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Abstract—The optimal estimator for the hidden state of
nonlinear systems is often not known or it is computational
unfeasible. In this situation suboptimal algorithms must be used.
An important performance metric for these algorithms is the
difference of their root mean square error (RMSE) compared to
the RMSE of the optimal estimator. If the optimal estimator is
unknown it is useful to have a lower bound for the RMSE. Such
a bound is defined by the posterior Cramér-Rao lower bound
(PCRB) which is also valid for biased estimators. In this paper
a version of the PCRB for nonlinear systems considering known
inputs is applied to analyze the performance of an extended
Kalman filter (EKF) and unscented Kalman filter (UKF) for
GNSS/IMU based cooperative train localization. The analysis is
realized by performing a simulation study for different track
and satellite geometries. After an initial phase with larger errors
both, the EKF and UKF are able to estimate the bias on the
pseudoranges and the receiver clocks and they attain the PCRB.

I. INTRODUCTION

The localization of trains at its current state is based mainly
on infrastructure components like balises and magnetic axle
counters. This is sufficient for the current rail management sys-
tems which allow trains only to drive with the absolute braking
distance between them. However, this approach prohibits real-
time localization and does not utilize the available capacity
of the track network. In future, automated railway systems
reliable and accurate localization systems will be indispens-
able. For reliable localization of trains, it can be exploited
that the movement of the trains is limited by strong constrains
forced on them by the track. Taking this into account the 3D
localization can be reduced to the one dimensional arc length
the train has driven on a certain part of the track network. For
absolute positioning with global navigation satellite systems
(GNSS) then only two satellites are needed for estimating the
train position and the user clock error. This approach assumes
that a digital map of the track network exists, that links the
1D position to a global 3D coordinate system.

In the literature, several localization systems were devel-
oped that provide train position in real-time. The sensors
used in most of these systems include inertial measurement
units (IMU) and GNSS. There are also some unconventional
approaches using active eddy current sensors [1] or passive
magnetic sensors and pattern recognition techniques to extract
speed and position information from the earth magnetic field
distorted by the railway infrastructure [2]. In addition, Heirich
et al. developed a simultaneous localization and mapping

(SLAM) algorithm for railways, which is able to create feature
rich maps of the track network [3].

In this paper the cooperative approach presented in [4] is
used. The assumption in [4] is that multiple trains cooperate
with each other by sharing their GNSS and IMU measurements
and that a map of the track network is available. The shared
measurements are processed in a centralized localization filter
and the 1D train positions are estimated jointly. The resulting
estimation problem is nonlinear due to the map and the GNSS
pseudorange measurement model. Therefore the optimal esti-
mator for the train positions is unknown and a suboptimal
algorithm must be used. To still achieve a good position
accuracy care must be taken when choosing the suboptimal
algorithm. A widely used method to evaluate the performance
of suboptimal filters is to derive a lower bound for the mean
square error (MSE) matrix. If the filter reaches this bound
it is efficient and no better estimator with respect to the
MSE matrix can be found. To calculate this bound for the
proposed joint localization filter the posterior Cramér-Rao
bound depending on a known input, here the acceleration
measured by an IMU, is derived. The advantage of including
an input in the PCRB is that the trajectories of the trains, used
in the calculation of the PCRB, can be controlled. This issue
will be addressed in more detail in section II-B.

After the bound is derived in section II and III the state
space model is introduced in section IV. The PCRB for the
concrete estimation problem is stated in V and evaluated in an
simulation study in section VI. In the simulation study differ-
ent track geometries and velocity trajectories are considered to
verify their influence on the accuracy. In section VII the results
of the simulations are presented followed by the conclusion in
VIII.

II. POSTERIOR CRAMÉR-RAO BOUND

A. Standard version of the PCRB

The posterior Cramér-Rao bound is a method to evaluate the
performance of Bayesian estimators and was first derived by
van Trees [5]. It differs from the classical Cramér-Rao bound
by considering a random parameter or state vector x with the
dimension Nx and the probability density function (pdf) p(x).
The PCRB has the advantage, that it is no longer necessary
to show the unbiasedness of the estimator for the bound to be
valid. The bound is defined by the inequality

Ex,y{(x̂− x)(x̂− x)T } = M ≥ J−1 (1)



and the Bayesian information matrix (BIM)

