
Next-Best-View 
Planning for 
Exploration and 
Autonomous 
3D-Modeling in Static 
Environments with 
Irregular Depth Noise 
using 

    Interval Probabilities

Alexandra von Lösecke







Kurzfassung

Diese Arbeit untersucht next-best-view Planung für Exploration und autonome 3D-
Modellierung in statischen, verrauschten Umgebungen unter Verwendung von Intervall-
wahrscheinlichkeiten.
Ein Algorithmus zur autonomen Exploration wird erweitert, um mit verrauschten Tiefen-
daten aus Innenraum-Umgebungen besser zurechtzukommen. Die aufgenommenen Daten
werden von einem neuartigen Voxel Space-Update interpretiert, welches ein aktuell ver-
wendetes Bayes-Update auf dreidimensionalen Besetztheitskarten mit dem Konzept der
Intervallwahrscheinlichkeiten kombiniert. Damit wird eine zusätzliche Informationsebene
der Unsicherheit eingeführt. Der Raum wird mit Hilfe eines angepassten Next-Best-View
Kriteriums exploriert, welches die maximale Entropie jedes Volumenelements berechnet.
In einer Simulationsumgebung werden Experimente durchgeführt, um zu untersuchen wie
aus den Möglichkeiten der Wahrscheinlichkeitsintervalle ein Nutzen gezogen werden kann.
Die Ergebnisse werden mit einer Implementierung des Bayes-Update am DLR-RMC ver-
glichen.
Die Methodik wird dann auf die Objektmodellierung übertragen. Mit einem industriellen
KR16 Roboterarm des Herstellers KUKA werden weitere Experimente durchgeführt, um zu
prüfen, ob die Ergebnisse aus der Simulation auf die Realität übertragbar sind. Die bedeu-
tendste Schlussfolgerung aus den Experimenten ist, dass das neuartige Update besonders
im Umgang mit widersprüchlichen Daten vorteilhaft ist.
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Abstract

This thesis examines Next-Best-View planning for exploration and autonomous 3D-
modelling in static environments with depth noise using Interval Probabilities.
An autonomous exploration algorithm is extended to cope better with depth noise from
non-diffusely reflecting environments. The measured data is interpreted by a novel voxel
space update which combines a state-of-the-art Bayes Update on three dimensional occu-
pancy maps with the concept of Interval Probabilities. Thereby an additional informational
level of uncertainty is introduced. An adapted next-best-view criterion, which calculates
the maximum entropy of each volume element, aids the exploration process.
Experiments are conducted in a simulation to examine how to take advantage of the pos-
sibilities of Interval Probabilities. The results are compared to an implementation of the
Bayes Update at the DLR-RMC. The method is then transferred to object modelling.
A robotic industrial arm named KUKA KR16 is used to conduct further experiments to
verify whether the results from the simulation are applicable to real-life environments. It
is concluded that the novel update is especially advantageous in dealing with specular
reflections.
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Chapter 1

Introduction

1.1 Motivation

Industry as well as society has come to rely more and more on robots. Going by the name
“robota”, Czech for “forced labour” [Dic], their purpose is to serve. Ever since the term
was introduced in the K. C̆apek’s play “Rossum’s Universal Robots”, robots have been
constructed for a wide array of activities, which all have the one objective of providing
service to humans. Often, they perform tasks we as humans can not or do not want to do
ourselves: They assemble cars, they lift and weld mechanical parts for us or they do our
housework when we let them vacuum our apartment. In storage buildings, they organize
and redistribute goods.

When robots begin work on tasks that were meant to be done by humans, they have
to deal with a human environment. The hallways might be narrow, long, and featureless,
there are stairs. Glass and mirrors are used as design elements. This environment has
not been designed for robots, as they are, for instance, hardly able to correctly interpret
mirrors as surfaces. As we integrate robots into our everyday life, we will encounter such
challenges over and over. Thus, we need to teach robots how to cope with such circum-
stances.
A good starting point for that task is to collect information about the situation and inter-
pret it, e.g. to create a map or a model. However, the information can be misinterpreted
or it can be insufficient. If decisions are based on such a questionable level of information,
the result can be anything from illogical to dangerous. Therefore putting the collected
information into context is crucial. If utilized well, it can avoid misinterpretation and
provide additional information. One way of establishing a context around the collected
information is through introducing an additional level of uncertainty, taking into consid-
eration how much information has already been collected about the event. In this thesis,
this additional uncertainty is introduced through the usage of interval probabilities. When
assuming a probability for an information to be true, the certainty about that probability
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Figure 1.1: Robotic arms weld parts of a car. Photo courtesy of KUKA Robotics [KUKa]

is represented by an interval.
In this thesis, the concept of interval probabilities is applied to autonomous exploration
and object modelling. The goal is to improve the interpretation of perceived data which
is erroneous or conflicting and thus enable the robot to decide on better actions.

1.2 Problem Description: Autonomous Exploration

in Environments with Depth-Noise

As the name suggests, autonomous exploration requires autonomy, i.e. independence and
the capability and cognition to explore. The problem of exploration has been thoroughly
discussed in the literature, for instance by Thrun, Burgard and Fox [TBF05]. They ex-
plain that when exploring, a robot should “maximize its knowledge about the external
world”. This is achieved through implementing intelligent algorithms on robots, enabling
them to perceive, interpret, decide and act autonomously. The state-of-the-art exploration
algorithms usually follow four steps:

• Perception

• Interpretation

• Decision

• Action
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Figure 1.2: Diffuse (left) and specular (right) reflection. The incoming beam is black, while
the reflected beams are coloured red.

