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Abstract— The rapid growth of available services depending on
location awareness has led to a more and more increasing demand
for positioning in challenging environments. Global navigation
satellite system (GNSS) based positioning methods may fail or
show weak performance in indoor and urban scenarios due to
blocking of the signals and multipath propagation. In contrast,
cellular radio signals provide better reception in these scenarios
due to a much higher transmit power. Also, they offer high cov-
erage in most urban areas. However, they also undergo multipath
propagation, which deteriorates the positioning performance. In
addition, there are often only one or two base stations within
communication range of the user. Both of these problems can be
solved by means of a multipath-assisted positioning approach.
The idea is to exploit multipath components (MPCs) arriving at
the receiver via multiple paths due to scattering or reflections.
Such approaches highly depend on the ability to resolve the MPCs
at the receiver. This is why multipath-assisted positioning schemes
typically assume ultra-wideband systems. Today’s cellular radio
systems work with much smaller bandwidths, though. The 3rd
Generation Partnership Project (3GPP) Long Term Evolution
(LTE) standard uses bandwidths up to 20 MHz. The aim of this
paper is to show by means of measurements that multipath-
assisted positioning is possible using 3GPP-LTE signals with
only two base stations. We apply an advanced signal processing
algorithm to track MPCs arriving at the mobile terminal, and
to estimate the position of the mobile terminal. Since each of
the MPCs can be regarded as being sent from some physical or
virtual transmitter, we estimate the positions of transmitters in
addition. Assuming only the starting position and direction of
the mobile terminal to be known, the results show that the root
mean square positioning error of the mobile terminal is always
below 1.8 meters. In 90% of the cases, it is below 1.25 meters.

I. INTRODUCTION

Positioning approaches using global navigation satellite

systems (GNSSs) show weak performance in situations with

bad view-to-sky conditions, such as indoors or in urban areas.

However, the amount of services based on location awareness

has drastically increased over the past years, particularly in

such scenarios. Examples for these services range from classi-

cal navigation over geotagging to automated emergency calls.

This has led to more and more research efforts using signals of

opportunity (SoO) for self-localization. Multipath propagation

has been considered a problem for position estimation with

standard algorithms such as the delay locked loop, as it biases

range estimates. Most of the standard positioning approaches

estimate the channel impulse response (CIR) and try to remove

Fig. 1. Signals from the physical transmitter Tx are reflected at the straight
surface and can be interpreted as originating from a virtual transmitter vTx,
which is static during the receiver motion. The position of vTx is the position
of the physical transmitter Tx mirrored at the surface.

the influence of multipath components (MPCs) on the line-of-

sight (LoS) path.

The idea of multipath-assisted positioning is contrary. As-

suming one transmitter, multiple MPCs arise due to reflections

and scattering of the electromagnetic signal. The fundamental

principle is to treat each obtained MPC at the receiver as a

SoO being broadcast from some physical or virtual transmitter.

This idea is illustrated in Fig. 1: the signals broadcast by the

physical transmitter Tx are reflected at the surface. For the

mobile terminal, these reflected signals seem to be emerging

from the virtual transmitter vTx. The position of the virtual

transmitter is the same for all shown positions of the mobile

terminal, if the physical transmitter and the reflecting surface

are static.

The virtual transmitters can act as additional base stations

and be used by a receiver for localization if their positions

are known. Hence, locating the receiver might be possible

if only one physical transmitter is present, and this physical

transmitter does not have to be in LoS to the receiver. The

location of these transmitters might be known if a-priori

information is available. This could be the position of a

physical transmitter together with a floor plan in the indoor

case, or the location of surrounding structures in the outdoor



case, such as buildings or environmental landmarks. Then, the

location of the virtual transmitters can be obtained by means

of geometrical considerations.

In [1], the authors propose a multipath assisted indoor

tracking scheme, where a floor plan is known. A similar

principle is applied in [2], where the structure of surrounding

walls is known for tracking a target for a radar application.