J = Ex,y{−∆x
x log p(x,y)} (2)

with the operator

∆a
b = ∇b∇Ta and ∇x =

[
∂
∂x1

· · · ∂
∂xN

]T
(3)

and the Ny dimensional observation vector y. The expectation
is with respect to the joint pdf of x and y as indicated by
the indices of the expectation operator. The inequality in (1)
states that the difference between the mean square error (MSE)
matrix M and the inverse of the BIM is a semipositive-definite
matrix and that for the diagonal elements of M the following
inequality holds √

Mi,i ≥
√
J−1i,i . (4)

Therefore the root mean square error (RMSE) of a single
element in x is always greater than or equal to the square root
of the according element of the inverse BIM. With a simple
reformulation of (2), a connection to the classical bound can
be made by dividing the BIM in an observation depending
part JD and a part dependent on the a priori knowledge JP
given by the pdf p(x)

J = Ex,y{−∆x
x log p(y|x)}+ Ex{−∆x

x log p(x)}
= JD + JP. (5)

This is the result when the joint pdf of the state and the obser-
vations p(x,y) in (2) is replaced by the relation p(y|x)p(x).
The data dependent part can be rewritten as expectation of the
Fisher information matrix (FIM) with respect to the pdf p(x)
of the parameter vector JD = Ex{JF(x)}. For the PCRB to
hold the derivations and expectations in (2) must exist and

lim
xj→±∞

Bi(x)p(x) = 0 ∀j ∈ {1, . . . , Nx} (6)

must be fulfilled for each element Bi of the estimator bias

B(x) =

∫
RNy

[x̂− x]p(y|x)dy. (7)

B. PCRB conditioned on input vector
For the evaluation of the suboptimal filters for cooperative

train localization, a PCRB under the condition of a known
input is derived. This is done to simplify the approximation
of the bound with Monte Carlo methods and to gain a better
control of the simulated scenarios. In the state space model
introduced in section IV this input is the acceleration of
the train measured with an IMU. In the normal PCRB, the
acceleration has to be included in the state vector and the
accelerometer measurements are part of the observation vector
y. This makes the Monte Carlo simulation difficult because
it has to approximate the expectation in (2) for the whole
state space. This increases the number of Monte Carlo runs
needed to get close to the true value. Another problem is
that considering the complete state space, and thereby all
possible acceleration trajectories, obscures the information
about a specific trajectory. Especially in the railway domain
this is unwanted because the trains follow strict patterns. The
introduction of the acceleration as input avoids this problem

by making the train movement controllable. Because we can
now focus on specific acceleration trajectories the number of
Monte Carlo runs needed to approximate the PCRB can be
reduced and only the wanted information is included.

Theorem 1. For the MSE of an estimator conditioned on u
the following inequality holds

Mu = Ex,y|u{(x̂− x)(x̂− x)T } ≥ J−1u (8)
Ju = Ex,y|u{−∆x

x log p(x,y|u)} (9)

when for each elements Bi of the estimator bias

B(x,u) =

∫
RNy

(x̂− x)p(y|x,u)dy (10)

the relation

lim
xj→±∞

Bi(x,u)p(x|u) = 0 ∀j ∈ {1, . . . , Nx} (11)

is fulfilled and the derivations and expectations in (8) exist.

Proof: The proof follows the approach for the standard
PCRB from [6] but the starting point is now the equation of the
estimation bias given by (10). Multiplying (10) with p(x|u)
and taking the derivate with respect to x, and then integrating
it over the domain of x gives∫

RNx

∇x

(
B(x,u)Tp(x|u)

)
dx=∇x

∫
RNy+Nx

(x̂− x)Tp(x,y|u)dxdy.

(12)

With condition (11) the left hand side of the equation becomes
the zero matrix 0 and the right hand side can be rewritten to

0 = −I +

∫
RNy+Nx

∇xp(x,y|u)(x̂− x)T dxdy (13)

this results in

I =

∫
RNx+Ny

∇x(log p(x,y|u))(x̂− x)T p(x,y|u)dxdy

= Ex,y|u{∇x(log p(x,y|u))(x̂− x)T } (14)

with the identity matrix I. Constructing the autocorrelation
matrix for the vector

[
(x̂− x) ∇x log p(x,y|u)

]T
and in-

serting (8), (9) and (14) results in the block matrix

Ex,y|u

{[
x̂− x

∇xlogp(x,y|u)

][
x̂− x

∇xlogp(x,y|u)

]T}
=

[
Mu I
I Ju

]
.

