
DSC 2016 Europe VR Julian Schindler and Frank Köster 

Paris, 7 – 9 Sep 2016 - 1 - 

A Dynamic and Model-Based Approach for 
Performing Successful Multi-Driver Studies 

Julian Schindler 1, Frank Köster 1 

(1) German Aerospace Center, Braunschweig, Germany, e-mail: {julian.schindler, frank.koester}@dlr.de 
 
Abstract – When designing driving simulator studies, sometimes high efforts have to be spent to make them 
successful. Some drivers may not behave as desired, leading to situations unforeseen by the developers. When 
looking at multi-driver studies, where multiple drivers need to interact with each other in one virtual environment, 
the probability of performing a successful study is even lower, as the behaviour of the human drivers cannot be 
fully controlled. While [Oel15b] already proposed guidelines for the creation of such scenarios, this paper 
describes how the probability of success can be monitored and even enhanced during scenario execution. 
Therefore, it describes an approach where the probability of success is modelled and where the scenario is 
dynamically adapted to provide higher rates of success.  
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Introduction 
Performing psychologically motivated driving 
simulator studies can be challenging. Scripts have 
to be implemented which describe the behavior of 
road users and active infrastructures, while several 
requirements have to be fulfilled. First of all, the 
scenario must be realistic in order to be 
transferrable into real life. Second, it must be 
reproducible, so that comparable results can be 
achieved in several runs. Third, the scenario needs 
to be resilient, as it has to cope with various 
behaviors of the drivers. Several other requirements 
may be added to this list according to the study to 
be performed. The resulting scripts mostly contain 
direct actions, i.e. changes of the behavior triggered 
by conditions related mostly to the human driven 
vehicle, like e.g. a virtual pedestrian jumping onto 
the street just in front of the human driven vehicle. 
Nevertheless, scenarios get more and more 
complex, as many actors have to be controlled, and 
as cooperative advanced driver assistance systems 
(ADAS) are tested which influence the behavior of 
the surroundings. Two years ago, we proposed to 
investigate new ways of scenario design in order to 
cope with this rising complexity [Sch14]. This is 
especially true when a multi-driver simulation is 
used where simulators are linked and two or more 
human drivers are participating in the same virtual 
environment. Examples of such studies can be 
found in e.g. [Hee12, Oel15a, Müh11].  
In these studies, human drivers mostly have to 
interact with the simulated environment when at (at 
least) one point there is an interaction with one or 

more other human controlled vehicles. Therefore, a 
multi-driver scenario includes all individual 
interactions with the computer operated actors 
while it is also in control of the overall situation of 
each human driven vehicle. This is very important, 
as most of these scenarios are only successful 
when all human driven vehicles passed all 
interactions and scenes as desired, individually and 
with respect to each other. Esp. the latter increases 
the complexity, as the behavior of the individual 
human drivers has to be influenced when they do 
not behave as desired.  
Example: Two human controlled vehicles have to 
drive different ways through a complex urban area, 
including various interactions with computer 
operated actors. After a while of driving, both 
vehicles are supposed to meet each other on an 
intersection. If one vehicle in this example is too 
fast or slow, this may already have an effect on the 
interactions with the computer operated actors, but 
robust scenarios will be able to cope with that by 
directly instructing the involved computer operated 
actors. The bigger issue will be that the human 
driven vehicles are not going to meet on the 
intersection, and that direct influencing, like 
commanding the human driver to change the 
driving behavior (e.g. by verbally commanding “go 
slower”) or strong narrowing of driving options (e.g. 
by placing computer controlled vehicles around the 
human driven vehicles) may conflict with the study’s 
requirements. The introduction of additional tasks 
for the drivers like keeping a given distance to 
leading vehicles or keeping a given speed is 
sometimes not applicable for studies or the 
realization is too complex. Therefore, the only 
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possible solution would be to influence the human 
driven vehicles in a more indirect way. 
In the following, a new methodology is shown which 
makes it possible to calculate the probability of 
success of a study. Further, it is shown how this 
information can be used to increase this probability 
by using indirect influencing measures, esp. 
focusing on multi-driver scenarios.  

