Optical Properties of Mineral Dust Aerosol in the Thermal Infrared

IRS 2016 Claas H. Köhler

Research Goals

- Measure atmospheric radiance in the spectral range 800–1200 cm⁻¹ (8–12 μm) during SAMUM-2
- Set-up a simulation environment (PIRATES) capable to compute thermal infrared (TIR) atmospheric radiation in the presence of aerosols
- Identify a microphysical aerosol model suited to reproduce the measured radiation at bottom/top of the atmosphere (BOA/TOA) with special attention to refractive index and particle shape

C. H. Koehler, Radiative Effect of Mixed Mineral Dust and Biomass Burning Aerosol in the Thermal Infrared, 2014, http://elib.dlr.de

The SAharan Mineral dUst ExperiMent (SAMUM-2)

The SAharan Mineral dUst ExperiMent (SAMUM-2)

- LIDAR (IfT, LMU, DLR)
- In-situ size distributions (DLR, TU Darmstadt)
- Sample analysis (TU Darmstadt)
- Radiosonde measurements (IfT)
- Radiation Measurements (Uni Leipzig, LMU, DLR)

TOA Radiative Effect of Mixed Smoke / Dust Aerosol

- Investigate influence of a thin mixed layer on TIR remote sensing applications
- Example: IASI sea surface temperature (SST) product for 25 Jan 2008

Vertical Aerosol Distribution on 25 Jan 2008

Measurements Entering the Simulation

Comparison of Simulation and IASI Measurements

- Simulation w/o aerosols
- SST: 295 K
- Deviations in ozone band (1000 – 1080 cm⁻¹) due to profile mismatch
- Good agreement, so aerosols can be ignored ?

Comparison of Simulation and IASI Measurements

- Simulation with aerosols
- Aerosol absorbs terrestrial radiation
- Simulation underestimates upwelling radiation

Comparison of Simulation and IASI Measurements

- SST: 296 K (1 K increase)
- Better fit between simulation and measurement
- O'Caroll et al. (2012) report bias of IASI SST compared to in-situ measurements

 Aerosol has to be taken into account for accuracy better 1 K

BOA Radiative Effect of Mineral Dust Aerosol

- Investigate influence of a low pure dust layer on BOA radiance
- Investigate influence of particle shape and refractive index

Vertical Aerosol Distribution on 29 January 2008

Measurements Entering the Simulation

- FTIR measurements from 2024 UTC to 2105 UTC
- Mineral composition from samples collected on 25 Jan (similar source regions)
- Internal mixture of spherical particles
- Agreement not bad, but outside uncertainties

Internal Mixtures of Spherical Particles

 No internal dust model matches measured signature over the entire TIR window

External Mixture of Spherical Particles

 No external dust model matches measured signature over the entire TIR window

Influence of Non-Spherical Particles

- Oblate spheroids with large aspect ratios (1:5) as suggested by Kleiber et al. (2009) based on laboratory studies
- T-Matrix does not converge for entire size distribution
- Use spheroids for 0.01 < x < 4, and spheres otherwise
- Sensitivity studies suggest, that the replacement of spheroids with spheres does not significantly alter the results (estimated error < 0.2 mW / (m² sr cm⁻¹))

External Mixture of Oblate Spheroids (AR 1:5)

Influence of Non-Spherical Particles

- Much better fit than spherical particles, although simulated aspect ratios do not match laboratory analysis
- Remaining deviations around 1100 cm⁻¹ due to sulfates, quartz, orthoclase and illite
- Possible explanations
 - Illite might require larger aspect ratios (1:18), which cannot be simulated for the given size distribution (T-Matrix method diverges)
 - Sulfates might be modelled inappropriately by ammonium sulfate and gypsum since sea salt aging might result in peak shifts for other sulfates
 - Sodium sulfates have needle like shape with aspect ratio 1:10, but were modelled as spheres (or spheroids with aspect ratio 6:1)
 - Spheroids might be inadequate as well, e.g. due to missing surface roughness

Optimization of Mineral Composition and Particle Number Density

- Simulate dust signature for pure components (pure quartz, pure kaolinite ...) with spheroidal model particles used before
- Size distribution from in-situ measurements
- Decompose measured spectrum into linear combination of pure signatures with least-squares fit (neglects interactions between individual components)
- Simulate aerosol signature of mixture assuming composition obtained from fit for verification purposes

External Mixture of Oblate Spheroids (AR 1:5)

Optimization of Mineral Composition and Particle Number Density

• Fitted microphysics does not match measured (laboratory) composition:

Material	Fitted number concentration [%]	Measured number concentration [%]
Illite	52	<10
Kaolinite	22	30
Montmorillonite	11	<2
Sea Salt	15	< 10
Other	0	50

- Fitted microphysics similar to results obtained by Boer (2010) for airborne FTIR (ARIES) measurements close to Sal in September 2000
- Dust model neither suited for retrieval of dust composition nor concentration

Summary

- Measured spectral signature of mineral dust/biomass burning aerosol mix in the TIR window (800 – 1200 cm⁻¹) including uncertainties
- Confirmed a distinct spectral signature at BOA and TOA and estimated the impact on remote sensing applications (e.g. SST retrieval)
- Oblate spheroidal model particles are much better suited than spherical particles to model mineral dust aerosols, unless optical depth is small
- Model based on spheroids not accurate enough to retrieve dust load/composition
- Further simulation studies with different shapes required

C. H. Koehler, Radiative Effect of Mixed Mineral Dust and Biomass Burning Aerosol in the Thermal Infrared, 2014, http://elib.dlr.de