(15)
The correlation matrix (15) is semipositive-definite and sym-
metric. This is also true for the Schure complement

S = Mu − J−1u (16)

when Ju is positive definite. This introduces no additional
constraint because Ju is semipositive-definite by default and
to be invertible all eigenvalues must be positive. This leads to
the proposed inequality

Mu − J−1u ≥ 0. (17)



The derived bound is a special case of the hybrid parameter
bound in [7]. In the hybrid bound the parameter vector contains
random and nonrandom parameters. The bound is defined only
for the random parameters under the assumption that the rest
is known. If the input variables are considered as nonrandom
parameters the hybrid bound is equal to (9).

III. RECURSIVE CALCULATION OF THE PCRB

For the performance evaluation of a filter for the nonlinear
dynamic system

xk+1 = f(xk,uk,nk) (18)
yk = h(xk,wk) (19)

with process and measurement noise nk and wk, the bound
must be known for each measurement epoch k. This can be
done by calculating the bound for a combined state vector
Xk = [xT0 , . . . ,x

T
k ]T and the vector of all measurements

Yk = [yT0 , . . . ,y
T
k ]T and inputs Uk = [uT0 , . . . ,u

T
k ]T up to

time step k. This leads to a growing BIM in each time step. To
limit the size to the state dimension the authors in [8] propose
a recursive version of the bound by exploiting the structure of
the BIM for the combined vector [XT

k ,x
T
k+1]T

Jk+1 = D22
k −D21

k (Jk + D11
k )−1D12

k (20)

with

D11
k =Exk,xk+1

{−∆xk
xk

log p(xk+1|xk)} (21)

D12
k =Exk,xk+1

{−∆
xk+1
xk log p(xk+1|xk)} = D21,T

k (22)

D22
k =Exk,xk+1

{−∆
xk+1
xk+1 log p(xk+1|xk)}+

Exk+1,yk+1
{−∆

xk+1
xk+1 log p(yk+1|xk+1)}. (23)

In the derivation, the Markov property of the system in (18)
was used to limit the dependency of p(xk+1|xk) to xk and
not on the complete state history. For the input version the
recursive formulation can be easily found by applying the steps
from [8] on (8) and (9)

Ju,k+1 = D22
u,k −D21

u,k(Ju,k + D11
u,k)−1D12

u,k (24)

with

D11
u,k =Exk,xk+1|Uk

{−∆xk
xk

log p(xk+1|xk,uk)} (25)

D12
u,k =Exk,xk+1|Uk

{−∆
xk+1
xk log p(xk+1|xk,uk)} (26)

D22
u,k =Exk,xk+1|Uk

{−∆
xk+1
xk+1 log p(xk+1|xk,uk)}+

Exk+1,yk+1|Uk
{−∆

xk+1
xk+1 log p(yk+1|xk+1)}. (27)

This is basically the same as in (20)–(23), the only difference
is that the expectations and pdf’s are conditioned on the history
Uk of the input vector.

IV. STATE SPACE MODEL

The state space model for the cooperative localization filter
is composed of the kinematic state describing the movement
of each train and parts describing the pseudorange, receiver
clock and accelerometer errors.

A. Kinematic train state and accelerometer errors
The movement of the train is described by a two dimen-

sional vector containing the 1D position s and velocity ṡ. The
acceleration a of the train is not part of the state vector, instead
it is used as input. The input is assumed to be measured by
an accelerometer in driving direction. To take into account the
typical accelerometer errors we include for train i a sensor bias
ba,i in the state and add the measurement noise as process noise
na,i to the differential equation of the velocity. The sensor bias
is assumed to be a first order Gauss-Markov process with the
driving noise nba,i and time constant τb,i. The kinematic state
of train i is therefore defined by

Di = [si, ṡi, ba,i]
T (28)

and the system of differential equations

d

dt

 s
ṡ
ba,i

 =

0 1 0
0 0 −1
0 0 1

τb,i

 s
ṡ
ba,i

+

0
1
0

 ai+
0 0

1 0
0 1

[na,i
nba,i

]
.

(29)
For the ease of implementation it is assumed in (29) that the
trains move on a plain parallel to the earth’s surface. If this
condition does not hold the measured acceleration must be
compensated for gravity and the attitude must be estimated.

