

Electrical Thrusters in the EC MEGAHIT* and DEMOCRITOS* Projects

*Megawatt Highly Efficient Technologies for Space Power and Propulsion Systems for Long-duration Exploration Missions *Demonstrators for Conversion, Reactor, Radiator And Thrusters for Electric Propulsion Systems

F. Jansen¹, A. Semenkin², W. Bauer¹, J.-C. Worms³, E. Detsis³, E. Cliquet⁴, F. Masson⁴, J.-M. Ruault⁴, E. Gaia⁵, T.M. Cristina⁵, T. Tinsley⁶, Z. Hodgson⁶, *A. Beaurain⁷*, *F. Lassoudiere⁷*, *O. Faye⁷*, P. Fayolle⁷, F. Tessier⁷, *L.N.F. Guimarães⁸*

¹DLR Institute of Space Systems Bremen, Germany ²Keldych Research Center Moscow, Russia ³European Science Foundation Strasbourg, France ⁴CNES Paris, France ⁵Thales Space Torino, Italy ⁶NNL Sellafield, UK ⁷Snecma, France ⁸Instituto de Estudos Avançados, Brazil (Guest Observer)

Overview

- 1) Introduction
 - a) 'History': DiPoP=> MEGAHIT => DEMOCRITOS
- 2) European-Russian MEGAHIT
 - a) study outputs: worldwide interests for MW NEP and high level spacecraft requirements,
 - b) proposal: key technology plan including stakeholders and subsystems,
 - c) plan for a political as well as public supportable reference space mission and
 - d) MEGAHIT global roadmap for international realization of NEP respectively INPPS (International Nuclear Power and Propulsion System)
- 3) DEMOCRITOS
- 4) Conclusions and Hints

1) Introduction: DiPoP

RANGE OF POTENTIAL APPLICATIONS:

Mars Manned (split) missions: humans chemical propulsion, infrastructure nuclear. Outer Planet Exploration: Jupiter sample return, Neptune orbital survey and lander. Heliosphere and beyond Exploration.

NEO management: Earth threatening deflection/destruction, survey and mining. Planetary surface or 'space port' power generation.

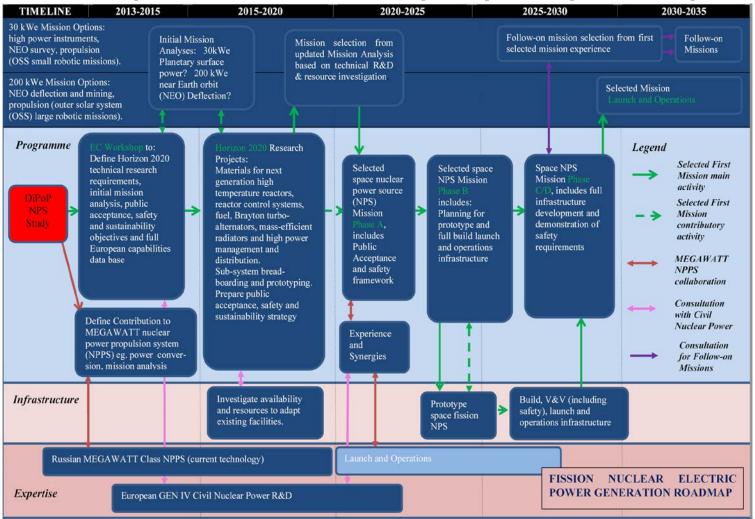
High power ground penetrating radar, ice-melting laser, long distance high data rate communications.

Space-based NEO tracking radar for trajectories obscured by the Sun. Removal of 'dead' spacecraft from Earth orbit to reduce space debris.

30 kWe prioritisation:

Planetary surface power generation, Small robotic exploration and NEO survey, high power radar.

200 kWe prioritisation:

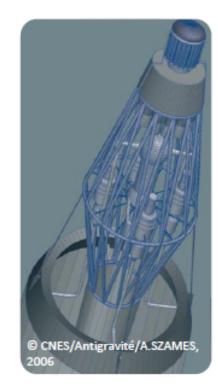

NEO deflection, survey, mining, outer planet robotic exploration, large infrastructure transportation.

