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BACKGROUND

The loss of the upper limb (hand, elbow, shoulder) is one of the most disabling conditions a
person can ever experience, leading to a severe loss of daily-life functionality. In Assistive Robotics,
the problem of designing, constructing and testing a prosthetic robotic arm/hand is formidable:
it must enforce high dexterity—many degrees of freedom, fast motions, large workspace and
high precision—while respecting strict requirements on weight, power consumption, noise and
appearance. Nowadays, relatively dexterous elbow, wrist and hand prostheses are commercially
available that get more and more sold and implanted; prosthetic control is then the problem of
enabling the amputee to control these artifacts to their best extent (Farina et al., 2014): finely enough
to master their dexterity and naturally enough to let the patient feel that the prosthesis is a new part
of her body. This refers to the notion of embodiment as discovered, for instance, in the “rubber
hand illusion” (Botvinick and Cohen, 1998).

Such a control system must perform the desired actions quickly, precisely, safely and reliably, at
the same time providing sensory feedback to the subject (Bongers et al., 2012). Now, despite decades
of academic research, it is amazing how far from this ideal situation we still are, even neglecting
sensorial feedback: detecting the patient’s intent and transforming it into effective control signals
is still a largely open problem. Most research effort today is focused on advancing the process of
interpreting the signals generated by the remnant muscle activations in the stump, be it via surface
electromyography (Merletti et al., 2011) or more visionary techniques (Castellini et al., 2014);
this interpretation, given the unpredictability of signals recorded from human subjects and the
potentially endless variety of the situations in which a prosthesis is supposed to work, is enforced
using machine learning. Nevertheless, machine-learning-based myocontrol has not yet made the
final step to the clinics, to the prosthetic market, and in general it is not in use in the daily life of the
standard amputee. Why is it so? As of today, the control system is the bottleneck (Jiang et al., 2012),
the main failure being unreliability—the ever-impending possibility that the system will take the
wrong decision, potentially leading to catastrophic results.

Unreliability could be tackled in many ways; for instance, more sensors together with data
fusion would enable a finer intent detection; miniaturization and full wearability would enable a
smoother usage of the prosthesis. Following our previous research in the field, we hereby make
two recommendations: firstly, we suggest to use incremental learning, leading to the interaction
of the patient with the control system, rather than batch calibration; secondly, we sketch future
assessment protocols targeted at measuring the benefits of this very interaction, in order to
encourage researchers to test their prototypes on end-users.
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INTERACTION INSTEAD OF CALIBRATION

Most machine learning methods build an approximant function
(model) given a set of example input–output values. This is
the case in upper-limb prosthetics too: the model being sought
for maps signals such as the ones described above to control
signals for the prosthesis. Traditionally (Fougner et al., 2012)
this is enforced via batch calibration: a somewhat large set of
examples (training set) is collected at the beginning of a session;
a model is generated; and it is then used to predict the desired
prosthesis configuration, picking it from a predetermined, finite
and usually small set of possibilities (classification). Typically,
such a system predicts “hand opening,” “elbow flexing” and so
on; by batch calibration we refer to this necessity of gathering a
large training set, and to the fact that the calibration of the system
happens once at the beginning and can hardly be modified in due
course.

Some of the limitations inherent to classification have been
tackled by introducing simultaneous and proportional control
(Radhakrishnan et al., 2008; Jiang et al., 2009), whereby the
model predicts the activation level of each degree of freedom
of the prosthesis rather than one of a finite number of
predefined configurations. This breakthrough does not, however,
solve the rigidity inherent in batch calibration: the training
set must contain all possible sources of change in the input
signals in advance. This is essentially unfeasible (Castellini,
2015): typical such conditions are sweating, relative skin/muscle
motion, change in the musculoskeletal configuration due to
body movement, arm stretching, etc., and, last but not least, the
potential necessity of learning new configurations as time goes
by—that is, conditions which are an essential part of the life of
an amputee. For example, consider the (very different) upper-
limb position and orientation while grasping an object from a
shelf above one’s head, as opposed to grasping something on the
ground.

To solve this problem, either we build a model of the
arm/hand/body system and of the environment to interact with,
such that the training set will fairly represent the input space; or
we gather more data on demand, whenever the system fails or
the subject wants to teach the prosthesis a new pattern. If the
machine learning method we use allows for incremental learning,
one can, and in our opinion should, follow this latter route.
We refer to incremental learning as to the possibility to modify
the model at any moment during the usage without requiring a
reevaluation of the previous model, but only the incorporation of
novel information into it; updating the model, e.g., for different
postural variations, should be performed on demand. Updating
needs be easy and fast, allowing for an intuitive, natural and
reliable interaction with the prosthesis; an example of such a
method has been shown in Gijsberts et al. (2014).

Incremental learning should also allow for
downgrading/removing data that has become obsolete. Human
subjects do indeed get better and better at controlling their own
signals along time (Powell and Thakor, 2013); in this case, after
a while, the old data won’t reflect any longer the current state
of control and would have a negative influence on the overall
control performance.