B. Receiver clock error
The receiver clock error is characterized by the vector

Ci =
[
δti, δṫi

]T
(30)

with clock error δt and clock drift δṫ. An adequate represen-
tation of the temporal behavior is a second order random walk
as proposed in [9]

d

dt

[
δti
δṫi

]
=

[
0 1
0 0

] [
δti
δṫi

]
+

[
nδt,i
nδṫ,i

]
. (31)

In (31), [nδt,i, nδṫ,i]
T is a white Gaussian driving noise.

C. Pseudorange bias
Errors that depend mainly on the satellite but not on the

receiver are captured by a bias νj for each satellite j. The
errors that can be seen as a receiver independent bias are
e.g. the tropospheric and ionospheric errors when the different
receivers are located in an area of a few square kilometers. The
evolution of this bias is approximated with a first order random
walk process

d

dt
νj = nνj (32)

with the driving noise nνj . Collecting the bias for NS satellites
in a vector we get the pseudorange bias state N

N =
[
ν1, . . . , νNS

]
(33)

D. Complete state vector
The final state vector x is a combination of the above

mentioned parts. The dimension of the state is 5 · NT + NS,
depending on the number of trains NT considered in the filter.

x =
[
D1 C1 · · · DNT CNT N

]T
(34)



E. Measurement model

Due to the introduction of the satellite dependent pseudo-
range bias νj in (33), the measurement model for receiver i
and satellite j can be written as

ρji = ||m(si)− xj ||+ cδti − νj + wi. (35)

With the speed of light c, the receiver noise wi and the
mapping function m(·). The mapping m is needed to link
the satellite position xj given in an global ECEF coordinate
system to the local 1D coordinate system of the rail tracks.
In addition to the Euclidian norm || · || the map introduces an
nonlinearity that must be handled in the estimation process.

The complete measurement model is obtained by collecting
the measurements from all NT receivers in a vector[
ρ11 · · · ρ

NS
1 · · · ρ1NT · · · ρ

NS
NT

]T
= yk = h(xk,wk). (36)

V. PCRB FOR COOPERATIVE TRAIN LOCALIZATION

The state space model in section IV has a linear system
equation and a nonlinear measurement equation and the noise
is assumed to be additive white Gaussian noise (AWGN). With
the process noise gain matrix G the system can be written as

xk+1 = Fkxk + Buk + Gknk (37)
yk = h(xk) + wk. (38)

For such systems, the pdf p(xk+1|xk) and p(yk+1|xk+1) can
be found from the pdf of the noise terms nk ∼ N (0,Q) and
wk ∼ N (0,R) and the system equations (37)–(38). Inserting
this into equation (25)–(27) results in the concrete formulation
of the PCRB

D11
k = FTk (GkQkG

T
k )−1FK (39)

D12
k = −FTk (GkQkG

T
k )−1 = D21,T

k (40)

D22
k = Exn+1|Uk

{h̃(xk+1)R−1k h̃(xk+1)T }
+ (GkQkG

T
k )−1 (41)

with
h̃(xk+1) = ∇xk+1

hT (xk+1). (42)

VI. SIMULATION PARAMETERS AND SCENARIOS

To evaluate the EKF and UKF for the system in section IV
a simulation study is performed. In this study, two trains are
simulated, first driving on a straight track and then entering
a curve after 300 m with a radius of R = 1000 m. The
bound and the filters are evaluated for uniform and accelerated
movement of the trains. In the uniform case, one train moves
with constant velocity of 25 m s−1 and one is standing on the
straight track. For the accelerated scenario one train drives
with constant velocity of 30 m s−1 and the other one starts
with 20 m s−1 and then accelerates with 0.3 m s−2. With this
acceleration the second train approaches the leading train until
they meet after approximately 66 s. The starting point of the
trains in both scenarios is the beginning of the straight track.

