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Abstract: Bump maps are commonly used in computer graphics to visualize bumps and

wrinkles on the surface of an object, more speci�cally, in height-�eld rendering. In order to

render shadows for large terrain data using bump maps, various methods such as horizon

mapping have been suggested. A horizon map describes the occlusion of terrain data by

using angles with respect to a view point. In this paper, we propose a method exploiting

ideas from horizon mapping to generate real time shadows for large terrain data. We only

consider a single azimuth direction per height �eld point to compute the shadows. The

generated horizon map is computed in real time and allows for interactive exploration of

the terrain. We demonstrate that our method produces accurate results while keeping the

memory requirements low.
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1 Introduction

Height-�elds are commonly employed in terrain rendering applications. They are not only

used in games but also in real world applications such as �ight and space mission simulators.

In addition to real time rendering, such simulators require physically based methods to

generate highly accurate shadows. These high quality shadows are absolutely necessary

e.g. for the scienti�c simulation of camera sensor images used for the optical navigation of

autonomous spacecraft landing vehicles.

Several physically based shadow algorithms have been investigated in order to render

height-�elds [Lai06]. One of the most common algorithms is ray tracing to produce the

shadows. Although ray tracing can o�er highly accurate results, it is computationally ex-

pensive [WSBW01]. Thus, more interactive shadow algorithms have been proposed such as

shadow mapping [CD03] and horizon mapping [SC00]. These algorithms just provide shadow

approximations. Shadow mapping techniques are interactive as they just approximate the

shadows by testing whether a pixel is visible from the light source. However, the accuracy of

these methods strongly depends on the depth bu�er precision and shadow map resolution.

In contrast, the horizon mapping method describes the visibility of a terrain in terms of

angles with respect to a view point.

The main motivation of our presented work is to render realistic images of celestial bodies

for scienti�c applications. Global shadowing is a crucial issue. In our approach, atmospheric

scattering is ignored in a �rst step which is suitable e.g. for the Moon and asteroids. These



celestial bodies are generally rendered with a single light source (the Sun) and hard shadows.

An additional challenge is the huge amount of sensor data from space missions which has

to be used for the terrain rendering. To be fast but still accurate, Level of Detail (LOD)

approaches has to be incorporated for the rendering. On the other hand, this yields new

di�culties for an accurate shadow computation.

In this paper, we address this problem and present a physically based algorithm to

guarantee real time rendering of large terrain data including the calculation of hard shadows.

Our method exploits the ideas from horizon mapping [Max88]. The main contribution of this

paper is that our method does not require pre-computed maps. Unlike the horizon mapping

technique, we determine the visibility at run time. Hence, it has low memory requirements

and avoids storing large additional data. Additionally, we do not rely on a number of �xed

directions for the visibility check but use always just one azimuth direction. Therefore,

our method does not introduce interpolation errors. In this case, it can be assumed as an

optimized version of the horizon mapping. Moreover, our algorithm is applicable for Level

of Detail (LOD) data structures.

The next chapter gives an introduction to the related work in this �eld. Then, we explain

the basic ideas and concepts. In the implementation chapter we describe our implementation.

Later, we discuss the implementation issues and present that modern GPUs are capable to

handle the computational complexity of the algorithm. Finally, a conclusion is given and

possible future work is discussed.

2 Related Work

Bump mapping is a basic shading technique for rendering bumps [Bli78] on �at textures. It

perturbs the mesh normals to modify the local shading. This can improve the perception

of bumps. Because of the �at nature of the mesh, this technique does not consider any

occlusions. Max presented horizon mapping [Max88] to overcome missing shadows on bump

mapped surfaces. The main idea of horizon mapping is to pre-compute the visibility for each

fragment of the bump map (height-�eld) and save this information in the horizon map. The

visibility is determined by the slope which represents the highest elevation spot seen from

a respective view point. For each azimuth direction (e.g., South, East, West, North), the

angles to the horizon are encoded into discrete number of directions. Therefore, a horizon

map is pre-computed for each de�ned azimuth direction. These horizon maps are used to

interpolate and compute the occlusion along a used azimuth direction at run-time. Using

this method, the interpolation errors will decrease with increasing pre-computed azimuth

directions (Figure 1).