A NOVEL FUNCTIONAL ASSESSMENT

PROTOCOL

The proposed shift of paradigm in myoelectric control calls for
a novel way to measure the outcomes of its deployment in
the target population, to foster discussion about its applicability
and comparison with existing systems. Furthermore, translation
and implementation of the device in the upper-limb amputees
population needs such results. Two main questions arise: what
to measure, i.e., on which domains do we expect change or
improvement, and what the purpose of the measurement is de
Vet et al. (2011); moreover, do we intend to measure capacity
(what a patient can do) or performance (what a patient does do?)
(Buffart et al., 2006) Capacity is mostly measured in a laboratory
setting, whereas performance is a reflection of acting in a home or
work environment.

To come to an accepted evaluation tool, the psychometric
properties of the measurement must be taken into account: is the
measurement instrument valid, reliable, and responsive? (Terwee
et al., 2007) The level at which measurements take place is
also important: the conceptual model of health (World Health
Organization, 2001) should be used to ensure that measurements
are performed at all functional levels (Stallinga, 2015). In this
model the functioning of the upper-limb amputee is examined
by looking at components of body function (signals, pain,
embodiment), activities (what the patient does in daily life)
and participation (what relationships the patient is involved in).
Functioning is influenced by environmental as well as personal
factors.

At the level of body functions it is desirable to measure
the signals used in the human-machine interface, the body
kinematics to record compensatory movements, physical and
cognitive fatigue, embodiment, and smoothness/fluency/velocity
of the upper limb movements. At the level of activities, uni-
and bi-manual execution of daily tasks should be evaluated;
the tasks should be increasingly relevant to the patient as the
developmental stages of the system progress along with the
ability of the patient to use the system itself. The tasks should
have a gradual increase in difficulty, which can be assigned
to the task itself but also to the context in which the task
is to be executed. Relevant existing measurement instruments,
which have previously been designed for the target population,
can be used to compile relevant tasks, such as SHAP (Light
et al., 2002), UBET (Bagley et al., 2006), UNB (Sanderson and
Scott, 1985), ACMC (Hermansson et al., 2005), or in case of
questionnaires, UEFS-OPUS (Burger et al., 2008), or even more
general questionnaires, such as DASH (Hudak et al., 1996).
Lastly, at the level of participation, questionnaires can be used
to evaluate work participation and work productivity with the
new device or participation in leisure activities. Concepts derived
from health-related quality-of-life evaluations should also be
considered: is the patient’s quality of life improving when using
the new device? The widely used Short Form-36 (SF-36) (Tarlov
et al., 1989) could be considered for this issue or the IPA (Impact
on Participation and Autonomy), which reflects participation
and autonomy in different domains (Cardol et al., 1999). Finally,
the patient and/or the researcher should rate satisfaction with the
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different levels of device development and the effects of the device
on different levels of functioning. Visual analog scales or Likert
scales could be considered to cover this issue.

In general, such a measurement instrument should be both
researcher- and patient-based—both the researcher and the
patient should assess the performance of the control system;
and in our case, in which the patient/system interaction is
to be evaluated, scoring at the upper end of the instrument
(ceiling effect) is particularly undesired. The tasks selected for the
assessment should be assigned a difficulty factor, to be determined
in collaboration with the target population. Besides this, the
relevancy of the tasks or questions needs attention: if an upper-
limb amputee is asked to perform activities or answer questions
regarding prosthesis use and she never uses her prosthesis during
daily life, the validity of the measurement instrument is at stake.
Thus, in the developmental stage of a measurement instrument,
involvement of the target population and pilot testing are a
prerequisite. We also advise to measure capacity during the try-
out phase in the laboratory, and performance when the system
has reached its (pre)final stage, when patients should be observed
during their personal daily life.

DISCUSSION

Incremental learning leads to interaction with the prosthesis,which
in the first place can be used to correct apparent failures of
the control system. By “interaction” here we mean a structured

approach of the interplay of the patient with the prosthesis—
the feeling that she is teaching the robot what she wants. This
will, in our opinion, lead to an increased feeling of symbiosis
and embodiment, even though the sensorial feedback is still
technologically unripe. Lastly, we believe it is essential to exploit
the phenomenon of reciprocal learning—the possibility that not
only the prosthesis adapts to the patient’s signals, which is
inherent in the usage of machine learning, but as well that she
learns to use it better and better along time. This entails that her
signals change and, from the point of view of the control system,
improve, i.e., they get more repeatable and separated in the input
space.

In view of this, we also need a novel instrument capable of
measuring, both numerically and subjectively, the fruitfulness
of the patient/prosthesis interaction. The patient’s increasing
proficiency in performing daily-life activities using the prosthesis
must be quantifiable in a valid way. To this aim we propose
decisions that have to be made when developing a measuring
instrument, such as what will be measured with which purpose,
as well as whether the focus is on capacity or performance.
Moreover, a measuring instrument has to be developed that is
valid, reliable and responsive.
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