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ABSTRACT

This paper presents a detection algorithm for constellation
faults on LPV-200 precision approach. In particular, this
work focuses on the Earth Orientation Parameters (EOP)
faults which are the only Constellation Wide Fault listed
in the current GPS Standard Positioning Service and Per-
formance Standard. These faults are particularly hazardous
for single-constellation RAIM algorithms since they can-
not be detected by measurement redundancy. This paper
investigates the properties of the rotation of the ephemeris-
based satellite positions caused by EOP fault and its impact
in the pseudorange fault vector. This work will show that
EOP faults are constrained, aspect that can be exploited in



the pseudorange domain. Under a dual constellation GPS-
Galileo scenario, we develop an Integrity Risk evaluation
method based on Residual Based RAIM specifically de-
signed to account for EOP faults. In addition, this paper in-
vestigates different EOP constellation fault scenarios based
on the independence of the fault across constellations. We
finally show that EOP determination process at the ground
and satellite ephemeris updating method play an essential
role in the availability performance.

I. INTRODUCTION

The modernization of the GPS constellation with a new
generation of satellites along with the development of
the emerging Galileo will provide new navigation sig-
nals which will enhance the performance of the current
navigation systems. The increase in number of signals
and frequencies will positively impact the Receiver
Autonomous Integrity Monitoring (RAIM) by providing
redundant measurements to perform consistency checks.
However, the deployment of new constellations and satel-
lites will also entail a reconsideration of the current threat
scenario not only concerning satellite but also constellation
faults.

Constellation faults are defined as those events when more
than one satellite within a core constellation are affected
by a common source error [1]. Although they can be seen
as an extension of the single satellite fault case, they are
of sufficient relevance to be discussed separately. Unlike
traditional RAIM algorithms, new generation Advanced
RAIM (ARAIM) can perform cross-constellation com-
parison to account for constellation faults. However,
ARAIM algorithms present a particular weakness against
constellation faults due to the large size of the faulty
measurements subset when analyzing the integrity bound
of the corresponding fault hypothesis. It has a significant
impact in the availability performance given that either
the integrity or accuracy requirement might not be fulfilled.

Previous work has categorized the constellation faults
according to their origin: inadequate manned operations,
failures inherent to the ground segment and failures
induced externally [2]. From all them, only one type has
been explicitly identified as a potential integrity failure
mode in the current GPS Standard Positioning Service and
Performance Standard [3]; Earth Orientation Parameters
(EOP) fault. In particular, the ARAIM Technical Subgroup
of the EU/US Working Group C (WGC) has already
proved that ARAIM could efficiently monitor against EOP
faults, assuming that they occur independently across
constellations [1]. EOP faults simultaneously affecting
both constellations, caused for example by erroneous
observational data from an international source, were left
unaddressed.

Taking advantage of the particular constraint of this type
of constellation faults, this paper analyzes the potential of
GPS-Galileo ARAIM to monitor against cross constella-
tion EOP faults. In essence, from the user’s perspective, an
EOP fault causes a common erroneous apparent rotation
of the satellite position. This geometrical property can
be exploited in the measurement domain by constraining
the pseudorange error vector by a common EOP rotation.
The scope of the monitor described in this paper is to
quantify the EOP fault contribution to the total Integrity
Risk, ultimately enhancing the availability performance.

The first part of the paper formally defines the geometri-
cal transformation of the satellite position caused by an
EOP fault. By following a straightforward algebraic deriva-
tion, we will show that this specific type of constellation
faults constrains the fault vector to lie in a bi-dimensional
space in the pseudorange domain. Section IIT and IV revise
the Integrity Risk evaluation for multi-constellation GNSS
and the use of the Residual Based RAIM approach against
multi-measurements faults. Section V discusses the differ-
ent EOP constellation fault scenarios reconsidering the in-
dependence across constellations. Finally, section VI eval-
uates the worldwide performance of the EOP fault detector
for an example of an aircraft LPV-200 precision approach
[4]. Availability maps will highlight the benefits in the fault
detection performance when the constellation fault hypoth-
esis is constrained.

II. EOP FAULT CHARACTERIZATION

A. Earth Orientation Parameters

GPS Master Control Stations (MCS) and Galileo Control
Center (GCC) need to transform satellite position from
International Terrestrial Reference Frame (ITRF) to Geo-
centric Celestial Reference Frame (GCRF) during satellite
orbit determination. For that purpose, orbit determination
and time synchronization (ODTS) facilities account for
the Earth’s rotation axis variability with respect to the
inertial space (celestial motion) and with respect to its
crust (terrestrial motion) together with the change in the
duration of the sidereal days [5]. On one hand, the celestial
motion is a consequence of solar and lunar gravitational
field variations along the Earth’s orbit causing two move-
ments: precession and nutation. These two parameters can
accurately be predicted since the orbits and masses of these
bodies are known [6]. On the other hand, the terrestrial
motion is due to Earth’s elastic and geological properties
and it needs to be determined empirically.

