝑓𝑓 itself can be written as 
 

𝐿𝐿�𝑓𝑓� =  �𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

 
Gradient Boosting aims now to minimize the overall loss of the 
model by adding iteratively new trees to the model.  
 
3.3 Regularization 

Several options are available to avoid overfitting during the 
model building process. Tree complexity addresses the depth of 
a tree. A tree with a depth of one is just the root node with two 
terminal nodes, often revered as single decision stumps. The 
deeper a tree grows, the more interaction between variables is 
included. As boosting iteratively adds a new tree to an existing 
ensemble of trees, the single trees don't necessarily need to 
grow deep.  
The total number of trees and the learning rate are two further 
parameters strongly related to each other. In general each tree 
aims to minimize the residuals of its precursor tree. The 
contribution of the first trees in minimizing the overall model 
error is big, whilst in later iterations the total error is just 
slightly reduced by new trees and the model tends to overfit. 
Learning rate is therefore a parameter to lower the influence of 
newly added trees to an existing model. The goal is to find the 
perfect number of trees which reduce the error most without 
overfitting the model to the given training dataset.     
 

4. EXPERIMENT 

The main task in this work was finding a model that fits the data 
of the wind measurements in a way that is strictly enough to 
make predictions about unseen data, but also loose enough to 
not be biased by the underlying data. This is achieved by 
extracting the function hidden in the data using non-parametric 
regression methods, namely BRT. Therefore we use the derived 
parameters of a DEM and also the CLC dataset to get a 
description of the surface forming the movement of wind. These 
data are used as features to explain the relationship between 
terrain and airflow. 
 
4.1 Description of Experiment 

Firstly, the dataset of measuring stations and their related 
features is divided into two sets of data, training and test 
dataset. As already indicated by the naming, the training set is 
used to train the model by feeding it with known combinations 
of features and the desired response for this combination of 



values. The test set is used to evaluate the model after it is 
trained. By this way it is possible to evaluate the predicted 
outcomes using real world data. The split is made in a ratio of 
70% training set and 30% test set.  
The values chosen for the evaluation are Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE) and the coefficient 
of determination r². Because of the small overall dataset the 
method of cross-validation is used. It randomly chooses 
different distributions of the train and test set and calculates the 
evaluation values for every one of these distributions. In the end 
it delivers an average value for all random splits. This process 
precludes the possibility of a random bias in the training and 
test set.  
A brute force method to train the model with all possible 
combinations of regularization parameters within given 
intervals is used to check which are the best regularization 
parameters. Based on these parameters an elementary model is 
built to extract the most important features. The feature 
importance is determined by the Gini-index. This index uses the 
contribution to the decisions made over the whole BRT giving 
values between 1 and 0 for each feature.  
Then the parameters are further tuned to control the complexity 
of the model, with the goal to find a balanced setup between a 
too loose and a too strict model. Also, the combination of 
features is further investigated by using an iterative approach 
while checking the evaluation values. For the final model a 
specific train and test set split is chosen which represents the 
values of the cross-validation results. This model is then used to 
create the wind speed map of Switzerland.  
 
4.2 Description of Results 

The indicators providing a quantitative validation of the results 
are the RMSE of 3.42 and r² of 0.58. The selected features and 
their importance are shown in Figure 1. 
 

 
Figure 1: Feature importance 

The deviance plot is illustrated in Figure 2. It shows the value of 
the loss function for the train and test set in dependence of the 
boosting iterations. 
 

 
Figure 2: Deviance Plot 

The learning curve is shown in Figure 3. It indicates whether a 
larger dataset would help increasing the performance of the 
model. This is achieved by artificially reducing the dataset and 
then adding more and more data calculating the loss function for 
each step of reintroduced data sets. The borders are the variance 
of each error triggered by using cross-validation for the 
calculation. 
 

Figure 3: Learning Curve 
 
The map of predicted wind speeds for Switzerland is presented 
in Figure 4. The model was build using the following hyper 
parameters:  

• number of boosting iterations = 4500, 
• learning rate = 0.001, 
• minimum samples per leaf = 8, 
• max. tree depth = 2. 