Successful scenarios 
Ulbrich et al. [Ulb15] defined the terms “scene”, 
“situation” and “scenario”. They concluded that a 
scenario “describes the temporal development 
between several scenes in a sequence of scenes” 
and that “actions & events as well as goals & values 
may be used to characterize this temporal 
development in a scenario”. Following this 
approach, Fig. 1 shows two scenes which are 
supposed to happen after each other in an example 
lane change scenario, represented by the red line. 

 

Figure 1. Two example key scenes (on the left) being part of 
a scenario (red line), which is a sequence of key scenes 

(nodes) and actions/events (edges). Adapted from [Ulb15].  

A scenario therefore can be modelled as graph, or 
more precisely and due to the temporal order of 
scenes, as directed acyclic graph. A scenario with a 
single human driver always has one initial scene, 
where the simulation is started. The granularity of 
the upcoming scenes can vary and depends on the 
requirements of the overall study. In this paper a 
scenario consists of all key scenes which are 
needed to create the desired behaviour.  
Example: A lane change scenario requiring the 
usage of an indicator would be described as at least 
three consecutive nodes: (1) the scene at the 
beginning, (2) the scene after setting the indicator, 
and (3) the scene after changing the lane. In 
contrast, a scenario where setting the indicator is 
optional would not include scene (2).  
Key scenes always define required states for all 
involved agents (i.e. vehicles, pedestrians, traffic 
lights, ADAS, etc.) to different extent. Some agents 
will be fully defined in some scenes (e.g. the human 
driven vehicle at the initial key scene with a defined 
type, velocity, position, etc.), but sometimes the 
definitions cover only parts of the parameters.  
A scene is transitioning to another scene by actions 
and events occurring in between. Actions can be 
triggered proactively, or reactively as response to 

events (e.g. goals, values or behaviour of other 
road users). The latter is often used in scenario 
design, when an action is triggered e.g. after a 
vehicle passed a well-defined position on the track 
or when a given amount of time has passed.  
Using this definition, a scenario is successful, when 
all desired key scenes occurred in the needed 
order, i.e. when the complete directed path from the 
graph’s initial scene (i.e. the root node) to the 
targeted scenario ending scene has been visited. 
Vice versa, when at least one key scene is missed, 
the scenario is classified as unsuccessful. 

Probability of Success 
When the probability of success of the overall 
scenario has to be calculated, we propose to do this 
by adding probability values to each node/key 
scene in the graph. Each probability value then 
indicates how probable a single key scene is, 
meaning that all involved agents in this scene are in 
the desired state. The probability value of a node is 
depending on the probability values of all of its 
states, of the predecessor node and on the 
individual probabilities of the actions and events 
located on the edge between the predecessor node 
and the node itself. Both can even include 
conditional probabilities, so that the overall scene 
probability is calculated like a Bayesian Network 
(see Figure 2). 
In the former lane change example, the probability 
of scene (3), where the vehicle is on the left lane, is 
depending on the probability of being on the right 
lane before and the probability of the occurrence of 
the action of the lane change. The probability of a 
lane change is rising, when the driver makes use of 
the indicator (conditional probability). 

 

Figure 2. Example Bayesian Network for scene n, where the 
probability of the scene itself (PSn) is depending on the 

probabilities of its states (PSt1,2), its parent scene (PS(n-1)) and 
some actions (PA1..3) 

The probability values are changing over time, as 
the scenario progresses through the key scenes. 
The key scenes will be reached one by one. In case 
of a miss, the scenario execution can be interrupted 
as it cannot be successful anymore.  
The occurrence of actions and events will become 
more or less probable over time, depending on the 
driving style of the human driver. Therefore it is 
important to monitor the driving style of the human 
driver all the time in order to be able to classify 
his/her behaviour and to estimate the probabilities. 