Synder et al. introduced soft shadows using a partial swath instead of applying a discrete

number of directions for a full swath [SN08]. The partial swath only included 2 to 3 azimuth

directions where the light comes from. They demonstrated e�ects of various interpolation

methods (e.g., linear, b-spline) on the results.

Becker and Max depicted that various bump mapping algorithms (including displacement



Figure 1: Artifacts that might occur because of horizon mapping (with 16 azimuth directions,

linear interpolation between the discrete directions) where the azimuth direction does not

match with the discrete directions. Shadowed areas are depicted in black. (a) A single cube

on the height-�eld. (b) The same cube is duplicated 12 times on the height-�eld, the camera

is located above the height-�eld.

mapping) can be blended [BM93]. Displacement mapping method does not just change the

normals but displaces the surface itself. In addition to the work of Becker and Max, Wang et

al. has developed a view-dependent displacement mapping method [WWT+03]. They also

compared their results to horizon mapping and bump mapping.

Shinoyama and Max [SM10] demonstrated fast height-�eld rendering with image-based

lighting. They approximated the environmental illumination using spherical radial basis

functions (SRBFs) and employed horizon and cone mapping for their method. Additionally,

their approach is capable to calculate self-shadowing.

Max [Max88] showed that horizon mapping is also capable of rendering shadows on curved

surfaces. Onoue et al. proposed algorithms to compute bump map shadows by taking surface

curvature into account [OMN04]. Their algorithm includes an additional distance map to

optimize the algorithm for e�ciency.

Nowrouzezahrai and Snyder presented a real-time rendering method for global illumina-

tion e�ects from large area and environmental lights on dynamic height-�elds [NS09]. Their

method requires no pre-computation for the horizon maps and is capable to reduce the no-

ticeable artifacts of the horizon mapping method. On the other hand, is does not produce

physically based shadows. And it does not deal with LOD data structures.

3 Basic Ideas and Algorithm

Our method is motivated by the horizon mapping technique. Unlike conventional horizon

mapping, we only compute a single horizon map along the actual azimuth direction. There-

fore, it requires similar parameters such as the maximum horizon angle (β), elevation angle

(α), and azimuth angles (θ) to simulate hard shadows. θ and α on a �at surface are given

by Eq. 1 and 2, respectively. The position of the light and the position of each pixel on the

height-�eld texture is given by L(xL, yL, zL) and P (xP , yP , zP ). z refers to the (height) value



Figure 2: Horizon and elevation angles on the height-�eld. The size of the height-�eld texture

is (n x n). (a) Relation of a point A and C on bump map. βC represents the horizon angle

at point C. (b) Point A and C on height-�eld texture. The colored pixels (samples) are used

to compute maximum horizon angle at A. In this case, βC is the maximum horizon angle.

of the pixel. Accordingly, the normal of the surface is ~N = (0, 0, 1) and the light vector is
~L = (xL − xP , yL − yP , zL − zP ). Until now the light source is a point light but can also be

de�ned as a parallel light source, such as the Sun.

First, the elevation and azimuth angles are computed for each pixel on the height-�eld

texture. Thus, the surface normals ~N would be di�erent for a curved surface.