1) Introduction: DiPoP (low power) roadmap

Îns 🗇

1) Introduction: DiPoP main conclusions

The **ENPS 2005** recommendations progressed significantly. Advisory Board guidance leads to a coherent European NPS Roadmap. **Space and Civil/Submarine** fission NPS requirements differences remain. NPS Advisory Board advise focus on higher power in applications prioritisation of: 30 kWe: power sources for planetary infrastructure/high power instruments, 200 kWe: Earth threatening NEO deflection/outer solar system exploration. Technical: 30 kWe and 200 kWe gas cooled or LM closed cycle Brayton **Europe** has the potential capability and interest but needs: technical and infrastructure development and practical experience. Collaboration: Europe Generation IV NPS, Russia MEGAWATT Class NPPS. **Public Acceptance** Management integral early part of any project. European Safety Framework for NPS and infrastructure to deliver required. **Sustainability** requires long term programme of R&D for multiple missions. **NPS R&D priorities** for EC Horizon 2020 (short, medium longer term) identified. **Mission analysis** needs space science & exploration, R&D and nuclear organisations.



2) European-Russian MEGAHIT project

- MEGAHIT topics:

The topics addressed by MEGAHIT cover all the areas of space nuclear electric propulsion. The technological plans cover eight topics

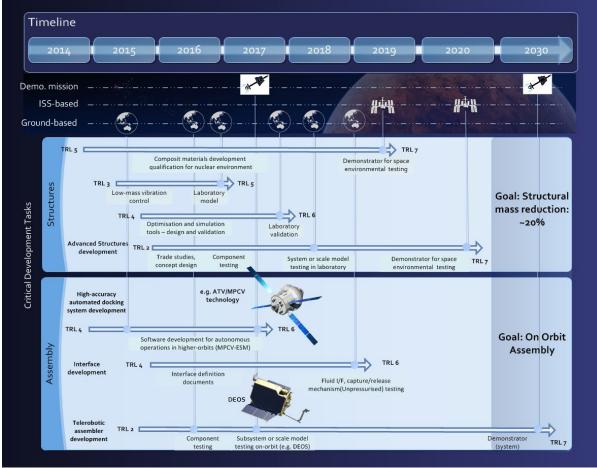
- 1. Fuel and core, relating to nuclear technologies and including shielding.
- 2. Thermal control, addressing heat transfer and radiating devices.
- Conversion, addressing the technologies of conversion of thermal energy into electricity at high power level.
- 4. Propulsion, relating to electric thrusters technologies
- Power management and distribution, relating to the high power converters and distribution cables between the generator and spacecraft.
- 6. Spacecraft arrangement and system architecture addressing the system architecture, lightweight structures and assembly in-orbit.
- 7. Safety and regulations, addressing the nuclear safety and other regulations.
- Communication and public awareness, addressing the necessary steps to take to successfully communicate a nuclear space project to the public.

2) European-Russian MEGAHIT project

MEGAHIT roadmap:

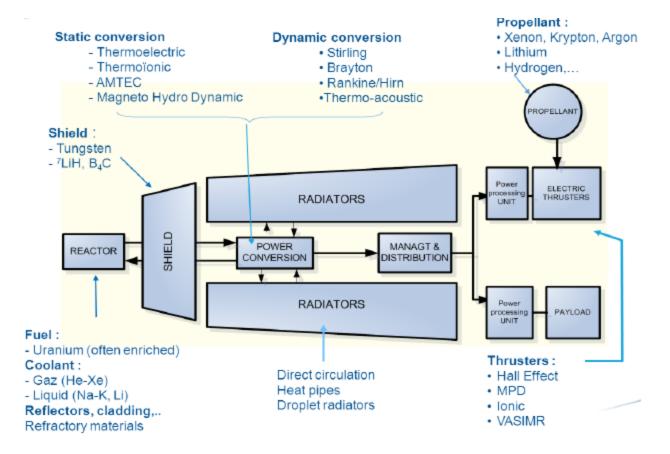
INTERNATIONAL NUCLEAR POWER AND PROPULSION SYSTEM (INPPS)