In [3], a simple urban multipath scenario is emulated using

LTE signals, and a mobile terminal is tracked through the

scenario. The positions of the physical and virtual transmitters

is assumed to be known. The authors of [4] mainly focus on

the problem of association between known physical scattering

objects and impinging MPCs.

In a more general setting however, the position of the

transmitters is unknown. Therefore, the authors of [5] and

[6] developed an algorithm which estimates not only the

position of a receiver, but also the positions of physical

and virtual transmitters. The algorithm was named Channel-

SLAM, since it is a simultaneous localization and mapping

(SLAM) approach based on the CIRs estimated at the receiver.

The location of the receiver is tracked over time, and a map

in terms of the positions of the transmitters is estimated.

The Channel-SLAM algorithm does not differentiate be-

tween physical and virtual transmitters: each incoming MPC

at the receiver is regarded as a SoO emerging from some

transmitter in LoS, which can be physical or virtual. All

transmitters are assumed to be static, which is true if the

physical transmitters and the structures that reflect or scatter

the signal are static. The receiver is assumed to be dynamic

and to move through the scenario. Transmitters, i.e., MPCs

at the receiver, might arise and vanish as the receiver moves

depending on the scenario, and only transmitters that are

visible for a sufficiently long time span can contribute well

to the scheme.

The ability to resolve the single MPCs at the receiver is

of crucial importance in multipath-assisted positioning. If two

MPCs arrive at the receiver with a very small relative delay, it

is difficult to resolve them with standard and even with super-

resolution methods. This problem becomes more drastic the

smaller the bandwidth of the used signaling system is. This

is why most research papers in multipath-assisted positioning

assume signaling systems of high bandwidths of at least 100
MHz up to several GHz.

Though, such systems have to be installed on top of existing

systems, and the admissible power is limited by rules of na-

tional or international regulation authorities. Within this paper,

we aim to use an existing and widely available infrastructure,

namely a 3rd Generation Partnership Project (3GPP) Long

Term Evolution (LTE) signaling system. A big advantage of

3GPP-LTE signals over GNSSs is their high signal power

leading to a very good coverage in urban and most indoor sit-

uations. The 3GPP-LTE standard [7] defines optional signals,

so called positioning reference signals (PRSs), for positioning

within a 3GPP-LTE network, making 3GPP-LTE signals very

interesting for positioning.

3GPP-LTE introduces various positioning techniques, of

which observed time difference of arrival (oTDoA) tends to

be the most accurate in bad view-to-sky conditions. It is

based on relative delays of downlink signals at a mobile

terminal, and the position estimation itself is performed by

the 3GPP-LTE network. Thus, for positioning with oTDoA

in two dimensions, there are at least four LTE base stations

within communication range of the user necessary, which is

unrealistic in many scenarios. In indoor scenarios and urban

canyons, multipath propagation will bias the position estimate.

In addition, no external measurement data, such as from an

inertial measurement unit (IMU) in the mobile phone, is

incorporated.

The Channel-SLAM algorithm can be used to overcome

these problems at the expense of the relatively low bandwidths

of at most 20 MHz specified by LTE. Therefore, we developed

a signal processing algorithm for resolving MPCs at the

receiver. In outdoor measurements we apply our algorithm to

track a receiver in a simple outdoor scenario, and simultane-

ously locate the physical and virtual 3GPP-LTE transmitters.

We make use of the PRSs of the 3GPP-LTE system, which

use the maximum 3GPP-LTE bandwidth of 20 MHz. In our

scenario, we have only two physical transmitters. As in a

real 3GPP-LTE system, we assume no synchronization of the

user to the base stations. Though, we do incorporate heading

information from an IMU carried by the mobile terminal to

improve the tracking performance.

The main contribution of this paper is to show that even

under the constraint of a bandwidth as low as 20 MHz in

a 3GPP-LTE signaling system, the resolution of the single

MPCs at the receiver is still possible, and hence simultaneous

tracking of a mobile terminal and mapping of transmitters can

be achieved.

This paper is organized as follows: the system model as

well as the used methods and algorithms are introduced

in Section II. Section III explains the measurement setup

and presents the measurement results. Finally, Section IV

concludes the paper.

