
Driving Simulator Conference 2016 VR
Sep. 9th 2016, Paris
Andreas Richter
Development and Evaluation of Driver Assistance and Automation Systems using Driving Simulators
Need for Re-creation of Complex Urban Environments in Driving Simulators
Urban Road Networks in Driving Simulators: Solution 1
Surveying of the Original

• by specialist companies
(ResultOverlay)
Urban Road Networks in Driving Simulators: Solution 2a
Transforming of Cadastral GIS Data...

- fusion of different sources such as:
 - road topography
 - road axis
 - elevation model
 - land use
 - ...

[Maps and diagrams related to urban road networks and cadastral GIS data]
Urban Road Networks in Driving Simulators: Solution 2b

...and fusion with Road Operator Data

- fusion of different cadaster regarding location and orientation:
 - road signs
 - road signpost
 - traffic lights
 - street lighting
 - catenary
 - ...
Urban Road Networks in Driving Simulators: Solution 2c
Transforming Cadastral CAD Data

- only visual database, road signs as images and no logical correlation
Urban Road Networks in Driving Simulators: Solution 3 Using Crowd-Sourced Data

- such as OSM, including:
 - lanes
 - traffic rules
 - traffics signs
 - street furniture
 - ...

[Image of a detailed urban road network with various markers and signs indicating traffic rules and street furniture.]
Urban Road Networks in Driving Simulators

Summary

• **Solution 1:**
 - high precision road survey can be conducted by specialist companies delivering the results in driving simulator formats
 - Drawbacks are a high amount of time and cost for data transformation, not suitable for large-scale road networks

• **Solution 2:**
 - automated generation of large-scale road networks based on GIS data using a combination of computer graphics GIS approach is possible (see “Virtual World” project – DOI: 10.1177/0037549716641201)
 - Drawbacks are generalized intersection layouts and less accuracy, both depending on input data

• **Solution 3:**
 - crowd-sourced data is (more or less) free to use and widely available
 - Drawbacks are a lack of lane level details and heterogeneous data quality and a poor accuracy
Urban Road Networks in Driving Simulators

Goal

• Having a solution 1 + 2: high precision data that is widely available and automatically transformable (to reduce time and cost effort).

• Therefore:
 • cities should provide their data in a “machine-understandable” way
 • store information in a simplified way, thus everybody is able to gather the data with only few pre-processing effort
 • store the data in a way that requirements of public authorities and driving simulators are met
 • guidelines should support every surveyor how to pre-process the data

• Solution:
 • join forces in the project “Road2Simulation” to create and test such guidelines and disseminate them
Road2Simulation
Just a new “Standard”?

- http://xkcd.com/927/

- More than just a standard: “Road2Simulation” includes a data model and description how to pre-process the data (format, spatial reference, topological integrity, etc.) and also guidelines, how to model the data for different scenarios, etc.
Road2Simulation
simplified Data Model

- linear objects as WKT/WKB LineString Z
- punctual objects as WKT/WKB Point Z
- areal objects as WKT/WKB Polygon Z
- data source description including absolute and relative accuracy in XY and Z, etc.
Road2Simulation
Guidelines for Modelling of Roads

• how to model different types of roads:
Road2Simulation
Guidelines for Modelling of Roads

- how to model different types of roads:
 - course of the road
Road2Simulation
Guidelines for Modelling of Roads

- how to model different types of roads:
 - course of the road, lane borders
Road2Simulation
Guidelines for Modelling of Roads

• how to model different types of roads:
 • course of the road, lane borders, road marks
Road2Simulation
Guidelines for Modelling of Roads

- how to model different types of roads:
 - course of the road, lane borders, road marks, linear and punctual objects
Road2Simulation
Guidelines for Modelling of Roads

• how to model different types of roads:
 • course of the road, lane borders, road marks, linear and punctual objects, areal objects
Road2Simulation
Guidelines for Modelling of Intersections

• how to model different kinds of intersections:
 • north
Road2Simulation
Guidelines for Modelling of Intersections

• how to model different kinds of intersections:
 • north, east
Road2Simulation
Guidelines for Modelling of Intersections

- how to model different kinds of intersections:
 - north, east, south
Road2Simulation
Guidelines for Modelling of Intersections

- how to model different kinds of intersections:
 - north, east, south
Road2Simulation
Guidelines for Modelling of Intersections

• how to model different kinds of intersections:
 • north, east, south, west
Road2Simulation
Guidelines for Modelling of Intersections

- how to model different kinds of intersections:
 - north, east, south, west, inner parts
Road2Simulation
Guidelines for Modelling of Complex Intersections

• how to divide complex intersection in multiple simple intersections
Road2Simulation
Guidelines for Modelling of Complex Intersections

• how to divide complex intersection in multiple simple intersections
Road2Simulation
Guidelines for Modelling of Punctual Objects

• how to model:
Road2Simulation
Guidelines for Modelling of Punctual Objects

• how to model:
 • traffic lights
 • road signs
 • infrastructure
 • street furniture
 • ...
Road2Simulation
Road2Simulation
Applying the Guidelines

• reference track is a test track of a car magazine in Stuttgart downtown

• contractor was selected by public tender
• price is roundabout one third of an offer delivering data in driving simulator format

• contractor was able to adopt the guidelines easily, no logical issues arisen

→ Now, data conversion has to be improved for all exceptions reality has ready…
Road2Simulation
Applying the Guidelines
Road2Simulation
Applying the Guidelines
Urban Road Networks in Driving Simulators

Summary

• No data format is available that meets requirements for public authorities and driving simulator operators.

→ Thus, exchange of real world data is complex (but nevertheless possible) and there are no synergies for data acquisition (experience of surveying companies, data usage, etc.).

• Project “Road2Simulation” developed guidelines on how to pre-process and how to store the road data to meet cadastral and simulation requirements:
 • simplified data model with included meta data for transformation
 • suggestions and examples for typical road situation
 • guidelines are available free of charge

• Guidelines is tested with a reference track in an urban environment.
• Currently results are looking very promising…
The Surveyor's Guide to Automotive Simulation
available for free at: http://www.dlr.de/ts/road2simulation

Andreas Richter
M.Sc. Comp.Sc.
German Aerospace Center

Team Leader
Spatial Data Processing and Engineering
Institute of Transportation Systems
Lilienthalplatz 7
38108 Braunschweig
Germany

Telephone +49 531 295-3408
Mobile +49 172 8556235
E-mail andreas.richter@dlr.de
Internet www.DLR.de/ts/en