Earth Orientation Parameters (EOP) are a set of two angles
(polar motion x,, and y,,) and a time difference (UT1-UTC)
that account for the terrestrial motion of the Earth’s rotation
axis and the variability of its spin rate respectively. They
are computed by the corresponding MCS and GCC using



EOP Predictions (EOPP) provided by an independent
service. Although separately computed and monitored,
it is still under investigation whether an erroneous EOPP
can affect both constellations simultaneously given that
they are based on some common measurements. This
discussion will be addressed in Section V.

From integrity perspective, the threat of an erroneous
conversion from Earth-Centered Inertial (ECI) to Earth-
Centerd Earth-Fixed (ECEF) frame resides in the accuracy
and reliability of the EOP estimated by the constellation
control station. EOP rotation vector will be defined in this
study as
Tp
0= Yp . (1)
Uurt-urc

B. EOP fault definition

Analogous to GBAS ephemeris faults, EOP ones are
initially classified in Type A and Type B. Both have same
general impact on the satellite and user position error but
a difference with respect to detection method. This paper
only focuses on Type B EOP faults which have their origin
in the use of erroneous EOPP in the Orbit Determination.
A further description of the fault types is provided in [1].

Under a fault scenario, wrong determination of the EOP
values causes an incorrect transformation of the satellites
orbital parameters from celestial (ECI) to terrestrial
reference frame (ECEF). From the user’s point of view,
based on ephemeris, the whole constellation undergoes
a common rotation representing a challenge for single
constellation RAIM monitors. Since those algorithms are
based on measurement redundancy, a consistent common
rotation makes the fault completely imperceptible through
RAIM-type monitors unless an additional constellation is
used. In fact, previous work [7] has demonstrated that, for
single constellation RAIM, the residual vector generated
by pseudorange errors due to a consistent fault is zero
(consequently the associated test statistic is also zero). The
use of two constellations provides a potential detection
method against EOP faults

The observed EOP event on PRN 19 on June 17%, 2012 [8]
provides substantial motivation for the need to mitigate this
threat. According to the report, the satellite was uploaded
with invalid Earth orientation data. If MCS personnel had
not detected the anomaly, it would have affected the rest of
the constellation by the time they were updated.

C. Geometry of the EOP fault

Now that the physical source of the EOP has been de-
scribed, let us dive into the geometrical properties of the
fault. The aim of this section is to mathematically show

that EOP constellation faults are geometrically constrained
and hence, the fault vector lies in a specific subspace in the
measurement domain.

We first derive the impact of an EOP fault on the pseudor-
ange error in the measurement equation. Once it is done for
one satellite, we will extrapolate the derivation to the full
constellation. We start with the simple description of the
satellite (SV;) estimated position vector ﬁ:isv as the sum
of the true satellite position %, and the satellite position
error §&%,, in ECEF

By = Ty + 0Ty )

Let us characterize the second term on the right hand
side of (2) as an ephemeris error due to an EOP fault.
Earth Orientation Parameters fault manifests itself as
an Earth-centered, small angle rotation of the estimate
satellite position vector. The first assertion (Earth-centered
rotation) is immediate to prove; ECEF-ECI conversion
consists in a three dimensional rotation around the center
of the Earth. The second statement (small angle rotation)
refers to the actual magnitude of the rotation. Historical
EOP data provided by the IERS support the assumption
of treating EOP faults as an small angle rotation vectors [9].

As a consequence, the ephemeris error can be regarded as
an infinitesimal rotation of the satellite true position [10]
whose direction and magnitude is defined by the EOP fault
rotation vector

Saly = [00x]2ky 3)

where the EOP fault vector and its skew-symmetric form
are defined as

00,
00 = | 46, | and 4)
00,
0 —06, 40,
[00x] = | 06, 0 -0, | . (5)
—660, 00, 0

Note that (3) is a cross product of two vectors (66 x afcgv)
expressed in matrix form. The contribution of the EOP
fault to the pseudorange error is simply the projection of the
satellite position error vector into the Line Of Sight (LOS).
An important consequence of the infinitesimal rotation as-
sumption is that the LOS vector between user and corre-
sponding SV; does not vary in the presence of the EOP
rotation. That allows us to write EOP contribution to the
pseudorange equation as

fgop = (ei)T : 5373?9\/ = (ei)T : [59X}§3fsv- (6)



Given that it is a triple vector product, we can manipulate
(6) by permuting elements and arrive to

fhop = —le' x &5y - 66. (7

Replacing the LOS vector by its definition [11] leads us to
a final expression of the EOP pseudorange fault vector as a
function of the user position, the estimated satellite position
and the EOP rotation vector,

; 1 . i AT
foop = 7 ([Bux] - 5y)" 00 (8)
&5y — 2]l
where
X'y, satellite position estimate vector
T, user position estimate vector.

