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Abstract—In this paper Raptor code ensembles with linear focusing however mainly on their decoding complexity under
random precodes in a fixed-rate setting are considered. An jnactivation decoding.
expression for the average distance spectrum is derived and . . .
this expression is used to obtain the asymptotic exponent dhe Despite their rateless capability, Raptor codes represent
weight distribution. The asymptotic growth rate analysis s then an excellent solution for fixed-rate communication schemes

exploited to develop a necessary and sufficient condition wler  requiring powerful erasure correction capabilities witiwl
which the f|xe|d-r_atg Rap(tjc_)r code ensemble exhibits a stidl  gacoding complexity. Hence, it is not surprising that Rapto
positive typical minimum distance. codes are actually used in a fixed-rate setting by existing
communication systems (see e.g. [10]). In this context, the
I. INTRODUCTION performance under ML erasure decoding is determined by the

distance properties of the fixed-rate Raptor code ensemble,

Fountain codes [1] are erasure codes potentially able . 1 the best knowledge of the authors have not yet been
generate an endless amount of encoded symbols. As S%Iyzed.

they find application in contexts where the channel erasure ] ] ] i
rate is not a priori known. The first class of practical foumta !N this paper we analyze the distance properties of fixed-

codes, Luby Transform (LT) codes, was introduced in [Z'ﬁte Raptor c_ode_s. In particular,_we focus on the case where
together with an iterative belief propagation (BP) decgdirfi® Precode is picked from the linear random ensemble. The
algorithm that is efficient when the number of input symbols choice of this e_nsemble is not arbitrary. Th_e precode used .by
is large. One of the shortcomings of LT codes is that in order 80Me standardized Raptor codes [4], [5] is a concatenation

have a low probability of unsuccessful decoding, the emgpdi©f WO systematic codes, the first being a high-rate regular
cost per output symbol has to & (In(k)). Raptor codes [3] low density parity check (LDPC) code and the second being

overcome this problem. They consist of a serial concatenatiPSeudo-random code characterized a dense parity check ma-
of an outer precod€ with an inner LT code. The LT code trix. _These precodes were de_S|gned to behave like c_odes of
design can thus be relaxed requiring only the recovery oft3€ linear random ensemble in terms of rank properties, but
fraction 1 — ~ of the input symbols withy small. This can be allowing a fasF algorithm for matrix vector.multlpllcatlc[ml].
achieved with linear encoding complexity. The outer precod NUS, We conjecture that the results obtained for the engemb
is responsible for recovering the remaining fraction oftinp considered in this work may give (as a first approximation)
symbols,~. If the precodeC is linear-time encodable, thenhlr_lts_ on the distance pr(_)pemes of Raptor codes employed in
the Raptor code has a linear encoding complexi®y(k), existing systems. For .th.IS Raptor_ (_:ode ensemble we dev.elop
and, therefore, the overall encoding cost per output symibinecessary and sufficient condition to guarantee a strictly
is constant with respect tb. Furthermore, Raptor codes ard?0Sitive typical minimum distance. The condition is found
universally capacity-achieving on the binary erasure okan t© depend on the degree distribution of the inner LT code
Most of the works on LT and Raptor codes consider B@"d on the code rates of both the inner LT code and the
decoding which has a good performance for very large inp(ﬂuter) preco_de. A necessary condition is also derived lwhic
blocks ¢ at least in the order of a few tens of thousandeyond the inner/outer code rates, depends on the average
symbols). Often, in practice smaller blocks are used. FBHtPUt degree only.
example, for the Raptor codes standardized in [4] and [5] The rest of the paper is organized as follows. The main
the recommended values bfrange from1024 to 8192. For definitions are introduced in Section Il. Section 11l proz#
these input block lengths, the performance under BP degodihe derivation of the average weight distribution of thigpkal
degrades considerably. In this context, an efficient marimucode ensemble and of the associated growth rate. Section IV
likelihood (ML) decoding algorithm in the form of inactivah  provides necessary and sufficient conditions for a posiyige
decoding [6] may be used in place of BP. Recently, Mical minimum distance. The conclusions follow in Section V.
decoding for Raptor and LT codes has been analyzed [7]-[9],
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Fig. 1. Raptor codes consist of a serial concatenation afealiblock code We now focus on the gveragg IOWE of Fhe LT code. Let
(pre-code) with a LT code. us denote byi the Hamming weight of the input of the LT
encoder, and let us assume that the output symbol of the LT
code has degreg Let us denote by;; the probability that
Il. PRELIMINARIES any of then output bits of the LT encoder takes the valle