 
5. RESULTS, CONCLUSION 

The feature importance shows that two of the top three features 
are as expected altitude and TOPEX. The importance of the 
altitude can be explained with increasing heights leading to a 
terrain being generally less sheltered by vegetation or 
topographic phenomena and hence wind can travel freely in 
higher spheres. This leads to stronger winds striking less 
sheltered surroundings. The TOPEX score can be seen as a 
combination of different classic values derived from DEMs (e.g. 
Slope, Curvature, etc.), it’s also a strong tool for determining 
sheltered areas in which wind is unable to reach higher speeds. 
The CLC dataset is also one of the main explaining predictors. 
Given its high diversity of classification, this feature is a real 
improvement when it comes to describing the topology and 
presumably also with regard to the associated roughness. Also, 
the classes of water areas are a huge benefit in the prediction. 
The other important class are the areas with little or no 
vegetation, presumably because of the linkage to the declining 
density of vegetation with increasing altitude. The importance 
of the both TRI features shows that the roughness is of major 
influence on the prediction of wind speeds, on small scales of 
30 meters as well as on bigger scales of 1000 meters. The 
importance of the aspect is explained by the dominant wind 
directions over Europe, which is the west-wind-zone. This is 
also the direction of the most severe storms. 
However the model suffers from underfitting. This is seen when 
looking at the Deviance Plot and the Learning Curve. Firstly, 
the train error is still quite high on both curves. This is a 
symptom indicating that the used features are not capable of 
precisely describing the highly complex appearance of wind. 
The learning curve also shows that a bigger dataset would be 
able to close the gap between training and test error. Looking at 
the last section of the curve an upward trend in the test error is 
notable. It shows that adding just 24 training sets improves the 
MSE by 0.5 m/s. Overfitting can be excluded by taking a look 
at the deviance Plot. The test error remains constant while the  



Figure 4: Map of predicted maximum wind speeds over Switzerland 

 train error is still reduced. If overfitting was a problem in this 
model the test error should start raising again as soon as the 
model is biased by the train set. 
The low r² of 0.58 is an indication for the model being able to 
describe the relationship between features and measured values 
at least to some extent, but still the goal value here would be 
around 0.9 to 0.75. This would show a good correlation not 
biased by an overfit. The rather low value scored here is another 
sign for the underfiting problem of the model. Nevertheless the 
RMSE value, within the cross-validation, of 3.42, is the best 
value reached within the investigations on the prediction of 
wind speeds in Switzerland using regression methods. This 
shows that BRTs are a powerful tool for predicting wind speeds 
over huge areas with a highly differentiated terrain.  
A visual interpretation of the predicted map shows that the 
particular model used in this work is capable of predicting wind 
speeds, at least on a bigger scale. This is indicated by the 
distribution of the predicted wind maxima. It is clearly visible 
that the highest wind speeds are predicted on mountain tops and 
larger lakes. This is what you would expect to happen in the real 
world. The reasons for wind maxima at mountain tops have 
been described above. Lakes are windy because of the wide 
open space with the wind not being chocked off by roughness or 
bigger obstacles. Accordingly the wind at larger lakes is 
predicted to be stronger than at smaller lakes. Another indicator 
for the plausibility of the results achieved with the method of 
this work is that smaller valleys show lower wind speeds as 
mountain tops or large plains. This result again is as expected 
for the real world. However all these predictions work only on 
large scale but fail when it comes to small-scale dynamics of 
wind flow. For example, the dynamics in two neighbouring 
valleys can differ completely from each other. 

Therefor in future work superior descriptors have to be found in 
order to describe the wind flow in a more precise manner. 
Promising examples may be features using flow routing 
algorithms or computational fluid mechanics algorithms to 
model wind flow. Making use of multi-spectral images for a 
more complete land classification of a specific area and the use 
of a DEM of a higher resolution could also improve the 
predictions. Using data of bigger scale from overall wind flow 
dynamics over Europe or Switzerland can provide another 
options. Also, the general gathering of a bigger, more complete 
dataset is an option that has to be taken into account.  
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