Equation (8) explicitly separates the two inputs of the
pseudorange error: first term is geometry-dependent
and it’s a function of the user (&,) and satellites (:i:fgv)
positions; second term (d6) refers to the physical EOP
mis-rotation carried out by the MCS/GCC. This will turn
quite convenient in section IV when inspecting the fault
vector (mode, magnitude and direction) and its role in the
Residual Based RAIM approach.

Expanding to a subset of faulty satellites will entail some
discussion about the constellation fault hypothesis. This
consideration is not necessary for the ongoing derivation
and it will be addressed in Section V. Without loss of gen-
erality, let us extend the derivation to a dual constellation
scenario where Constellation A (n 4 satellites in view) is
affected by a common EOP event and Constellation B (np
satellites in view) is fault free. The pseudorange error vec-
tor due to an EOP fault is expressed as follows:

-l
fEop.A

na

fropr = 1
Teor.B

npB
L Jeopr,B

Since the EOP rotation vector is common to all of the
satellites, the division between user-satellites geometry
and EOP rotation contribution in (8) can be extrapolated to
a matrix form. Matrix 7" (fault constraint matrix) collects
in each row the projection vector of the corresponding
pseudorange equation. The analysis of the fundamental
subspaces of T' will reveal the implications of the con-
strained constellation fault. Note that in the example fault
vector in (10), measurements coming from Constellation B
are EOP fault-free and hence the corresponding elements
are zero,

C 1o R -
T ([:cux] 'm}S’V,A)
L . s \T 00,
feor = |, ([%X] 'wsv,A) - |60,| =T 50 (10)
0 00,
L 0 -
where
frop pseudorange fault vector
T user-satellite estimated range ||&%, — @]
Zgy 4  satellites position estimate vector
T fault constraint matrix.

The analysis of row vectors will reveal that matrix 7" is rank
deficient. Equation (10) shows that all satellite position es-
timate vectors 5375‘/ 4 are multiplied by the same infinites-
imal rotation matrix [&,,x]. For a given location, satellite
position vectors undergo identical rotations and hence the
resulting transformed vectors are all contained in the same
subspace; column space of [&,x]. Annex A shows that
this skew-symmetric matrix is rank deficient and its corre-
sponding null space is formed by the set of vectors parallel
to the rotation vector itself,

ker([£,x]) = gen{&,} — dim(ker([Z,x])) =1 (11)

Where gen {&,} is one-dimension subspace in R3 gener-
ated by vector &,,. According to the rank-nullity theorem
[12], the dimension of the column space of [&,, X] is two
implying that all the row vectors of T" are contained in the
same plane in R3. Applying basic algebraic properties we
can show that

col([,x]) = row(T) = col(TT) (12)
dim(col([&, x])) = dim(col(TT)) =2 (13)
dim(col(TT)) = dim(col(T)) = rank(T) = 2. (14)

Equation (10) presents T' as the projection matrix that
plots the EOP rotation fault vector §0 into the pseudorange
domain (T : R® — R"). Given that rank(T) is two, the
column space of T is a subspace () of dimension two in
R"™. Consequently, vector frop € V.

Here reside the particular properties of the EOP faults.
Contrary to EOP, unconstrained constellation faults do not
impose any condition over the elements of the pseudorange
fault vector f which, in general, lies in a n 4-dimensional
subspace. We will show in Section VI that reducing
the dimension of the subspace where the fault vector
is contained in will favorably impact the availability
performance of the monitor against constellation faults.

It is worth to comment one last geometric aspect; the phys-
ical meaning of the null and row spaces of T'. Since the



row space of a matrix is orthogonal to its null space, ac-
cording to (12) we can deduce that matrices T and [&,, X]
have identical null spaces. In other words, EOP fault has
null impact on the pseudorange error vector (frop = 0)
when the EOP rotation axis coincides with the user position
(00 || &) as stated in

ker(T) = ker([&,x]) — ker(T) = gen{x,}. (15)

Consequently, 7ow(T') should be a plane which is orthog-
onal to the user position vector in ECEF: local horizontal
plane at the user location H. This conclusion can be
understood as follows: EOP faults only generate errors in
the horizontal plane. However, since users may estimate
their position solution by using both faulty and fault-free
subsets (10), EOP fault will impact the position error in its
vertical and horizontal components.