We consider fixed-rate Raptor code ensembles based ongi¢n that the Hamming weight of the intermediate word is
encoder structure depicted in Figure 1. The encoder is giv@id the degree of the LT code output symboj,is.e.,

by a serial concatenation of gn, k) outer precode with an o o _ N s

(n,h) inner fixed-rate LT code. We denote hy the outer Pyt = Pr{Xs = lun(V) =1, deg(X;) = j}

encoder input, and byJ the corresponding random vectorfor any: € {1,...,n}. This probability may be expressed as
Similarly, v and x denote the input and the output of the min(l,) M hej

fixed-rate LT encoder, witlV andX being the corresponding Pl = Z ('i)(lfi) _ @)
random vectors. The vectots v andx are composed by, at . i (’;)

h andn symbols each. The symbols of are referred to as l_mai(o’dérﬁ )

sourcesymbols, whereas the symbolswfandx are referred Removing the conditioning ofi we obtainp;, the probability
to asintermediateand outputsymbols, respectively. of any of then output bits of the LT encoder taking value

We restrict to symbols belonging &. We denote byou(a)  given a Hamming weight for the intermediate word, i.e.,
the Hamming weight of a binary vecter For a generic LT

code output symbok;, deg(z;) denotes the output symbol p=Pr{X; = 1wu(V) =1}
degree, i.e., the number of intermediate symbols that atechd
(in Fy) to producez;. We will respectively denote by, =
k/h, i = h/n, andr = k/n = ror; the rates of the outer d
code, the inner LT code, and the Raptor code. b= Z Q;pjii-
We consider the ensemble of Raptor codes J=1
(%60, 1i,70,m) Obtained by a serial concatenation oSince the output bits are generated by the LT encoder indepen
an outer code in th¢rin, rorin) binary linear random block dently of each other, the Hamming weight of the LT codeword
code ensemblei,, with all possible realizations of anconditioned to an intermediate word of weighs a binomially
(n,rn) fixed-rate LT code with output degree distributioristributed random variable with parameteraindp;. Hence,
O ={0,0,9;,...,0.,..}, whereQ; corresponds to the we have

for any: € {1,...,n}. We have

max

max

probability of having an output symbol of degreéanNe finally n
denote a<? the average output degre@,= >, i€;. Pr{wy(X) = wjwny(V) =1} = ( )p}“(l —p)"" ™. (5)
In the following we make use of the notion of exponential v
equivalence [12], as follows. Two real-valued positive sefhe average IOWE of a LT code may be now easily calculated
quencesi(n) andb(n) are said to be exponentially equivalentultiplying (5) by the number of weightintermediate words,

writing a(n) = b(n), when yielding o
Ai = w _ n—w. 6
nll_{rgo % log, % =0. (1) lw (l) (w)pl (1 Pl) (6)

_ _ Making use of (2), (3) and (6), fow > 0 the average WE of
Moreover, given two pairs of realg:i,y1) and (z2,y2), We  the fixed-rate Raptor code ensemble can be expressed as

write (x1,y1) = (z2,y2) Whenzy > x5 andy; > ys. N

h
Aw _ <7’L>2h(17“o) Z < >pzﬂ(1 _pl)nfw' (7)
IIl. DISTANCE SPECTRUM OFFIXED-RATE RAPTOR CODE w =1 !
ENSEMBLES

A. Average Weight Enumerator

Let us denote byd,, the average weight enumerator (WEP' Growth Rate of Fixed-Rate Raptor Code Ensembles

of the ensembl&’ (€, 2, i, 7o, n). Forw > 0 we have In this subsection we compute the asymptotic exponent
(growth rate) of the weight distribution for the ensemble

Coo (o, Q,1i,75), that is the ensembl&' (%5, Q, 7,70, n) IN

the limit wheren tends to infinity for constant; and r.
Hereafter, we denote the normalized output weight of the
where A2 is the average WE of the outer precode, atjd, Raptor encoder by = w/n and the normalized output weight
is the average input output weight enumerator (IOWE)yof thef the precoder (input weight to the LT encoder) by l/h.