DSC 2016 Europe VR Julian Schindler and Frank Köster 

Paris, 7 – 9 Sep 2016 - 3 - 

Example: An experienced car driver is supposed to 
follow an urban road in a driving simulator study, 
where 50 km/h is the speed limit. The surrounding 
traffic drives at this speed, there are no other 
obstacles, and the driver already spent some time 
in the driving simulator. The upcoming key scene is 
located kilometres away, requiring a vehicle speed 
of 45-55 km/h. When the driver is driving 
consequently faster or slower, the probability of 
success for the upcoming key scene will fall.  
In literature, different methods are already existing 
(e.g. [Pla13]) which allow the prediction of velocity 
profiles of road users even in more complex 
situations, like at intersections or when including 
lead car behaviour. The probabilities of other 
actions or events may be predicted by using or 
adapting other methods like e.g. methods for 
manoeuvre classification [Gin10], driver’s intent in 
urban areas [Lie12] or generally [Dos11, Sat15]. In 
general, these methods can be simplified for the 
use case of driving simulator studies, as various 
parameters are well-known or can – in case of 
surrounding road users – even be chosen in a 
supportive way, e.g. the affordance of a lane 
change on a highway and hence its probability can 
be supported by a braking lead car and a free left 
lane. Nevertheless, this paper does not aim at the 
procedures of the single probability estimations, but 
focusses on the general methodology of using and 
combining the probabilities instead. 

A new dimension for multi-
driver scenarios 
Now the model-based approach is enriched by 
multiple drivers or road users. Multi-driver scenarios 
basically consist of at least two separate simulators, 
and each driver is following his/her own scenario. 
We distinguish between three classes of multi-
driver studies: (1) The study consists of completely 
separated scenarios, where the drivers will never 
meet (e.g. just to enhance the quality of the study 
as drivers in single driver simulations tend to 
behave differently than in the outside world, as they 
know that all the other drivers are only animated 
[Oel15a, Jah10]). (2) The study consists of 
scenarios with at least one single interaction point, 
where the drivers are supposed to interact with 
each other for a short moment. (3) Scenarios 
including a continuous interaction between drivers 
for a longer duration, like two vehicles being part of 
a platoon. 
Using the approach of representing a scenario as a 
graph, all of these different classes of scenarios can 
be represented by adding one scenario graph per 
driver, which effectively adds one dimension per 
driver. Whenever the drivers interact with each 
other, the corresponding key scenes will be part of 
each single driver scenario sub-graph. A typical 

class 2 multi-driver study with a single interaction 
point is shown in Figure 3. 

 

Figure 3. Example of a scenario graph of two drivers, which 
are supposed to follow separated scenarios (red/blue line) 

while meeting at one point in the scenario (green node) 

The approach for calculating the scenario success 
can now easily be adapted to multi-driver scenarios, 
as the success of one interaction scene will simply 
depend on the probabilities of actions, events and 
predecessor key scenes of all related drivers.  

Enhancing success of multi-
driver scenarios 
Now that success of multi-driver scenarios is 
calculable the question is how this information can 
be used to enhance it. Focussing on class 2 multi-
driver studies with singular interactions of drivers at 
precise positions (e.g. on intersections, acceleration 
lanes) in the virtual world, the main risk of a 
scenario failure is that different drivers are not 
driving with the considered speed and therefore will 
miss each other in the relevant key scene. 
According to this, the scenario success is directly 
linked to the probability of meeting each other at the 
target position. This probability depends on the 
arrival time of the drivers and therefore on the 
progression of their vehicles in relation to the 
distance of their vehicles to the interaction point 
along the proposed route. The progression of the 
vehicles depends on the parameters of the road 
network (e.g. narrow curves, highway), the 
behaviour of the surrounding road users (including 
the traffic flow), and the phasing of the potentially 
available traffic lights. Thanks to the fact that a 
driving simulation is used, all of those parameters 
are well-known and can be adjusted as long as the 
adjustments are not interfering with the restrictions 
of the study or with other key scenes.  
In our approach, a simple velocity estimation 
algorithm is used for the calculation of the arrival 
time of each human driven vehicle at the desired 
position. It uses the road information (including 
speed limits, curvature etc.), parameters of the 
leading vehicle, traffic light phases and the current 
vehicle speed as inputs. In a first cycle standard 
values from literature are used, e.g. from [Sat16, 
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Ken09], to estimate reaction times after traffic light 
phase changes, default longitudinal and accepted 
lateral accelerations and car following parameters 
like time headway and time-to-collision. These 
values are taken to calculate an initial assumption 
of the arrival time at the interaction point. Figure 4 
gives an example overview on the velocity 
calculation around a traffic light. When the scenario 
has started, the mean difference between the 
current speed and the speed limit, as well as mean 
accelerations and reaction times are consecutively 
recorded and used to update the prediction of the 
arrival time with more accurate values. 