II. SYSTEM MODEL

We use a two-step approach for tracking the location of

the mobile terminal. In a first step, the parameters of the

MPCs impinging at the mobile terminal are estimated. These

estimates are used in a second step, where the positions of

the mobile terminal and the transmitters are estimated by

means of the Channel-SLAM algorithm. In addition, in the

second step, heading information from an IMU carried by the

mobile terminal is exploited. Fig. 2 gives an overview of the

estimation procedure. In both steps, the estimators are based

on recursive Bayesian estimation.

A. Virtual Transmitters

Fig. 1 shows a scenario where a mobile terminal receives

signals from a physical transmitter that are reflected at a

straight reflecting surface. As the receiver moves on its tra-

jectory, these signals always seem to be emitted from the

virtual transmitter vTx. Simple geometric considerations show
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Fig. 2. Based on the recorded baseband samples, the parameters of the MPCs
are estimated in the first step. In the second step, the estimates are fused with
heading information from an IMU, and the positions of the mobile terminal
and the virtual transmitters are estimated.

Fig. 3. Signals from the physical transmitter Tx are scattered at the punctual
scatterer and can be interpreted as originating from a virtual transmitter vTx,
which is static during the receiver motion. The virtual transmitter has a clock
offset of τ0 compared to the physical transmitter Tx.

that the position of the virtual transmitter is the position of

the physical transmitter mirrored at the reflecting surface [5].

Hence, if the surface and the physical transmitter are static,

the virtual transmitter is as well. In addition, the physical and

the virtual transmitter are inherently synchronized.

The concept is similar if the reflection happens at a punctual

scatterer. This situation is depicted in Fig. 3. Now, if the

receiver moves through this scenario, the signals scattered

from this punctual scatterer always seem to be emerging from

the scatterer itself. Hence, we obtain a virtual transmitter vTx

again. However, the virtual transmitter has an additional clock

offset τ0, which is the Euclidean distance between the physical

and the virtual transmitter divided by the speed of light. This

clock offset is constant if the positions of the physical and the

virtual transmitter are static, which is our assumption.

The concepts of single reflections and single scatterings

can be generalized in a straightforward manner to situations

where a signal from a physical transmitter undergoes multiple

reflections and scatterings [5].

B. Recursive Bayesian Estimation

Recursive Bayesian estimation allows in general for esti-

mating a probability density function (PDF) of a state vector

x recursively over time based on a mathematical model of

the ongoing process and incoming measurements [8]. It is

assumed that x follows a hidden Markov model, which cannot

be observed directly. The evolution of the state x with time is

modeled as

xk = fk (xk−1,vk−1) , (1)

where xk and xk−1 are the state vector at time steps k

respectively k− 1, fk is a known function, and vk is the real-

ization of a process noise sequence at time step k. Assuming

this model of the process to be available in a probabilistic

form, we can get prior information on a successive time step.

This means that we can calculate the probability for the state

in the next time step, which is

p (xk|xk−1) . (2)

Equation Eq. (1) describes the so-called movement model

or state transition of the process. Similarly to Eq. (1), mea-

surements of the state can be modeled as

zk = hk (xk,nk) , (3)

where zk is the measurement, hk is a known function, and

nk is one realization of a measurement noise sequence at time

step k. The likelihood, i.e., the probability for the measurement

given the current state, is

p (zk|xk) . (4)

The goal is to estimate the states xk given all k conducted

measurements z1:k, or more precisely, to estimate the posterior

PDF p (xk|z1:k). This problem is approached recursively in

two stages, namely prediction and update.

Some calculations [9] yield that the prediction of the next

state xk can be calculated by

p (xk|z1:k−1) =

∫

p (xk|xk−1)
︸ ︷︷ ︸

Eq. (2)

p (xk−1|z1:k−1)
︸ ︷︷ ︸

previous update

dxk−1, (5)

and the update is given by

p (xk|z1:k) =
1

αk

p (zk|xk)
︸ ︷︷ ︸

Eq. (4)

p (xk|z1:k−1)
︸ ︷︷ ︸

previous prediction

, (6)

where αk =
∫

p (zk|xk) p (xk|z1:k−1) dxk is a constant

term. However, the integrals in Eq. (5) and Eq. (6) can in

general not be solved analytically.