This last statement is a direct link to the previous EOP fault
approach in user position domain [1]. The EOP constraint
adds a horizontal nuisance parameter that only affects the
subset of faulty satellites. Finally, the EOP constellation
fault can be treated either as a fault vector that lies in a
2D space in the pseudorange domain or as fault that in-
cludes two additional horizontal parameters in the position
domain.

III. INTEGRITY RISK EVALUATION FOR DUAL
CONSTELLATION GNSS

In this section we formulate the risk evaluation method
for detection only. Then, we characterize a model of the
measurements for dual constellation GNSS. Finally we de-
scribe the least square estimator which, along with RAIM
detector (Section IV) are used to evaluate the integrity risk.

A. Integrity Risk definition for detection only

The integrity risk or probability of hazardous misleading
information (Pgrasr) is defined as the join probability of
the estimate error € being larger than a specified alert limit
[ while the test statistic ¢ remains lower than a detection
threshold 7,

PMHIEP(|8|>I,|(]‘<T). (16)

Let h be the number of fault hypotheses. Pr s can be ex-
pressed considering a set of h+1 complementary, mutually
exclusive hypotheses H; (including the fault-free hypothe-
sis Hy). Using the law of total probability, the criterion for
availability of integrity [13] can be expressed as:

h
Pyyi =Y P(le| >l q| <T|H;)Pq,

a7

<Irgqg — Pnum

where

€ estimate error for the state of interest (least
squares estimator)

l alert limit specified by LPV-200 requirements
(4]

q Residual Based RAIM detection test statistic
(Section IV)

T detection threshold

H; set of hypothesis for ¢ = 0,..,.h. Section V
will cover the multi-satellite fault scenario and
the different fault hypotheses.

Py, Prior probability of fault occurence.

Pnyar Prior probability of the unmonitored events
(Pvyv < IREQ)

Ireq Integrity Risk requirement specified in [4].

Equation (17) accounts for the contribution of each fault
hypothesis to the total Integrity Risk (I,;sx). Previous
work has been done on the determination of the faults that
need to be monitored and the associated probabilities of
fault [14]. In this paper, we dive into the constellation
fault hypotheses analyzing the feasibility of encountering
faulty and fault-free subsets within the same constellation
(Section V).

The continuity risk requirement Crgq o sets a limit on the
probability of false alarms. As a result, it is fulfilled by
setting the value of the detection threshold as follows:

P(l ¢ |=T)| Ho)Pr, < CrEQ.0- (18)

B. Measurement equation for dual constellation

In order to evaluate the integrity risk, the estimate error
€ and the test statistic ¢ need to be calculated using a
measurement model [13]. In the case of multi-satellite or
constellation faults, partitioning the measurement equation
is convenient since it allows us to explicitly separate the
faulty and fault-free subsets as we did in (9). For an
example of dual constellation case, let n4 and np be
the arbitrary number of available measurements from
two different constellations and m the number of states
respectively. The (n4 + np) X 1 measurement vector z is
modeled as:

z=Hzx+4+v+f. (19)

Measurement equations can be separated in two parts
corresponding to each constellation as follows:

R R A

where



H, p observation matrix n4 X mand ng X m

x m X 1 state vector

VA,B measurements n4 X 1 and ng X 1 noise vector
fap faultvectorng x land ng x 1.

Vectors v 4 g are assumed to be normally distributed with
zero mean and covariance matrices V4 and Vg as follows:

vap ~ N(O, VA) and v ~ N(O, VB) . (21)

The nominal measurement error model in this paper as-
sumes that elements of the noise vector v are independent.
As a consequence, the matrices V4 and Vg are diagonal
and the total covariance matrix can be expressed as a diag-
onal positive-definite matrix

[va 0
V_[O VB]‘ (22)

The nominal pseudorange error models are described in
Section VI.

C. Least Squares Estimator

Weighted least-squares estimator is used to compute the
position solution and its corresponding error. A detailed
derivation of the estimator can be found in [11]. The state
estimate vector & and least-squares estimation matrix S are
defined as

#=8zand S = (H"WH) 'H"™W  (23)

where the weighting matrix W is the inverse of the covari-
ance matrix V. The estimate error vector € and its associ-
ated covariance matrix P are defined as:

e=z—x=Sw+f) (24)
e~ N(Sf,P) (25)
P=H"WH)™ " (26)

In order to be consistent with the nomenclature followed in
the previous Section II, note that the state estimate vector
& contains, together with the two clock biases (b4 and bp
for GPS and for Galileo, respectively), the estimated user
position &,, utilized in the EOP fault description in (10).