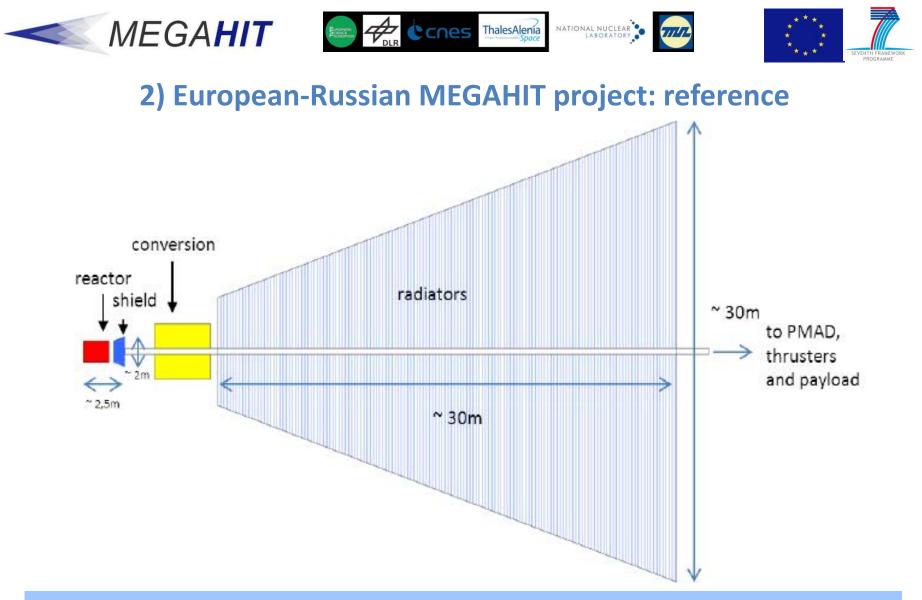
ROADMAP


1	MEGA	HIT EXECUTIVE SUMMARY	3
2	ROAD	MAP INPUTS	5
3	FINAL	MEGAHIT SYSTEM AND SUBSYSTEMS ROADMAP	11
	3.1 F	RECOMMENDED RESEARCH & TECHNOLOGY ROADMAP	11
	3.1.1	Reactor and shielding options	11
	3.1.2	Power conversion options	13
	3.1.3	Thermal control options	15
	3.1.4	Electric Power Management and Distribution options	19
	3.1.5	Electric Propulsion options	21
	3.1.6	Payload options	24
	3.2 l	AUNCHER, ASSEMBLY AND SYSTEM ARCHITECTURE	24
	3.2.1	European Launchers	24
	3.2.2	U.S.A SLS	25
	3.2.3	Russian Launchers	25
	3.2.4	Other Launcher Options	26
	3.2.5	Launcher recommendations	26
	3.3	ASSEMBLY AND SYSTEM ARCHITECTURE	26
	3.3.1	Recommendations	27
	3.4 1	AISSION REQUIREMENT OPTIONS	28
	3.4.1	NEO deflection option	29
	3.4.2	Outer solar system mission option	30
	3.4.3	Lunar orbit tug option	31
	3.4.4	Manned Mars mission robotic cargo	31
	3.5 0	ROUND & IN-ORBIT TECHNOLOGY DEMONSTRATORS	31
4	COMM	IUNICATIONS AND PUBLIC SUPPORT	33
	4.1 F	PUBLIC COMMUNICATION STRATEGY GUIDELINES	33
5	INPPS	AND INTERNATIONAL COOPERATION	37
~	00000		