θ(xP , yP ) = 90.0− 180.0/π atan2 (xL − xP , yL − yP ) (1)

α(xP , yP ) = 180.0/πarcsin( ~N · ~L) (2)

Second, we compute the maximum angle attained by the horizon along the azimuth

direction for each pixel on the height map. Unlike [SN08], we sample the height di�erence

for a single light direction rather than a 2D swath. In Figure 2 (a), the elevation and horizon

angle for a point A is depicted. We consider the height-�eld as a raster graphics image (n×n)
that evaluates the height information at a planar position (xp, yp). Height information can

be represented by a scalar function h(xp, yp) where 0 ≤ xp ≤ n, 0 ≤ yp ≤ n. Therefore, it

returns a height value per coordinate pair xp and yp. h(xθ, yθ) refers to height values towards

the light source.

d(xθ, yθ, xP , yP ) =
√

(xθ − xP )2 + (yθ − yP )2 (3)

β(xP , yP , θ) = arctan (max(
h(xθ, yθ)− h(xP , yP )
d(xθ, yθ, xP , yP )

)) (4)

xθ = s cos(θ), yθ = s sin(θ), where s ∈ (0,∞) (5)

Function d returns the distance between the sampling pixel and the pixel itself. Eq. 3 is

given for a planar surface. The horizon angle is given by Eq. 4. We note that h(xθ, yθ) are



only computed for the samples along the azimuth direction. The horizon angle would vary

between 0 and 90 degrees.

Sampling methods play a major role for the accuracy. In Figure 2 (b), the samples to

compute the horizon angle at point A are depicted. A continuous sampling can be achieved

by Eq. 5. However, there might be other methods to sample the height-�eld along the

azimuth direction. In this paper, we will not focus on the sampling methods.

The number of pixels that are taken into account during the computation can be reduced

by sample spacing (sp). In order to achieve this, s in Eq. 5, s ∈ Z+, can be multiplied by

a coe�cient such as sp where sp ∈ Z+. This would speed up algorithms. For height-�elds

with high frequencies, it might decrease accuracy. Moreover, it may cause artifacts where

sp > 2 due to the low number of samples. As a result, the sample spacing coe�cient is taken

as sp = 1. This would guarantee accurate results with stable performance. On the other

hand, sp can be increased for height-�elds with low frequencies depending on the requested

accuracy. Therefore, a trade-o� between accuracy and performance can be de�ned by the

user. Furthermore, this trade-o� is strongly dependent on the application.

Figure 3: Hard shadows by our method. (a) A single cube on height-�eld. (b) The same

cube is duplicated 12 times on the height-�eld. Our method does not introduce artifacts as

conventional horizon mapping.

After determining the elevation and maximum horizon angle for each pixel, the occlusion

of the pixels on the surface can be computed by the following function:

v(xp, yp) =

1 β(xp, yp) ≤ α(xp, yp)

0 Otherwise
(6)

v(xp, yp) always returns true or false while false refers to a shadowed pixel. Our algorithm

only computes hard shadows (Figure 3). However, Eq. 6 can be improved by methods

suggested by Max for the horizon mapping [Max88]. In his case, the angles β and α can be

employed to create penumbras for a circular light source. Moreover, the lighting can also be

enhanced by adding more light sources.



4 Implementation

The rendering is based on the OpenGL 4.0 standard. Additionally, our implementation

relies on CUDA 5.0 [nvi15] parallel computing platform to harness the power of graphics

processors. And �nally, we use the double precision �oating point format provided by the

Nvidia Quadro architecture in order to ensure the accuracy.

During the initialization phase of the rendering application, the height-�eld textures

are loaded to the GPU memory via OpenGL. Figure 4 (a) shows a very simpli�ed texture

used for evaluation purpose. After it is uploaded, the rendering loop can start running.

The height-�eld in the GPU memory is bounded to a CUDA texture exploiting OpenGL

interoperability. Therefore, no host memory transfer is required anymore. The horizon map

texture (Figure 4 (b)) is computed each frame for a given light source position (in our case:

the moving Sun). In a �rst computation step, each GPU thread determines the horizon,

elevation, and azimuth angle in parallel. Then, each thread compares the elevation angle

to the horizon angle (visibility function). In an optimal case, a pixel in the horizon map

is assigned to a dedicated GPU thread so that the computation is performed thoroughly

concurrently. The result of the comparison is saved to the horizon map texture and passed

on to a fragment shader which evaluates the horizon map values. If this visibility value is

set to false (i.e. shadow), the color value in the frame bu�er is set to black (hard shadow).