Finally, the estimate error of the single state of interest can
be obtained by extracting the corresponding row s’ of the
least-squares estimation matrix S. Let us particularize for
the vertical coordinate (although it can be applied to the
horizontal coordinates):

sT=a’Sanda” =[00100]. (27)

The vertical estimation error variance o3 is simply ob-

tained by selecting the corresponding diagonal element of
the error covariance matrix. As result, the state of interest,

vertical in this example, is obtained as follows:

ce=ale=sT(v+f) (28)
e~ N(sTf,0%) (29)
ol =a’Pa. (30)

IV. RESIDUAL BASED RAIM AGAINST CON-
STELLATION FAULTS

This sections describes and analyzes the test statistic which
is the second term required to evaluate the Integrity Risk
expressed in (17). Traditionally, there are two different ap-
proaches to asses the test statistic: position domain and
measurement (or pseudorange) domain. As seen in Sec-
tion II, the EOP fault can be constrained by performing a
rotation of the measurements in the pseudorange domain.
This paper utilizes the Residual Based RAIM approach to
evaluate the impact of a constrained constellation fault on
the test statistic and ultimately on the integrity risk.

A. Residual Based RAIM

The detection test statistic g is derived from the pseudor-
ange residual vector [15]. The residual vector is defined
as:

r=z—Hé=I-HS)z=I-HS)(v+§f) 3

where I is the (n x n) identity matrix. Residual Based
RAIM approach is based on the use of the magnitude of
the residual vector as a test statistic. The residual-based
test statistic ¢ is the weighted norm of r [13]

2=rTWr. (32)

Under a fault hypothesis, test statistic follows a non-central
x? distribution with (n — m) degrees of freedom and non
centrality parameter \:

¢~ X2(n - m, /\2) (33)
N =fTW((I-HS)f. (34)

Under nominal conditions (f = 0), test statistic follows a
central x? distribution (A = 0) with (n — m) degrees of
freedom .

arr ~ X*(n—m) (35)

B. EOP Constellation Fault vector in Residual Based
RAIM

The fault vector can be interpreted as a measurement bias
due to a rare event which is not covered by the nominal
error model. It is characterized by its fault mode which
defines the subset of faulty satellites in view; its fault mag-
nitude which is the Euclidean norm of the fault vector; and



its fault direction which establishes a relative relationship
between the vector’s elements [13]. In general, consider-
ing the fault magnitude and direction is cumbersome since
they are unknown. The approach that we will follow in
this paper is to overbound each fault hypothesis with the
worst case fault vector f;. This vector maximizes the In-
tegrity Risk for a given fault hypothesis [16] and it can be
expressed as

P(le|>l]q| <T|H;) < P(|e|>L]q|<T|fi) 36)

It is proved in [13] that both distribution ¢ and ¢ are sta-
tistically independent, and therefore the join probability in
(36) can be reformulated as follows:

P(le|>L]q| <T|f:) =

_ - 37)
P(le | >I[fi) Plg| <T|fi) -

Asin [13], let us define the square of the failure mode slope
as the ratio of the squared mean of the estimate error over
the squared non-centrality parameter of the test statistic:

2 _ f ZT ss’ f;
95, = 7 . (38)
fIW(I-HS)f;
The failure mode slope depends on the fault mode and di-
rection but not on the fault magnitude [17]. In the case
of Constrained Constellation Fault (CCF), we can benefit
from (10) where geometric and EOP rotation contribution
are explicitly separated. Following the derivation in [13]
and we can particularize the failure mode slope as follows:

., 66TATBTBAsOT
9ccr = 50T69

(39)

where s
A= [T"W(I - HS)T] "/

B=s"T.

The worst case fault vector, which overbounds the In-
tegrity Risk, maximizes the failure mode slope. Under a
multi-measurement fault hypothesis (a given fault mode)
the worst-case failure mode slope gocr can be expressed
as a function of the geometry as

Goor =s"T [T"W(I — HS)T] ™ (s"T)"  (40)

As mentioned, the failure mode slope establishes a link
between the mean of the estimate error y. and the non-
centrality parameter A. In other words, in a failure mode
plot of € versus ¢, i and X caused by a fault of magnitude
ranging from —oo to +oo describe a line of slope gocr
passing through the origin. Let us analyze the role of

matrix T in the worst-case failure mode slope.

