Study of Detailed Degradation Behavior of Solid Oxide Electrolyzer Cells (SOEC)

Günter Schiller1, Michael Hörlein1, Frank Tietz2, K.A. Friedrich1

1German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart, Germany

2Forschungszentrum Jülich (JÜLICH) Institute for Energy and Climate Research Materials Synthesis and Processing (IEK-1)
Outline

• Introduction: Need for energy storage
 Principle of solid oxide electrolysis

• Motivation and concept

• Cell manufacturing and characterization

• Degradation study and results from post-mortem analyses

• Conclusion
Storage of Electricity from Renewable Energy Sources

- Need for energy storage
 - Increasing fluctuating power generation
 - Mobile applications

- Electrical energy difficult to store
 - Conversion to chemical energy

- Water electrolysis: \(\text{H}_2\text{O} + W_{\text{el}} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \)

- Solid oxide electrolysis is one possible conversion technology
Principle of Solid Oxide Electrolysis

Advantages:

- High temperature (600 - 900° C)
 - Fast reaction kinetics
 - Low overvoltage
 - High efficiency & high current densities
- No noble metals as catalysts
- Fuel versatility: CO$_2$ electrolysis
 → Co-electrolysis of H$_2$O/CO$_2$ possible
 → Syn-gas production
 → External (or internal) hydrocarbon formation

Problem:
Low longevity - Degradation
Present Work – Motivation and Concept

Systematic study: operating parameter → degradation

- Temperature (T)
- Fuel gas humidity (AH)
- Current density (i)

Experimental concept:

- Degradation experiments for 1000 h
- Test rig – quadruple cell measurement
 - Identical temperature, gas supply (and also incidents)
 - Four different current densities simultaneously
- Fuel electrode supported cells from FZ Jülich and CeramTec
 - Ni-8YSZ support | Ni-8YSZ | 8YSZ | CGO | LSCF
Objectives

- To gain fundamental understanding of degradation processes
 - Distinguish between degradation processes
 - Identify degradation mechanisms
 - Correlate them with operating parameters

- To optimize cells for electrolysis operation

- To adapt operating parameters for low degradation
Manufacturing Steps of SOFC Anode-Supported Cells

- **Substrate**
 - Warm pressing with Coat Mix® powder or tape casting
 - **1200° C**

- **Anode**
 - Screen printing
 - **1100° C**

- **Electrolyte**
 - Cofiring of anode and electrolyte
 - **1400° C**

- **Cathode**
 - Current collector
 - Transparent electrolyte
 - **PVD-CGO**

- **Solid oxide fuel cell**
 - Laser-cutting to dimensions up to 200 x 200 mm²
Solid Oxide Electrolyser Cells: Planar Design

Materials

Anode: \((\text{La,Sr})(\text{Fe,Co})\text{O}_3\)

Diffusion barrier: CGO – 1-5 µm

Electrolyte: 8YSZ – 5-10 µm

Cathode: Ni/YSZ

Cathode Substrate: Ni/YSZ
I-V Curves at 750 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)
I-V Curves at 800 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)

Cell Voltage / V

Current density / A*cm²

-1.5 -1 -0.5 0 0.5 1 1.5

-0.5 0 0.5 1 1.5 2

800°C - 7%AH
800°C - 40%AH
800°C - 60%AH
800°C - 80%AH
Degradation Experiment and Impedance Data Interpretation

- 4 cells measured simultaneously at different current densities
- Linear degradation after initial phase
- Be careful with interpretation of voltage degradation rate
Degradation Experiment and Impedance Data Interpretation

$ASR(t) = \frac{U(t) - OCV}{i(t)}$

- Degradation rate at 1.5 A/cm² only 13 % higher than at 1.0 A/cm²
- Degradation rate at 0.5 A/cm² significantly lower
- ASR degradation rate about 30% compared to 3% voltage degradation (per 1000 h @ 0.5 A/cm²)
Degradation Experiment and Impedance Data Interpretation
Method 1: DRT-Analysis with parameter variation

Impedance - Spectra

Levenberg-Marquardt algorithm

DRT-Spectra

Information for improved CNLS fitting

Fuel electrode: 2 slpm 80% H2O, 20% H2
Oxygen electrode: 2 slpm Air
T = 800°C
Degradation Experiment and Impedance Data Interpretation
Method 2: Physico-chemical modelling

5 rate limiting processes:

