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Abstract 

Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral 

ones, such as hydrogen. The backing or micro-porous layer plays an important role in the 

performance of hydrogen proton exchange membrane (PEM) fuel cells reducing contact 

resistance and improving reactant/product management. Such carbon-based coating cannot be 

used in PEM electrolysis since it oxidizes to CO2 at high potentials. A functional titanium 

macro-porous layer (MPL) on the current collectors of a PEM electrolyzer has been developed 

by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm², 

increasing significantly the efficiency of the device when operating at high current densities. 

Glossary 

PEM proton exchange membrane 

CC current collector 

ICR internal contact resistance 

PMG precious metal group 

CL catalyst layer 

GDL gas diffusion layer (fuel cell) 

MPL macro-porous layer 

VPS vacuum plasma spraying 

LR leakage rate 

EIS electrochemical impedance spectroscopy 

SEM scanning electron microscopy 

CPE constant phase elements 

R resistance 

OER oxygen evolution reaction 

Ir iridium 

Pt/C Platinum on carbon 

Ti Titanium 
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1. Introduction 

Hydrogen can be used as a carbon neutral energy carrier either to provide electricity through fuel 

cells or to store the surplus coming from renewable sources such as solar or wind by means of 

water electrolysis systems [1]. Proton exchange membrane (PEM) electrolyzers have great 

technological potential thanks to the high power densities, superior gas quality and superior 

dynamic operation ranges [2]. Up to now, the current collector (CC) of a PEM electrolyzer 

consists of a porous structure of titanium such as a sintered disc, foam, felt or expanded mesh 

[3]. The porosity and pore size of the sintered discs can be adjusted by selecting the appropriate 

size and shape of the titanium particles [4] but the configurations are quite limited. Foams, felts 

and expanded meshes overcome these issues [5] and have a lower cost [6]. However, the 

development of a CC with optimized microstructure for efficient water/gas bubble management 

is still a challenge in PEM electrolysis. F. Arbabi et al. used a technique of visualization of air 

injection into the liquid-saturated porous network of microfluidic chips in order to simulate the 

transport mechanism of gas bubbles in the CC [7,8]. They found that transport mechanism of air 

bubbles in the CC is capillary-dominated even at high current densities. Their results showed that 

gas saturation at the breakthrough moment is smaller for felts than for the sintered discs.  

The uniform and sufficient contact between the CC and the catalyst layer (CL) reduces the 

interfacial or internal contact resistance (ICR) and thus the activation overpotential [9]. The ICR 

can be lowered by using expensive precious metal group (PMG) coatings on the CC [10].  In the 

case of a PEM fuel cell this problem is solved by introducing a backing or micro-porous layer 

between the catalytic layer and the carbon CC or GDL [11,12]. It lowers the ohmic losses by 

keeping the membrane better hydrated improving the adhesion and contact between the various 

conductive components, such as carbon [11]. In addition, it allows for better transport of the 
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various species required for reaction by removing the produced H2O through its hydrophobic 

component. Lastly, the backing layer in a PEM fuel cell buffers regions between the diffusion 

media and the CL [12]. All the benefits that it offers to the PEM fuel cell, reported in more than 

149 publications since 2002 (ISI Web of Knowledge), are hitherto missing in a PEM 

electrolyzer. Herein we provide an approach for developing a titanium macro-porous layer 

(MPL) produced vacuum plasma spraying (VPS) on the CC of a PEM electrolyzer. 

2. Experimental 

Porous titanium coatings were deposited by vacuum plasma spraying (VPS) on 5 x 5 cm
2
 

sintered titanium filters (SIKA-T 10, GKN Sinter Metals, thickness of 1mm). Only the side of 

the CC that is in contact with the CL is coated. Grade 1 titanium (grain size < 45 µm, TLS 

Technik Spezialpulver) was used as feedstock powder. The chamber pressure of the VPS facility 

was 50 mbar in order to prevent the presence of O2, which would oxidize titanium into TiO2 at 

the high temperatures of the plasma.  The substrates were pre-heated up to 250 °C during 

deposition. Gas flow rates of Ar, N2 and H2 were carefully chosen to achieve the highest plasma 

enthalpy possible (21.27 MJ kg
-1

). The torch sweep rate was 500 mm s
-1

. Measurements of the 

leakage rate (LR) parameter and ICR under compaction force were used as rough indicators of 

the density and electrical properties, respectively. Experimental details are reported elsewhere 

[13]. Cross-section images of a coated CC were taken with a SEM Zeiss ULTRA plus 

(secondary electron detection) with charge compensation. The accelerating voltage and working 

distance were 15 kV and 8.4 mm, respectively.  