C. Estimation of the Parameters of MPCs

As the mobile terminal moves through the scenario, it re-

ceives signals that are periodically transmitted by one or more

physical transmitters. We assume the signals from different

physical transmitters to be separated in frequency. Hence, this

subsection refers to estimating the parameters of MPCs for

only one physical transmitter. Due to reflections and scattering

of the transmitted signal, the signal arrives at the antenna of the

mobile terminal via multiple paths. This allows for modeling

the received signal at time step k as the superposition of Lk

transmit signals s (τ) of complex amplitudes αl,k with delays

τl,k, namely



yk (τ) =

Lk−1∑

l=0

αl,ks (τ − τl,k) + nk(τ).

The term nk(τ) denotes additive white Gaussian noise

(AWGN). For every time step k at time tk, a snapshot

of the received signal is sampled and recorded. For ev-

ery snapshot, the Space-Alternating Generalized Expectation-

Maximization (SAGE) algorithm [10] is used to estimate the

complex amplitude αl,k and delay τl,k for each MPC. The

SAGE algorithm jointly estimates these parameters, as it is

an extension of the Expectation-Maximization (EM) algorithm

[11] approximating the maximum likelihood solution. As the

receiver moves through the scenario, the parameters of the

MPCs will change over time. We use the Kalman enhanced

super resolution tracking (KEST) algorithm as described in

[12] in order to track the delay, the absolute value of the

magnitude, and the phase of each MPC and to describe their

evolution as the mobile terminal travels through the scenario.

As the name suggests, the tracking is done by a Kalman filter.

The Kalman filter is a special case of recursive Bayesian

estimation, where the functions fk in the movement model

and hk in the measurement model in (1) respectively (3) are

linear in the state xk, and nk and vk are samples of AWGN

with zero mean. Then, it can be shown that both the PDFs

Eq. (2) and Eq. (4), and the integrals in Eq. (5) and Eq. (6)

are Gaussian densities and can be parameterized by a mean

and a covariance. Therefore, Eq. (5) and Eq. (6) can be solved

analytically and efficiently in the recursive estimation process.

The state at time step k consists of the delays and complex

amplitudes of all current MPCs, i.e.,

[

. . . , τi,k, ai,k, arg{αi,k}, . . .

]T

, i = 0, ..., Lk − 1,

where ai,k = |αi,k| is the absolute value and arg{αi,k} is

the phase of αi,k. Since no prior information on the evolution

of the MPCs is assumed, the movement model is implemented

as a simple random walk model. During the receiver motion,

MPCs might arise and vanish depending on the position

of the mobile terminal. Hence, the KEST algorithm also

estimates and keeps track of the number Lk of MPCs. For the

initialization of their number in the first time step, i.e., L0, the

Bayesian information criterion rule as in [13] is applied.

D. Position Estimation

The estimates of the KEST algorithm are used to track the

mobile terminal and to determine the positions of the physical

and virtual transmitters. For the mobile terminal, we estimate

both the coordinates and the velocity in two dimensions each

for each time step k, i.e.,

xMT(k) =
[

xMT(k) yMT(k) vx,MT(k) vy,MT(k)
]T

.

As the virtual transmitters are assumed to be static, only

their position, i.e., xl and yl, and their delay offset τ0,l have

to be estimated. For the lth virtual transmitter, this is

xVT,l =
[

xl yl τ0,l

]T

.

The entire state to be estimated at a time step k is therefore

xk =
[

xMT(k)
T

x
T
VT,0 . . . x

T
VT,Lk−1

]T

.