EOP constraint manifests itself through matrix T'. As
shown in Section II, EOP fault vector is contained in a
subspace of dimension two in the pseudorange domain
(feop € V). As a consequence, under a constellation
fault hypothesis, the constrained worst-case fault vector
direction is forced to lie in that subspace consequently
limiting the worst-case slope value. For the unconstrained
case, that subspace will have dimension n4 since T is a
diagonal n x n matrix with one and zero elements in the
corresponding faulty and fault-free positions.

Figure 1 is a conceptual representation of the effect of
the common rotation constraint under a constellation fault
hypothesis. The abscissa represents the test statistic dis-
tribution ¢ while the ordinate represents the vertical esti-
mate error € distribution. According to Py, definition in
(16), Hazardous Misleading Information (HMI) area corre-
sponds to the region where the error ¢ is larger than the alert
limit / and the detection test statistic g is below the thresh-
old 7. The common rotation embedded in matrix T" sub-
stantially reduces the value of the worst-case slope from the
unconstrained constellation fault gycp to the constrained
case gocr. This reduction in the slope directly impacts the
mean of the estimate error p. making the fault less haz-
ardous for a given fault magnitude. As a result, it implies
a distancing from the HMI area which means a decrease
of the Integrity Risk. According to the criterion for avail-
ability of integrity in (17) this consequently entails an im-
proved availability performance.

A . (@b R
& <\'z> &
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Figure 1: Failure mode worst-case slopes comparison

In this section we anticipate some results by quantitatively
demonstrating the effect of the constraint in the slope (er-
ror model and constellation details in Section VI). Table 1
compares the worst-case mode slope values for the uncon-
strained and constrained cases. For an example location



under a GPS-Galileo dual constellation scenario, first col-
umn represents the worst-case slope of an unconstrained
GPS constellation-wide fault mode while second column
shows the worst-case slope for the same GPS constellation
fault constrained by an EOP coherent rotation (matrix 7).
Third and fourth columns indicate the number of GPS and
Galileo satellites in view for each of the four displayed ge-
ometries.

Table 1: Worst-case failure mode slope reduction

Jucr | gocr | NGPS | NGal
1.8226 | 0.2243 9 8
1.9060 | 0.2226 7 7
1.6532 | 0.4219 8 6
2.2011 | 0.1476 8 6

C. EOP monitor Minimum Detectable Error

We can also quantify the effect of the EOP constraint by
computing the Minimum Detectable Error (MDE). It is a
typical way to evaluate the performance of a monitor but for
comparison purposes it helps to visualize the relative per-
formance of the constrained case versus the unconstrained
one. Table 2 uses identical geometries and fault hypothesis
as table 1 to compare the decrease of the MDE when im-
posing the constraint. First column accounts for the uncon-
strained case while second column accounts for the con-
strained one.

Table 2: Minimum detectable error reduction

MDE Unconstr. CF (m) | MDE Constr. CF (m)
17.11 2.11
17.34 2.03
15.04 3.84
20.03 1.34

Results in Table 2 can be interpreted as follows: for a given
detection threshold T that fulfills the continuity require-
ment in (18), the misdetection probability substantially de-
creasing causing a total reduction of the integrity risk. We
can conclude the section stating that the satellites common
rotation provided by (10) decreases the Integrity Risk by
two effects: first, it makes the fault less hazardous; second,
it makes the fault more detectable.

V. EOP CONSTELLATION FAULT SCENARIO

The derivation outlined throughout previous sections can
be applied to different EOP constellation fault hypothesis
just by adapting the faulty subset of satellites. This pa-
per classifies the constellation fault scenario attending to
the dependency of the EOP fault across constellation which
refers to the join probability of occurrence of the dual con-
stellation fault. GPS Master Control Station and Galileo

Control Center obtain the EOP Predictions from different
international sources. Further investigation on the correla-
tion of Galileo and GPS EOPP is left for future work. In
this paper we separately analyze two scenarios concerning
the constellations independence for GPS-Galileo dual con-
stellation users:

e EOP Single Constellation (SC) Fault
e EOP Cross Constellation (CC) Fault

First scenario assumes that GPS and Galileo EOPP un-
dergo separate estimation process and therefore the cross
constellation is a join event of two independent faults.
Second one considers that the same source of the EOPP
GPS fault can originate a concurrent fault in Galileo, and
hence the cross constellation faults are not independent.

Regarding the single satellite faults, [14] describes an
algorithm for the determination of the faults that need to
be monitored and the corresponding unmonitored Py s
that should be accounted as seen in (17). The two different
scenarios will be numerically implemented in Section VI.

As shown in (36), we overbound the Py 1 by choosing the
worst case fault. In order to avoid hypothesizing about fault
magnitude, given a fault mode and direction which define
the failure mode slope , we look for the fault magnitude that
maximizes the Integrity Risk using a line-search method.