- Ohmic contributions
- First Fuel Electrode (FE) Process: $1-2\cdot10^4$ Hz
 Charge transfer reaction at TPB coupled with ionic transport in porous electrode geometry
- Second Fuel Electrode (FE) Process: approx. $1\cdot10^3$ Hz
 Charge transfer coupled at TPB
- Oxygen Electrode Process: $1-2\cdot10^2$ Hz
- Mass transport limitation: $1-2\cdot10^1$ Hz
 Diffusion through FE-support along with gas conversion

→ Both methods are in good agreement!
Degradation Experiment and In-situ Data Interpretation

Equivalent circuit model

- **L₁**: High frequency induction
- **P₀**: Ohmic resistance (> 10^5 Hz)
- **P₁**: Fuel electrode process A (~ 10^4 Hz)
- **P₂**: Fuel electrode process B (~ 10^3 Hz)
- **P₃**: Oxygen electrode process (~ 10^2 Hz)
- **P₄**: Fuel electrode mass transport (~ 10^1 Hz)
Influence of Current Density on Degradation

- Ohmic resistance contributes more than 50% of total ASR.
- Degradation of ohmic resistance is most severe.
- Oxygen electrode has small ASR but high contribution to degradation.
- Fuel electrode process 1 degrades while process 2 improves performance.
Influence of Current Density on Degradation

P_0: Ohmic resistance
- Obvious correlation with current density
- Linear degradation with time
Influence of Current Density on Degradation

P_1: Fuel electrode process 1

- Also obvious correlation with current density
- Degradation initially fast but slowing down with time
Influence of Current Density on Degradation

P_2: Fuel electrode process 2
- Offset of 1.0 A/cm² curve is likely artifact (compare process 3)
- Degradation independent of current density
- Initial improvement of performance
- Very stable after initial change
Influence of Current Density on Degradation

P_3: Oxygen electrode process
- Shift shown by 1.0 A/cm² curve is likely artifact (compare process 2)
- Initially stable → afterwards linear degradation
- Degradation independent of current density
Influence of Current Density on Degradation

P_4: Fuel electrode mass transport
- Very little degradation
- Independent of current density
Influence of Current Density on Degradation

Degradation after 1000 h
- Ohmic resistance: strong dependence on current density
 Dependence possibly exponential
Influence of Current Density on Degradation

Degradation after 1000 h

- Fuel electrode process 1: clear linear dependence on current density
- Other three processes: no current dependency
Humidification

Ohmic resistance (R_0):
- Dependent on current density

Fuel electrode polarization (R_{1+2}):
- Lower degradation rate at higher humidities…
- … but higher degradation dependence on current density
Humidification

Oxygen electrode polarization (R_3):
- Humidity has very little influence

Fuel electrode polarization (R_4):
- Generally small degradation
- Lower at higher humidity
- No obvious trend
Post-mortem Analysis – Electrolyte

Reference

1000 h @ OCV

1000 h @ 1.5 A/cm²

Ohmic resistance:
- Weakening of YSZ|CGO|LSCF interface → probably formation of cracks
- Visible cracks probably formed during sample preparation along weakened microstructure
Post-mortem Analysis – Oxygen Electrode

Reference 1000 h @ OCV 1000 h @ 1.5 A/cm²
Post-mortem Analysis – Oxygen Electrode

- Formation of a new crystalline compound
- Higher polarization \(\rightarrow\) change more pronounced
- More detailed analyses necessary for reliable information on new phase
Post-mortem Analysis – Oxygen Electrode

oxide/metal species
Post-mortem Analysis – Fuel Electrode

Percolation
- Ni almost completely percolated
- Ni can be separated from percolation network in cross section
EDX measurement: no Ni depletion

1000 h @ 1.5 A/cm², 850°C and 80% MH
Conclusion

- Correlation between degradation and current density has been investigated
- Ohmic resistance dominates degradation and increases with current density
- Oxygen electrode contributes significantly to degradation and is independent of current density
- Higher frequency fuel electrode process is significant for degradation and dependent of current density
- Lower frequency fuel electrode process is stable after initial activation and independent of current density
- No degradation in mass transport limitation
- Results of post-mortem analyses give further information and must be further evaluated
Acknowledgment

I'd like to thank my PhD student Michael Hörlein for his scientific work and strong effort and Frank Tietz and his co-workers from Forschungszentrum Jülich for manufacturing and providing cathode-supported cells for electrolysis operation.

Financial support from Helmholtz Association in the frame of the Helmholtz Energy Alliance „Stationary electrochemical solid state storage and conversion“ is gratefully acknowledged.

Thank you for your attention