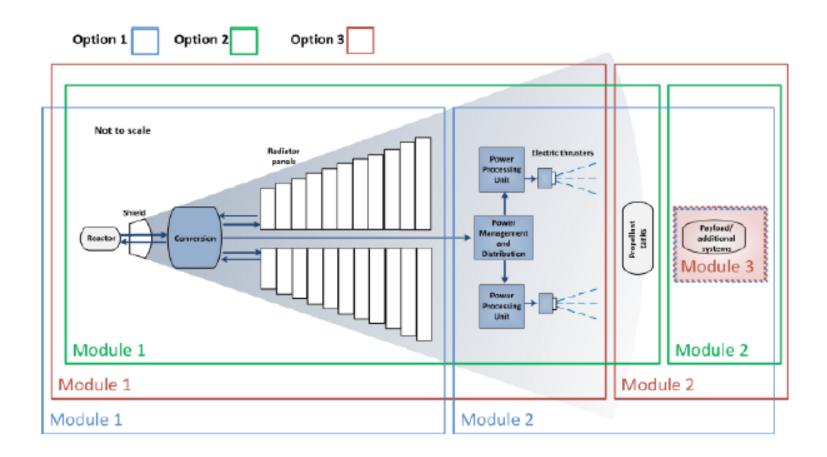
2) European-Russian MEGAHIT project: roadmap

Successful project realization is a truly global project and comparable with the Apollo and ISS projects.

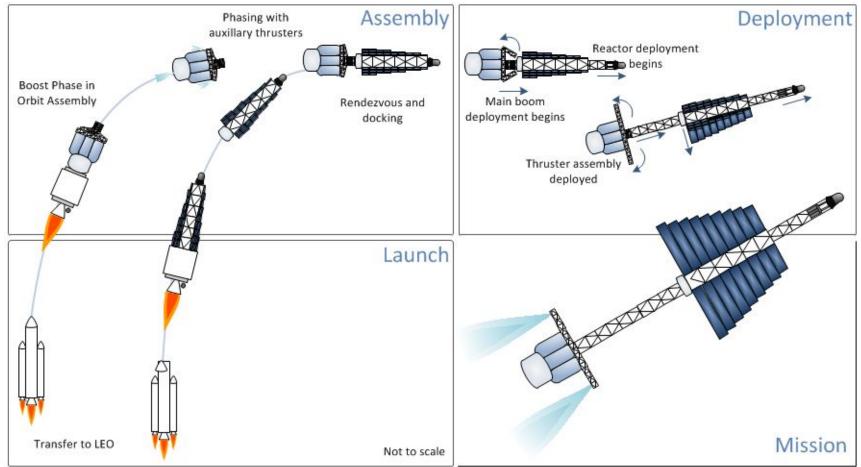

5



2) European-Russian MEGAHIT project: INPPS General Architecture / Subsystems



2) European-Russian MEGAHIT project: Robotic Autonomous Assembly



2) European-Russian MEGAHIT project: mission

3) DEMOCRITOS project

- 2015-2016: EC Horizon 2020 DEMOCRITOS
 (Demonstrators for Conversion, Reactor, Radiator And Thrusters for Electric Propulsion Systems)
- DEMOCRITOS very good content + schedule: DiPoP + MEGAHIT roadmaps + Russian NPPS
- Demonstrator Concepts regarding NEP
 - 1) DEMOCRITOS-GC (Ground Component): a) interaction of the major subsystems (thermal, power management, propulsion, structures and conversion) between each other and with a (simulated) nuclear core providing high power (~100kW) and b) preliminary designs of all INPPS subsystems and ground based test benches
 - 2) DEMOCRITOS-CC (Core Component): concepts of nuclear space reactor, specification of a core demonstrator including analysis of the regulatory and safety framework
 - 3) DEMOCRITOS-SC (Space Component): preliminary design of INPPS, detailed assembly and servicing strategy in orbit

DEMOCRITOS CEF study (DLR Bremen)

- forming a cluster around NEP (invitation to external stakeholders plus workshop + PSA/SRC EPIC)
- propose ideas for ground and flight demonstrator realizations
- expanding international cooperation Europe/Russia + Brazil, other nations demonstrators realizations

4) Conclusions and Hints

DiPoP: <u>www.DiPoP.eu</u> (documents and roadmap)

MEGAHIT: <u>www.megahit-eu.org</u> (documents, roadmap/recommendations)

In the focus for INPPS demonstrations and realization: politics (strong guidance), public, space industry, space organisations and related organisations, space & space facing nations and ground and hardware tests

INPPS – PROMOTE and TAKE PART!