- )
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Fig. 2. Growth rate vs. normalized output weight The solid line shows
the growth rate of a linear random code with rate= 0.99. The dot-
dashed, dashed, and dotted lines show the growth €a¢és of the ensemble
G0 (Go, P 7y, 1o = 0.99) for ; = 0.95, 0.88 and 0.8, respectively.

Using the well-known exponential

Gilbert-Varshamov Bound
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Fig. 3. Overall rater vs. the typical minimum distancémi,. The solid line
represents the asymptotic Gilbert-Varshamov bound. Tifereint dashed and
dotted lines represent Raptor codes ensenfbles%,, 22, r = r/rq,70)
with different outer code rates,.

equivalencd he asymptotic exponent of the fixed-rate Raptor code ensem-

(") = 2°M(@) whereH, is the binary entropy function, ble weight distribution is finally

for large n the multiplicative term in front of the summation

in (7) fulfills

<Z>2—h(1—ro) = onlHs(@)—ri(1-r)] . g

Therefore,A,, = Ag, in (7) fulfills

Agn = ﬁz gn[riHy D)+ logs pr+(1—) log, (1-p7)]

where

dmax

Z Qﬂpal

and

N)I»—l

Pii=

[1 - (1 —2Z)j].

$90(0) = a2/ (@)

[e3%

we can simplify the expression of,, as

Using the result

Ay = 27H6(@)=7i(1=70) ()]

where

fmax(W) —mlaxf( 1)

and

f(,1) := riHp (1) + @ log, py

+ (1 —w)logy (1 —pj) .

1
= lim —logy Aun

n—soo N
= Hp(w) — ri(1 — o) + fmax(W).
Moreover, the real number

G(w) :=

dmin := inf{@® > 0 : G(w) > 0}

is the typical minimum distance of the ensemble.

Fig. 2 showsG (w) for the ensemblés, (%,, Q) ri,7,),
where Q) is the output degree distribution used in the
standards [4], [5] (see details in Table I) and= 0.99 for
three different; values. It can be observed how the curve for
r; = 0.95 does not cross the-axis, the curve for; = 0.88
hasdmin = 0 and the curve for; = 0.8 hasdmi, = 0.0005.
The figure also shows the growth rate of the precode, a linear
random code withr = 0.99. It can be observed how the typical
minimum distance of the precode is larger than that of the
concatenated (Raptor) code.

Fig. 3 shows the overall rateof the Raptor code ensemble
Coo(Co, VP 1y = 71/1o,7,) Versus the typical minimum
distancednn. It can be observed how, for constant overall
rate r, dmin increases as the outer code ragedecreases. It
also can be observed how decreasipgllows to get closer
to the asymptotic Gilbert-Varshamov bound.

IV. RATE REGIONS

We are now interested in determining whether the ensemble
exhibits good typical distance properties. More specifical
we are interested in the existence of a strictly positiveciyip
minimum distance. A sufficient condition for having a poti
typical minimum distance is

lim G(w) < 0

w—0t



which implies TABLE |
DEGREE DISTRIBUTIONS2(!) | DEFINED IN [4], [5] AND (%), DEFINED IN
(3]

ri(1—17o) > lm frax(w). (8)
w—0t
Unfortunately, a closed-form expression for the right-dhaitle | Degree| oW | Q® |
of (8) does not exist in general. However, the order of limit 1 0.0098 | 0.0048
and the maximization can be inverted by observing that the 2 | 0.4590] 0.4965
function fmax is right-continuous atv = 0, that is 5 R g
unction tmax IS 1g =4 7 0.1134 | 0.0734
. _ 5 0.0822
. fnax(10) = fma(0). 8 0.0575
_ o _ _ 9 0.0360
It is now possible to recast the right-hand side of (8) as 10 0.1113
. . 11 0.0799
im fpa(w) = lim maxf(w,l) = max lim f(w,I) 18 0.0012
W0+ w—=0t [ [ w—0t 19 0.0543
= 40 0.0156
= m?x riHp (1) + log, (1 —pi)] o5 00182
66 0.0091

= f:wax(ri) ) |

where we emphasized th§t,, hides a dependency on.
Computing (9) implies carrying out a maximization which

cannot generally be computed analytically. However, tefu ¢« | the following we introduce an outer region that can

tion _to_be_maX|m|zed is sufﬁuen_lvell b_ehaveds_o_ that the g computed more easily, and only depends on the average
maximization can be done numerically in an efficient mann%utput degree.