Since we do not assume synchronization between the phys-

ical transmitters and the mobile terminal, we cannot use the

KEST delay estimates, i.e., the delays of the single MPCs,

directly. Instead, we calculate the time differences of arrival

(TDoAs) between the incoming MPCs. The true propagation

time between the lth transmitter and the mobile terminal can

be calculated as

dMT,l(k) =
1

c0

√

(xMT(k)− xl)
2
+ (yMT(k)− yl)

2
+ τ0,l,

where c0 denotes the speed of light. Hence, the TDoA

between two signals from the lth and mth virtual transmitter is

∆dl,m(k) = dMT,m(k)− dMT,l(k).

This makes the measurement function hk in Eq. (3) non-

linear in the state. Hence, the standard Kalman filter can not be

used, and the optimal Bayesian solution is intractable. Instead,

we use a Monte Carlo method, namely a sequential importance

resampling (SIR) particle filter [9]. The idea of a particle filter

is to estimate the PDF of a state using an approximation of the

optimal Bayesian solution by means of a large set of tuples, so

called particles. Each of the particles consists of a point in the

state space and an associated weight. In contrast to Kalman

filters, this approximation enables particle filters to handle also

nonlinear filtering problems in the presence of arbitrary, not

necessarily Gaussian noise.

E. 3GPP-LTE Positioning Reference Signals

As mentioned in the introduction, the 3GPP-LTE PRSs

are optional signals. They are spread over the orthogonal

frequency-division multiplexing (OFDM) frame structure in

blocks of fixed length, which are repeated periodically. The

possible length of these blocks is predefined by the LTE

standard and ranges from 1 to 6 consecutive subframes. It is

denoted by NPRS. The periodicity of the blocks is predefined

by the LTE standard as well. It is denoted by TPRS, and

its possible values range from 160 to 1280 subframes. Also,

the bandwidth of the PRSs is variable, with possible values

ranging from 1.4 MHz up to 20 MHz, which is also the

maximum bandwidth of a 3GPP-LTE system. The PRSs are

pseudo-random sequences. They have a cell-specific frequency

shift ranging from 0 to 5 subcarriers. i.e., there can be no more

than six LTE base stations without interfering PRSs.

III. MEASUREMENTS

A. Measurement Setup

Fig. 4 gives an overview over the measurement scenario.

The measurements were performed in front of a hangar with

metal doors as depicted in the figure. A receiver was carried by
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Fig. 4. The measurements were taken in front of a hangar with metal doors.
The mobile terminal was moving along the blue track. Tx0 and Tx1 denote
the positions of the LTE base stations.

TABLE I

PARAMETERS OF THE USED 3GPP-LTE SIGNALS

Parameter Value

RF carrier frequency 2.46 GHz

3GPP-LTE bandwidth 20 MHz

3GPP-LTE PRS bandwidth 20 MHz

NPRS 6

a pedestrian acting as the mobile terminal along the blue track

of length 30.22 meters, where the labels START and END

mark its start respectively end position. There are two 3GPP-

LTE base stations, i.e., physical transmitters, indicated by the

red crosses with labels Tx0 and Tx1. The magenta crosses with

labels vTx2 and vTx3 mark the positions where we expect

to find virtual transmitters for the physical transmitters Tx0

respectively Tx1, if their signals are reflected by the metal

doors of the hangar. Hence, these points do not have any

physical meaning. The pedestrian walked along the track with

an average speed of 0.322 meters per second. The ground

truth of the positions of the mobile terminal and the physical

transmitters was obtained by means of a tachymeter with

centimeter accuracy. The receiver recorded a snapshot of the

3GPP-LTE signal every 70 milliseconds.

An overview of the used hardware is given in Fig. 5. We

used a Rohde & Schwarz SMW200A Vector Signal Generator

to generate 3GPP-LTE signals. This signal generator has

two radio frequency (RF) outputs that fed the two transmit

antennas of the physical transmitters. At the mobile terminal,

the signals were received, sampled, and recorded for post-

processing by a data grabber. Table I specifies important

parameters of the used 3GPP-LTE signals.