Electrochemical tests were performed in 25 cm² single PEM electrolyzer cells using the porous 

titanium discs as CC with and without MPL. Commercial MEAs (Solvicore E400) with a N115 
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membrane, an Ir-based anode and a Pt/C-based cathode, was employed. Electrochemical 

impedance spectroscopy (EIS) measurements were realized by means of an impedance 

equipment (Zahner elektrik IM6) and booster (Module PP240) at different current densities in a 

frequency range of 1 x 10
5 

 to 2 x10 
-3

 Hz. The water was supplied only to the anode side of by 

means of a peristaltic pump at a flow rate of 1 ml s
-1

. A DI water resin (630 Laurent, Grandby, 

QC J2G 8V1, Aldex Chemical Co. LTD) was used to maintain a resistivity below 10 MΩ cm. 

The measurements were recorded at a scan rate of 4 mA cm
-2

 s
-1

, 85 °C and atmospheric 

pressure. 

3. Results 

The proof of concept of a MPL with controlled porosity is illustrated in a scheme presented in 

Fig. 1a. As shown, the MPL should increase the contact surface with the catalyst while 

improving the water/gas management through a gradient of pore sizes. For this purpose, several 

layers of titanium were deposited on the CC. The LR was determined. It was found that two 

layers of titanium produced a LR of 480 mbar l cm
-2

 s
-1

. Two more layers decreased this value 

down to 112 mbar l cm
-2

 s
-1

. Further increase in the number of layers resulted in lower LR, thus 

higher density of the coating. Fig. 1b shows a cross section SEM image of 8-layers of porous 

titanium deposited on the surface of the CC by VPS. As it can be observed the layer has a splat 

structure, is porous, and rough. An estimation of the thickness, rugosity, pore size and porosity 

was carried out by image analysis. These results along with the LR measurements are 

summarized in Table 1. One can notice that the increase of the number of layers has practically 

no effect in the rugosity, which in average is about 0.74. However, it is possible to make the 

coating rougher by increasing the torch sweep rate. By depositing layers of titanium on mild steel 

and corroding the substrate afterwards it is possible to determine more accurately the pore size of 
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a freestanding MPL by Hg-adsorption technique. It turned to be between 0,1 µm and 10 µm with 

a modal pore size of 1,3 µm (Fig S1. Supporting information). The pore structure of the MPL 

can be controlled up to a certain extent by varying the deposition parameters. The systematic 

variation of the VPS parameters for producing MPL with desired properties will be reported in a 

separate study. Only the 2-layer MPL was chosen for subsequent characterization presented in 

this study. 

The method of measuring ICR vs. compaction force is useful for characterizing interconnecting 

elements of a low temperature electrochemical device such as PEM fuel cell or electrolyzer. Fig. 

1c shows the interfacial contact resistance of the CC with and without the VPS coated MPL with 

respect to compaction force. The difference in their ICR is about 20 mΩ cm² at any compaction 

force. The decrease in this parameter is owned to a higher contact area of the CC with MPL 

compared to the uncoated one. Consequently, it is expected the drop in the overpotential of a 25 

cm
2
 PEM electrolyzer should be at least 40 mV at nominal operation of 2 A cm

-2
.  

The current-potential characteristics of the PEM electrolyzer without and with coated CC with 

MPL are presented in Fig. 2a. The inset shows the Nyquist plots measured at 0.4 A cm
-2

.  One 

can observe that the electrolyzer with MPL has lower internal ohmic resistance than the one 

without MPL. EIS measurements were performed at different current densities in order to gain 

more insight of the effects of the MPL in the performance of the electrolyzer.  An equivalent 

electrical circuit, Fig. 2b, was used for modeling the results.  It consists of a resistor (R1) in series 

with other three (R2-R4), each in parallel with three constant phase elements (CPE) with a 

constant exponent of 0.8. Additionally, an inductive element (L1) connected in series was used 

for the high frequencies. The Nyquist plots with the measured and simulated spectra are 

presented in Fig. 2c and Fig. 2d for the electrolyzer without and with MPL, respectively. The 
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electrolyzer with MPL shows a decrease of the high frequency loop which corresponds to charge 

transfer resistance of the electric/ionic conductive elements (R2) and double layer charge effects 

in the active zone of the electrode [14–16]. 