A. EOP Single Constellation (SC) Fault

This scenario assumes that GPS and Galielo EOP faults are
independent and have a similar prior probability of occur-
rence P.,,st. The hypothesis of simultaneous independent
Single Constellation faults cannot be taken into account
since ARAIM monitor will be ineffective (residual vector
is zero) [7]. As a result, the probability of this join event
pP? should be included in the non monitored Py ;. The

const
set of single constellation faults hypothesis consists of:

rpgPsST T 7
7 0
gps 0

Higp =1 |7 || poa (41)

0 i

Lo ] LA

where
SC
PEOP = Peonst -

B. EOP Cross Constellation Fault (ICC)

This scenario expands the previous SC by assuming that
GPS and Galileo EOP faults have a common source and
hence they can occur simultaneously with the same proba-
bility P.onst. As a result, EOP subsets of faulted satellites



across constellations should be considered. As it can be
foreseen, the size of this subset will have a tremendous im-
pact in the availability performance. The scope of this fault
scenario is to determine the maximum affordable number &
of simultaneously faulted satellites beyond which ARAIM
availability drops. CC set of hypothesis HES 5 is defined
the set of (2% — 1) cross constellation subsets that includes
up to k GPS and/or Galileo faulty satellites:

- £gPST r £9ps 9 r £gps T
1 1 1
oo 0 7_tips Tg{ps
HESp = | oot | - |1 [ |7 b @2
1 1
gal
L 0 L 0 1 Lingad
(2% — 1) Cross Constellation Faults

ngp = Pconst .
VI. AIRCRAFT LPV-200 PRECISION APPROACH

This section presents a performance evaluation of the de-
scribed ARAIM monitor against EOP faults. As already
mentioned, we quantify availability performance of the
EOP monitor under the two described fault scenarios from
Section V. Table 3 summarizes the simulation parameters
including ARAIM single-measurements faults, constella-
tion faults and error models. It also includes LPV-200 nav-
igation requirements to support localizer precision vertical
approach operations down to 200 feet above the ground.
More detailed description can be found in [1].

Table 3: Simulation Parameters

SV clock and orbit 0.75 m for GPS
error (URA) 0.957 m for Galileo
Residual

1.001
0-12 5553001 sinzeyize ™

tropospheric error

Smoothed code

, 0.13 + 0.53¢=¢/19 1, for GPS
multipath

(lookup table for Galileo [1])

Smoothed code
receiver noise
Fault-free meas. bias

0.15 4 0.43¢=¢/69
0.75 m for GPS

brrax 1 m for Galileo
Integrity risk 10-7
requirement

COl’lt.lntu risk 9.10-6
requirement

Prior probability of 10-5
satellite fault Py

Prior probability of 104

const. fault P, st
¢ is the satellite elevation angle in degrees

Simulations work with a ‘24-1° GPS constellation and a
‘27-1" Galileo constellation, which are the nominal con-
stellations with one spacecraft removed to account for out-
ages. Given that the navigation requirements are normally
more difficult to fulfill for the vertical coordinate, the fol-
lowing results will only focus on this coordinate. Un-
der LPV-200 requirements, the target Vertical Alert Limit
(VAL) is [ = 35 m. Availability results will be showed
for a 10 x 10 deg grid of locations and simulation time of
24 hours. Awailability is computed at each location as a
fraction of time where Prrps; meets the integrity risk re-
quirement /rgq. Regarding coverage, it is defined as the
percentage of grid point locations exceeding a certain avail-
ability; coverage and average availability computations are
weighted at each location by the cosine of the location’s
latitude, because grid point locations near the equator rep-
resent larger areas than near the poles [16].

A. EOP Single Constellation (SC) Fault

Figure 2 represents the availability map for an alert limit
of 35 m under unconstrained SC fault hypothesis. Second
row of table 4 shows that, for the unconstrained case, the
coverage of 99.9% availability is 38.35% and the average
availability is 99.01%. When imposing the EOP constraint,
the results substantially enhance obtaining a 99.9% cover-
age of 100% (third row of table 4), which implies a uniform
color in the availability map shown in figure 3.
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Figure 2: Availability map for unconstrained single
constellation fault, VAL=35 m

Table 4: Coverage table for single constellation fault,
VAL=35m

Constel. Fault | Cov.99.9% | Av.Avail.
Unconstrained 38.35% 99.01%
Constrained 100% 100%
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Figure 3: Availability map for constrained single
constellation fault, VAL=35 m

In order to analyze the ceiling of the performance of EOP
constraint under Single Constellation faults, let us reduce
the alert limit to 20 m and reevaluate the coverage values.
Table 5 shows that even reducing the alert limit, EOP con-
strained largely enhance the coverage results as it can be
seen in its second column. In addition figure 4 represents
the availability map for an alert limit of 20 m under con-
strained SC fault hypothesis.