Figure 4: The textures in the GPU memory. (a) The height-�eld texture: An arti�cial

height-�eld is depicted consisting of a single cube on a �at surface (cf. Figure 3 (a)). (b)

The horizon map texture: The shadow values are marked in red.

Instead of visibility �ags, it is also possible to store the horizon angle for each pixel

in the horizon map. Actually, this is why [SC00] de�ned this texture as "horizon map".

They store horizon angles as �oating point values which come along with higher memory

consumption. In our algorithm, both approaches are implemented. However, we did not

observe any signi�cant di�erences in performance and accuracy.

We have also combined and extended our method to work with a Level of Detail (LOD)

data structure [LKR+96]. Without involving such techniques, it would not be possible to

process real space mission sensor data interactively. Therefore, in a preprocessing step, all



sensor sources and data stripes are mapped to quad-tree data structures. The leaf nodes

contain the original data as grids which are considered as our height-�eld textures. According

to the view distance, LOD height-�eld textures can also be retrieved on every height level

of the quad-tree. To achieve high accuracy, a large number of height-�eld textures may be

involved in a rendering step.

We only render the tiles which are in the view frustum. In order to visualize shadows on

the terrain, we compute a horizon map texture for each visible LOD height-�eld texture. This

enforce the consideration of neighboring tiles. Therefore, all required textures are uploaded

to the GPU memory and inserted into a CUDA array which manages all the tiles available

in the GPU memory. Thus, it is possible to get access to each height-�eld texture by means

of the CUDA API. The CUDA array index helps to specify neighboring tiles quickly. As a

result, all needed tiles are available and accessible on GPU to compute the horizon maps

needed for the current rendering loop. To increase the performance even more, the horizon

maps are only computed when the position of the light source changes.

Due to the LOD approach, the computation of the horizon maps can be quite complex.

To compute the horizon angle, the algorithms has to traverse along titles with di�erent LOD

resolutions. According to the speed of the navigation over the terrain, LOD levels have

to change and the render performance varies. This mainly depends on the implementation

of the LOD algorithm. In this paper, we only demonstrate that the proposed method is

compatible with LOD approaches.

5 Results

We have tested our algorithm with di�erent resolutions and databases. For evaluation pur-

pose, we use simple arti�cial data such as a cube to verify our results (Figure 4). Such

rendered shadows can easily be validated against exact shadows calculated by geometrical

formulas. However, we also test our results with real data from di�erent celestial bodies such

as the Moon (Figure 5). Those datasets are much more complex. To evaluate those results,

we change the elevation angle interactively and assess the shadows cast by the mountains

and craters visually.

In Table 1, the performance statistics for di�erent height-�eld resolutions are given. To

compare our results, we also implemented the previous method [Max88] with 16 horizon

directions (Figure 1). The benchmarks have been executed on a single workstation. This

workstation includes a single Nvidia Quadro 6000 with ECC memory (total 6 GB GDDR5

memory) and fast double precision capabilities. Furthermore, it is equipped with one Intel

Xeon 2.4 GHz 8 core processor and 24 GBs of DDR3 memory.

We have observed a mean value of 527 fps (Frames Per Second) for a single tile with a

resolution of 256x256 as depicted in Figure 5. The conventional horizon mapping method has

achieved a mean value of 1542 fps with 0.37 seconds of pre-computation time. Our method

does not require any pre-computation. For a 512x512 resolution, we have observed a mean

value of 89 fps. With this resolution, the conventional horizon mapping is faster (355 fps).



Figure 5: Moon, Apollo 15 landing area, 512x512 grid resolution, Kaguya, SELENE dataset

(JAXA). (a) High elevation angle; (b) Low elevation angle.

Table 1: Performance statistics for di�erent height-�eld resolutions.