The standard deviations for the process and measurement
noise are: σna,i = 2× 10−3 m s−2, σnba,i = 1× 10−5 m s−3,
σnδt,i = 0.375 m s−1, σnδṫ,i = 0.189 m s−2, σnνj = 0.1 m s−1
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Fig. 1. 1D position RMSE of the driving train for four visible satellites and
the constant velocity scenario.
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Fig. 2. 1D position RMSE of the standing train for four visible satellites
and the constant velocity scenario.

and σw = 1 m. For each scenario, the simulation was per-
formed for four static satellite constellations. The number
of visible satellites in these constellations is four and eight.
To show the impact of the geometry two different geometric
dilution of precision (GDOP) values are used. The filter state
is initialized randomly according to the initial state covariance
matrix P0 and the mean x0. The value of x0 is zero except for
the velocities which are set to fit the uniform and accelerated
scenario i.e. for the first train 25 m s−1 and 30 m s−1 and
for the second train 0 m s−1 and 20 m s−1. To calculate the
PCRB and filter RMSE multiple Monte Carlo runs must be
performed. In each run, the system equations from section IV
are simulated for 60 s with different samples of the process
noise. With this the expectation in (41) can be approximated.
To estimate the MSE matrix in (8) for the EKF and UKF also
the measurement noise has to be sampled for each run. This
leads to a rapidly growing complexity with each additional
run. We strike here a compromise between computation time
and accuracy and choose to simulate 1000 Monte Carlo runs
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Fig. 3. 1D position RMSE of the driving train for eight visible satellites and
the constant velocity scenario.

and 100 realizations of the measurement noise. Therefore the
EKF and UKF are evaluated 1× 105 times in each scenario.

VII. RESULTS

For the scenario where one train is standing and the other
moves uniformly, the resulting PCRB and the RMSE of the
EKF and UKF for the 1D positions of the trains is shown in
Figure 1 and 2 for four visible satellites and two GDOP values.
For the EKF, only one in twenty RMSE values is shown to
avoid masking the RMSE curve of the UKF. It can clearly be
seen in Figure 1 and 2 that the RMSE and the PCRB decay
rapidly after approximately 12 s. This is the time when the
driving train starts entering the curve. The changing direction
and the track constraints are beneficial for estimating the biases
on the pseudoranges. The constraints, given in form of the
track map, renders it possible to observe the pseudorange
bias component perpendicular to the track direction [4]. While
driving in the curve, the geometry between satellites and train
antenna changes and more parts of the bias can be observed.
Because the state space model assumes common pseudorange
biases for both trains, this improves also the position estimate
of the standing train. The RMSE of both trains therefore has
roughly the same value. The comparison of the PCRB and the
suboptimal filter, shows a difference of 1.2 m on the straight
track and then it converges to the bound while one train is
on the curved part of the track. This is true for both GDOP
values, but for bigger values the filters converge slower. For
the remaining results the RMSE is shown only for one of the
trains because the curves are alike.

To get an impression of the dependency of the 1D position
accuracy on the number of satellites the RMSE and the PCRB
is shown for two constellations with eight satellites in Figure 3
for the driving train. As before, the filters both estimate
the position efficiently after the train is in the curved track
part. The effect the GDOP has on the RMSE seems to be
getting smaller with an increasing number of satellites and the
RMSE curves for both values are getting closer together. The
reduction of the overall error when more satellites are visible
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Fig. 4. 1D position RMSE of the train with constant velocity for four visible
satellites and the accelerated scenario.

is insignificant. This is not surprising because the 1D position
can be determined with only two satellites. In Figure 4 the
result of the scenario where the second train is accelerating
and approaching the first train in the curve is shown. At
the beginning the RMSE behaves like in the example before
but after 45 s the PCRB and the RMSE begin to increase.
This effect is caused by a decrease in the bias estimation
accuracy. When the second train approaches the first train their
antenna-satellite geometry is getting more similar. Because
only the bias part perpendicular to the driving direction can
be observed, the number of observable bias components is
reduced and the position RMSE is getting bigger.

VIII. CONCLUSION

In this paper we proposed a state space model for coopera-
tive localization of trains with GNSS, IMU and a track map.
To evaluate the estimation performance of the suboptimal EKF
and UKF for this model, a version of the PCRB conditioned
on a input vector was derived and it was shown that it is
a special case of the hybrid parameter bound. To lower the
complexity a recursive version of the bound has been stated
and adopted to the concrete state space model. A simulation
study has been carried out to show that both filters are able to
estimate the 1D position and that the derived PCRB in fact is
a lower bound on the RMSE. After an initial phase of larger
errors the 1D position RMSE of the filters is close to the
PCRB. This improvement is mainly due to the pseudorange
bias estimation supported by the changing track geometry and
the track constraints.
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