 

Figure 4. Velocity profile for the estimation of the arrival 
time of a vehicle at an interaction point. ΔtReact1,2 are the 

reaction times after traffic light phase changes. ΔvSL is the 
mean deviation of the speed limit vSL to the human driven 

speed vEgo. aBrake and aACC are the mean accelerations.  

Whenever the predicted values of one vehicle does 
not comply with the equally calculated value of the 
vehicle supposed to be met, the scenario has to 
react dynamically. In general, such dynamic 
reactions must be performed carefully and 
indirectly, in line with the restrictions of the study. 
Possible dynamic reactions may include: (1) 
changed timing of traffic lights, (2) changed 
behaviour of surrounding vehicles, like e.g. slower 
leading vehicles or congestions, (3) planned 
detours, (4) changes in the environment like 
changed speed limits, weather conditions or even 
enlarged or shortened tracks (in case the virtual 
track is changeable online), (5) visual effects like 
showing a slightly modified speed in the 
speedometer or even changing the frustum values.  
As the dynamic reactions can be seen as scenario 
alternatives, they can be included in the scenario 
graph as nodes with probabilities. The alternatives 
may also be combined, e.g. by using a detour, a 
slow lead vehicle and changing traffic light 
durations. During scenario preparation, the possible 
catalogue of alternatives has to be defined so that 
the scenario software is able to prioritize the 
alternatives and to choose the most suitable one in 
line with the scenario restrictions. The overall 
procedure is as follows: (1) The driving durations 
along the respective routes are calculated for each 
human driven vehicle as described before. (2) By 
calculating the deltas of the durations of all involved 
drivers the software knows how much each vehicle 
is delayed when arriving at the interaction area. (3) 
Whenever these delays exceed a given threshold, 
alternatives are calculated for the vehicles 
according to the catalogue of alternatives. (4) The 

best alternative (resulting in the smallest delay) is 
chosen and directly executed.  
Figure 5 shows an example: Two human driven 
vehicles (E1 and E2) are starting to drive on 
separated roads (t1) and are supposed to meet at a 
merging situation at the end of the scenario (t6). 
Already after a few meters, E2 is measurably slower 
than E1. As the way to go still is long, the scenario 
software decides to command a detour for E1 at t2. 
Nevertheless, there again is a noticeable delay of 
E2 at t3, leading to a changed traffic light phasing at 
the upcoming intersection. E1 gets a longer waiting 
time, while E2 gets a green light. Prophylactically, 
the scenario software also decides to introduce a 
lead car to E1, which is going to drive ahead of E1 in 
a larger distance. At t4 it becomes necessary to 
intervene again, so the lead car of E1 is decelerated 
a little. After some minor corrections at the last 
traffic light (t5), the scenario successfully ends at t6. 

 

Figure 5. An example multi-driver merging scenario with two 
human driven vehicles E1 and E2 and different dynamically 

chosen alternatives to enhance the scenario success  

The general procedure of calculating the success of 
the overall scenario and its key scenes, and the 
provisioning of alternatives can also be applied to 
the other classes of multi-driver scenarios as well 
as to single driver scenarios.  

Conclusion 
Complex scenarios and esp. multi-driver scenarios 
tend to be unsuccessful when drivers do not 
behave in a way foreseen by the scenario 
designers. In this paper, a method has been shown 
which enables scenario software to dynamically 
react to unforeseen situations by presenting and 
executing alternatives dynamically. It has been 
shown how these alternatives can be used to 
enhance the probability of success, esp. when 
focussing on multi-driver studies with singular 
interaction points of the human driven vehicles.  
The method is currently implemented at the 
“Modular and Scalable Application Platform for ITS 
Components” (MoSAIC) Laboratory at DLR [Fis14] 
and will be used in future studies.  
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