Resolution Proposed Method (fps) Conventional Horizon Mapping (fps)

256x256 527 1542 (0.37 s Pre-computation Time)

512x512 89 355 (2.9 s Pre-computation Time)

1024x1024 12 154 (21.93 s Pre-computation Time)

But pre-computation time is also increasing (2.9 seconds). Shinoyama and Max [SM10] got

162 fps, 40.0 fps, 39.2 fps with cone mapping, spherical radial basis functions (SRBF), and

conventional horizon mapping respectively. They used 32 azimuthal directions in their im-

plementation. We have achieved 12 fps with a 1024x1024 resolution while the conventional

horizon mapping implementation has 154 fps with 21.93 seconds for pre-computation. In gen-

eral, the conventional horizon mapping is faster but requires an increasing pre-computation

time.

The GPU memory usage of the proposed method naturally increases along with the res-

olution of the height-�eld. In Table 2, the texture memory represents the amount of the

memory that is occupied by the horizon map texture. The memory values for conventional

horizon mapping are given for the horizon mapping method with 16 azimuthal directions.

It is obvious that our memory requirement is less than the conventional horizon mapping

method. The original one requires more than 16 horizon map textures to compute visibil-

ity more accurately. And its textures have pixel values with �oating point precision1. In

1Memory can be optimized by usage of RGBA textures as Sloan and Cohen demonstrated [SC00]. How-

ever, this decreases accuracy since horizon angles are generally not integers but �oating point numbers.



contrast, our method only requires a single texture with black and white values.

Table 2: Memory usage (KB) for di�erent height-�eld resolutions

Resolution Proposed Method Conventional Horizon Mapping

256x256 64 1024

512x512 256 4096

1024x1024 1024 16384

The memory e�ciency is not highly demanded to render a single height-�eld texture.

This is simply because modern GPUs have su�cient memory (1 to 6 GB, and more). On

the other hand, real world applications use hundreds of textures to render e.g. a complete

earth surface. Therefore, the memory should be exploited e�ciently. Moreover, the pre-

computation of horizon textures requires long computation time. As a result, the proposed

method is more suitable for those applications.

As we have mentioned in the previous section, we have also implemented the proposed

method with a LOD approach. Our application has to handle approximately 4 TB of an

Digital Elevation Model (DEM) database (Figure 6 (a)). We have observed real-time render-

ing (20 to 30 fps). The visibility maps are computed for a number of tiles varying between

12 and 60. Each tile possesses a 255x255 resolution height-�eld texture. The number of tiles

depends on the camera position and orientation. Horizon map textures together with the

height-�eld textures occupy up to 1 GB GPU memory. To implement our LOD approach

with conventional horizon mapping (with 16 azimuth directions), we would need 16 TB of

memory for the pre-processed data.

6 Conclusion and Future Work

We have proposed an alternative rendering technique for generating accurate shadows on

height-�elds. The implementation is based on the horizon mapping algorithm. Our results

are compared to the previous methods. We also depicted preliminary results with regard to

large terrain datasets. The main contributions of our approach are:

• A real-time method without artifacts.

• Flexible approach, compatibility with LOD data structures.

• Minimal memory usage and e�cient handling of large data.

• Simple, straight forward implementation.



Figure 6: The proposed method is also compatible with the LOD approach. (a) The dataset

belongs to the Moon surface, north pole [Arc15]. Hard shadows in the craters and on the

valley can be clearly seen. (b) The dataset belongs to the Mars surface (Valles Marineris)

[NAS].

Our method also has some limitations. First, it can only be used for self-shadowing of the

terrain. But it might be used together with other shadowing techniques to cast shadows of

further objects (like Rover models) onto the terrain. Second, the complexity of the algorithm

might increase dramatically with multiple light sources. Therefore, the use of the approach

in real-time applications might be limited to the height-�elds with a single light source such

as the Sun.

As future work, our method can be investigated to accelerate the core algorithm and

improve its scalability. The compatibility of our method with other LOD approaches should

be assessed. The memory requirements and frame rates with respect to resolutions of large

terrain datasets can be analyzed in more detail. Furthermore, the performance issues might

be evaluated with regard to multiple light sources.
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