The computed values of R1-R4 are presented in Fig. 3a-Fig. 3e. Firstly, the resistance associated 

to the interconnecting elements and membrane (R1) of the electrolyzer decreases ca. 20  mΩ cm² 

when having an MPL, which is in good agreement with the results from the ICR measurements, 

Fig. 1c. Similar improvement is observed in the charge transfer resistance (R2) at the interface of 

the MPL and catalyst layer/ionomer. Secondly, as expected there is no impact in arc related to 

the kinetic resistance (R3) of the oxygen evolution reaction (OER) either with or without MPL, 

Fig. 3c. The changes of the low frequency loop measured at high current densities, which 

correlates to mass transport limitation effects [16], does not follow a clear trend as the values of 

R4 invert at 0.2 A cm
-2

, Fig. 3d. More experimental data is required to fit the model at high 

current densities.  

Lastly, the MPL on the CC has a moderate impact on the performance of the electrolyzer when 

operating at current densities below 1.2 A cm
-2

. However, at higher current densities, where mass 

transport effects dominate, the impact of the MPL in performance is even more profound. At 5 A 

cm
-2

 the overpotential of the electrolyzer is reduced by approx. 256 mV which translates in an 

increase in efficiency of almost 5%. It is expected that at full load operation, PEM electrolyzers 

for the power-to-hydrogen application will run at high current densities in order to save capital 

investment cost.  
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4. Conclusions 

Here we presented the development and characterization of a MPL produced by thermal spraying 

on the CC of a PEM electrolyzer. Thanks to its morphological properties, it reduces the ICR by 

ca. 20 m cm
2
 and mass transport limitations especially at high current densities.  The use of 

thermal spraying for coating the CC of PEM electrolyzers has been shown to provide appropriate 

structures showing potential for further improvement of the MPL. In this context, the titanium 

layer in contact with the CL should have small porosity for improved water management at high 

oxygen production, while the outer layer should have large pore size for rapid release of O2-

bubbles. The effect for water and gas transport as a result of incorporating hydrophobic or 

hydrophilic components to thermally sprayed MPL is still an open question. A deep 

understanding of mass transport phenomena in the CC, with or without MPL, requires more 

experiments in combination with modeling.  
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Tables 

Table 1. Properties and characteristics of the MPL deposited on the sintered titanium CC, 

estimated from SEM image analysis. The resulting leakage rate (LR) is presented in the last 

column. 

Number of 

Ti-layers 

Average 

thickness / µm 

Rugosity / 

a. u. 

Pore size / µm Porosity / % LR 

/ mbar l cm
-2

 s
-1

 

2 13.4 0.83 1.6 9.3 480 

4 30.8 0.62 1.7 12 112 

6 37.8 0.8 2.4 14.6 0.086 

8 62 0.7 3.7 13.2 0.014 
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Figure captions 

Fig. 1. (a) Scheme of a MPL between the CC and catalytic layer of a PEM electrolyzer. The 

white pores are interconnected. (b) Cross-section SEM image of a thermally sprayed titanium 

MPL on a CC. (c) ICR vs. compaction force of one-side coated (MPL) and uncoated (without 

MPL) CC.   

Fig. 2. (a) Current–potential characteristics of PEM electrolyzer single cells with and without 

MPL. The inset shows the Nyquist plots of both cells at 0.4 A cm
-2

. (b) Equivalent circuit for 

simulating the EIS data measured at different current densities. (c) and (d) Nyquist 

characteristics of the cell without and with MPL.  

Fig. 3. Calculated values of (a) R1, (b) R2, (c) R3 and (d) R4 for different current densities. (e) 

Current–potential and temperature characteristics of a PEM electrolyzer single cell with and 

without MPL at full performance. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 

 