Table 5: Coverage table for single constellation fault,

VAL=20m
Constel. Fault | Cov. 99.9% | Av.Avail.
Unconstrained 0 62.57
Constrained 93.59 99.93
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Figure 4: Availability map for constrained single
constellation fault, VAL=20 m

B. EOP Cross Constellation (CC) Fault

As expected, this scenario is more pessimistic. The fact
that both constellations can be simultaneous affected by an
EOP fault causes the performance to drop. The aim of this

study is to determine the maximum affordable size of the
cross constellation hypothesis subset. In this section, we
will not compare the relative performance between con-
strained and unconstrained hypothesis since the first ones
are already quite affected. Table 6 gathers the coverage re-
sults a for worst-case subset (the one that maximizes the
integrity risk) formed by 2, 3 and 4 satellites respectively.
As it can be seen, just for a subset of 2 satellites (which is
the minimum size we can have to declare a cross constel-
lation fault) the coverage of 99.9% is 93.93%. In addition,
figure 5 shows the availability map for a maximum size of
cross constellation subset of two.
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Figure 5: Availability map constrained cross constellation
fault , maximum size of subsets 2 and VAL=35 m
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Figure 6: Availability map constrained cross constellation
fault , maximum size of subsets 3 and VAL=35 m

Table 6: Coverage table for constrained cross
constellation fault, VAL=35 m

Subset size | Cov. 99.9% | Av.Avail.
2 93.93% 99.93%
3 55.12% 99.21%
4 23.26% 97.36%




VII. CONCLUSION

This paper has developed a new Residual Based RAIM
fault monitor in the context of LPV-200 precision approach
against EOP faults. Through an analytical derivation, this
work demonstrates that the EOP fault is constrained and
the corresponding pseudorange error vector lies in a 2D
subspace. This subspace is the projection of the local
horizontal plane at the user location into the pseudorange
domain. Under an EOP event, this constraint reduces both
the mean of the estimate position error distribution and the
probability of misdetection which ultimately decreases the
Integrity Risk. As a result, ARAIM can protect against
EOP constellation faults if we consider them independent
across constellations.

Finally, this paper has shown that dual constellation
ARAIM cannot afford common dependent EOP cross-
constellation faults even for subsets larger than two satel-
lites. One solution for mitigation is the control of the inter-
constellation updating process. Cross constellation fault
scenario can be suppressed by avoiding simultaneous con-
stellations updates. In that case, we can overlook the cross
constellation faulty subsets which severely weaken the ge-
ometry. Other solution can be implemented at the user level
via comparison of current broadcast ephemerides with pre-
viously validated broadcast ephemerides (which does not
rely on the independence across constellations). In any
case, the across constellations independence is still under
study and future revisions of this work will dive into the
GPS-Galileo EOPP correlation.

ANNEX A. NULL SPACE AND RANK OF THE
SKEW-SYMMETRIC MATRIX

Here we demonstrate that skew-symmetric matrix [&,, X] is
rank deficient and its corresponding null space is formed
by the set of vectors parallel to the rotation vector &,, itself.
Formally, the null space (or kernel) of a (n x n) matrix A
is defined as the set of vectors in R" that fulfill:

Null(A) = ker(A) ={veR": Av =0} .

Let us rename the skew-symmetric matrix R = [@,,x] The
null space of R can be found by solving the following sys-
tem of equations:

Rv=0.

It can be reduced by simply applying Gaussian Elimination

0 —Tuy,3 Ly, 2 0
Tu,3 0 —Tuy,1 0 —
—Ty,2 L, 1 0 0 ]
—Ty,2 Ly, 1 0 0
0 Ly, 1T0,3 —Tyu1Tu2 |0 | —
0 —Ty,1Ty,3 *xu,lxuﬂ 0

—Ty,2 xu,l 0 0
0 Tyl —Tu,2 0 —
0 0 0 0

Toy,1
V=7 |Ty2| ;YER.
Tu,3

The solution of the system of equations is the set of vectors
which are parallel to &,,. As a result the null space of the
skew-symmetric can be defined as:

ker([@,x]) = gen{xy}

where gen {#,} is one-dimension subspace in R® gener-
ated by vector &,,. According to the rank-nullity theorem
[12], the rank of the skew-symmetric matrix is two (rank
deficient).
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