Rohde & Schwarz SMW200A

Vector Signal Generator

DataGrabber

Hard Disk

RF1 RF2

baseband samples

Fig. 5. Overview of the measurement setup: A signal generator generates
the 3GPP-LTE signals that are transmitted by the two physical transmitters. A
data grabber samples the signal received by the antenna at the mobile terminal.
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Fig. 6. Results of the KEST algorithm for the physical transmitter Tx0. The
estimated delay times the speed of light is plotted over the receiver traveled
distance. The color indicates the normalized, estimated amplitudes in linear
domain.

B. Measurement Results

The results of the KEST algorithm for the physical trans-

mitters Tx0 and Tx1 are plotted in Fig. 6 respectively Fig. 7.

They show the delays and amplitudes of the estimated MPCs

over the distance the receiver has traveled. The delays are

multiplied by the speed of light. Note that the actual delays

are not of interest, since the receiver is not synchronized to the

physical transmitters. We only use the relative delays between

the MPCs for each snapshot. The color shows the normalized

absolute values of the amplitudes of the corresponding MPC

as estimated by the KEST algorithm. They are normalized and

given in linear domain.

For position estimation, we use three TDoAs as measure-

ment input for the particle filter: the first one is the TDoA

between the strongest paths of the physical transmitters Tx0

and Tx1. In addition, for each of the two physical transmitters,

we use the TDoAs between the strongest and second strongest
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Fig. 7. Results of the KEST algorithm for the physical transmitter Tx1. The
estimated delay times the speed of light is plotted over the receiver traveled
distance. The color indicates the normalized, estimated amplitudes in linear
domain.

path.

We use heading information from an IMU in the position

estimation step in order to improve the tracking of the mobile

terminal. This prior information is fed into the particle filter

in the form of a movement model, i.e., it is covered by the

function fk from Eq. (1). However, the IMU heading provides

only reliable information on the direction of the movement

of the mobile terminal. As we do not assume any prior

information for its speed, we incorporate a random walk model

for the absolute value of the velocity the mobile terminal is

moving at.

The root mean square error (RMSE) for positioning is

plotted in Fig. 8. The positioning error for the mobile terminal

is always below 1.8 meters, in 90% of the cases, it is

below 1.25 meters. The position of the physical and virtual

transmitters is unknown in the beginning, and the particles are

spread over the area. In the beginning, the positioning error for

the physical transmitters Tx0 and Tx1 is in the order of 15 to

20 meters. After about 20 meters of traveled distance, many

hypotheses for the position of the physical transmitters are

rejected, which leads to some fluctuations in the positioning

error. The positioning error is then around 3.5 meters for both

Tx0 and Tx1. We assume the virtual transmitters to arise due

to reflections at the metal doors of the hangar as depicted in

Fig. 4, and hence, that these virtual transmitters are in the

positions of vTx2 and vTx3. The RMS positioning error for

the virtual transmitters is therefore calculated assuming these

positions as the true ones. Their positioning error decreases

from ca. 20 meters in the beginning down to ca. 3.3 meters

for vTx2 and to ca. 5.3 meters for vTx3.

IV. CONCLUSION

The main contribution of this paper is to show that

multipath-assisted positioning using 3GPP-LTE signals is pos-

sible despite of the constraint of their relatively low maximum
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Fig. 8. The RMSE for positioning the mobile terminal (MT) and the physical
and virtual transmitters. For the virtual transmitters vTx2 and vTx3, we
assume that they arise due to reflections of the signals from Tx0 respectively
vTx1 at the metal doors as depicted in Fig. 4.

bandwidth of 20 MHz. Therefore, we performed outdoor

measurements. In a first step, we tracked the parameters of

MPCs arriving at the receiver by means of a Kalman filter.

We used these estimates together with heading information

from an IMU as input for the Channel-SLAM algorithm. This

allows for simultaneously tracking a mobile terminal moving

through the scenario, and determining the positions of virtual

or physical transmitters. The evaluations show that the RMSE

for the mobile terminal position is in the order of 1 meter most

of the time. For the transmitters, the RMSE settles down to

ca. 3.3 respectively 5.3 meters for the virtual transmitters, and

to ca. 3.5 meters for the physical transmitters.
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