0 | 46314] 5825 |

Definition 1 (Positive typical minimum distance regiomiVe = proposition 1. The positive typical minimum distance region
define thegositivetypical minimum distance region of a Raptorregl-on of a fixed-rate Raptor code ensemigle, (%5, Q, ri, o)
code ensemble as the sét of code rate pairs(ri, ) for fifills 2 C ¢ where Y

which the ensemble possesses a positive typical minimum
distance. Formally : O — {(ri,ro) = (0,0)|r; < min (fb(ro), %)} (10)
P = {(ri,ro) = (0,0)|dmin(Q, 77, 70) > O}, with
Where we have used the notatidmin = dmin(Q2,7i,7,) tO b(ro) = .
emphasize the dependence®@nr; and r.. Hp(1 —70) — (1 —10)
Theorem 1. An inner positive typical minimum distance”"00f. The proof goes by lower bounding;, for @ — 0.
region, .7, is given by Observing (2) we can see how, is summation of the
number of Hamming weigh@on codewords generated by all
I i={(ri,70) = (0,0)]7(1 — ro) > fra(ri)}- possible input weights to the LT encoder. A lower bound to
Agn is the number of Hamming weighitn codewords gener-
ated only by inputs to the LT encoder of weight= 1 — 7.
Manipulating the expression obtained and making use of the
Theorem 2. The inner positive typical minimum distanceexponential equivalency introduced in Section Il the espre
region.# and the positive typical minimum distangé region sion in (10) is obtained. O

coincide,.s = 2. It is important to point out that the asymptotic exponent
Proof. Due to space constraints we provide only a sketch of the weight distribution captures linear-sized codeword
the proof. The argument is based on the observation that dihg¢]. Codewords whose weight grows with a sublinear weight
pair (ri,7,) such thatr(1 — r,) < limg_.g+ fmax(w) cannot should be subject to an ad-hoc analysis.

belong to £ since for these pairlimg_,q+ G(w) > 0. An We now consider two different output degree distributions
analysis must then be carried out for thdsgr,) pairs such given in Table. |. The first one is the output degree distidout

Qlog, 7o

Proof. It follows from (8) being a sufficient condition for
having a positive typical minimum distance.

thatri(1—r) = limg_,o+ fmax(®), meanindimg_,o+ G(w) = used in the standards [4], [5], which we will refer to @§").
0. For these(r;,,) pairs, the only possibility for having a Then, we consider a distributidd® which was designed in
positive typical minimum distance is [3] for k£ = 120000.
) . In Fig. 4 we show the positive typical minimum distance
ﬁ}ljﬁ G'(w) <0. region,Z for Q1) andQ(?) together with their outer bound to

The proof is completed by showing that the above conditi tﬂe positive growth regiod. It can be observed how the outer

never holds, regardies s () (that is regardess 1% S0 R e erate curves, lon
the consideredr;, r,) pair). ri = 1. g , g

which the overall rate of the Raptor codestays constant. For
Although Theorems 1 and 2 fully characterize the positivexample, in order to have a positive typical minimum dis&anc
typical minimum distance??, they require the calculation of and an overall rate = 0.95, the figure shows that the rate of
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Fig. 4. Positive growth rate region. The solid and dotte@dimepresent the

condition has been developed too, which requires (besides
the inner and outer code rates) the knowledge of the average
output degree only. Despite the fact that only binary Raptor
codes have been considered, an extension to higher ordk fiel
is possible with a limited effort.

The work presented in this paper helps to understand the
behavior of fixed-rate Raptor codes under ML decoding and
it can be used to design Raptor codes with good distance
properties, for example, using numerical optimization.
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