Firstly, the exploration algorithm of an intentional system should gather data using its
sensors. From the collected data, it is able to infer conclusions, e.g. create a map. It
can then decide on actions based on those inferences, depending on how to best pursue a
given objective. Lastly, the actions that have been chosen are carried out. I.e., the robot
should analyse measured data, decide on a next-best-view and move to it such that a
given goal is achieved while taking certain demands into consideration. A robot finding
its way through a maze, for instance, would first measure the walls that surround him,
analyse where it can go and then decide where it should go depending on what looks most
promising.
For the exploration purposes, movement is restricted to two dimensions, since the labo-
ratory does not include stairs nor any other kind of change in altitude. Later, when the
developed approach is transferred to object modelling, movement in the third dimension
offers significant information gain and can thus not be omitted.

Conflicting data can impede the exploration process. In state-of-the-art procedures,
some kind of 3D imaging technique is commonly used. The imaging process relies on
the event that a beam emerging from the camera is directly reflected towards the sensor.
This only happens on diffusely reflecting surfaces. As described by Juds [Jud88], diffuse
surfaces reflect light towards all directions. Thus, some light is directly reflected towards
the sensor. On other surfaces, the beam is not reflected and the distance measurement
is distorted. Specularly reflecting surfaces, for instance, reflect most of the light in one
direction. Unless the surface is viewed from a 90◦ angle, the angle of incidence will not
equal the angle of reflection. Thus, the light has to be be reflected by at least one other
object in order to be perceived by the sensor. The measured distance will thus not
correspond to the actual distance between the object and the sensor. Other phenomena
like absorption and transparency further decrease the intensity of light reflected directly
towards the sensor. In this thesis, the phenomenon that light is not reflected diffusely
due to transparency, absorption or specular reflectance is referred to as depth noise. In
human indoor environments, reflecting, absorbing and transparent surfaces are a frequent
occurrence. If perception is erroneous, an interpretation based solely on that measurement
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Bayesian Probabilities Interval Probabilities

unknown

unknown known

(a) After information has been col-
lected, states are unknown or known

unknown

uncertain known

(b) After information has been col-
lected, states are uncertain or known

Figure 1.3: Bayesian Probabilities vs. so-called Imprecise Probabilities: States resulting
from conflicting data can be distinguished with Imprecise Probabilities, while the state
remains unknown in certain cases of Bayesian Probabilistics.

is error prone as well. Thus, in the state-of-the-art exploration algorithm, information
from several scans is collected and combined in a representation of the space that is
being explored. In a perfect environment, the space that is initially unknown eventually
becomes known. However, since an indoor environment designed for humans is not
perfect, certainty can not be attained about every area. When using the Bayes update,
these areas remain unknown, making them non distinguishable from unperceived voxels.
This likely hinders coping with conflicting data, as a conflict can not be identified and is
thus not targeted specifically.
Bayesian Probabilistics are limited in the way that they require a probability for each event
in question. This means that neither initial ignorance nor uncertainty about information
can be modelled. Many authors such as Dempster and Shafer [Sha92] and Walley [Wal91]
have tried to bypass these limitations by introducing uncertainty of some kind. Based on
the work of these authors, this thesis will introduce Interval Probabilities as a measure
of uncertainty to allow a distinction between ignorance, i.e. absence of information, and
uncertainty about existing information, i.e. failure to unequivocally interpret existing
data. The essential difference between the so-called Interval Probabilities that allow for a
distinction and Bayesian Probabilities is clarified in Fig. 1.3. Since uncertainty in spite of
existing data is likely due to conflicting data, identifying uncertainties can help identify
conflicts. Prospective algorithms will be able to decide on actions to properly cope with
the conflict and ideally resolve it.
In summary, this thesis aims at enabling exploration in non-ideal environments by
planning next-best-views under consideration of uncertainties in the space representation.
In the future, it is hoped that the idea can be expanded to cope with conflicting data
independent of the specific situation.
Multiple reasons can motivate the usage of imprecise probabilities. There are practical
reasons like robustness of conclusions drawn from a statistical analysis, but there is
also the desire to represent real world situations. For instance, precise probabilities are
not sufficient when modelling the beliefs of a group of people. The motives for usage
of imprecise probabilities are described by Walley [Wal91]. Below is a summary of the
motives most relevant to this thesis:
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A new, unknown object about to be scanned can be easily represented through vacuous
probabilities. Rather than assuming a precise probability that is likely inaccurate due
to absence of data, using imprecise probabilities means we can assume complete initial
ignorance. This can be interpreted as a boundary condition representing the model’s
starting point.
Since the objective of this thesis is to model unknown areas or objects, the fact that
shapes are unknown but become known needs to be represented appropriately. Situations
in which the occupancy of a cell is uncertain in spite of data being available need to be
distinguished from cells which have not been scanned. This is achieved through imprecise
probabilities. The amount of information available is thus modelled more accurately.
In contrast to the previously mentioned assumption of initial ignorance, the amount of
information as obtained throughout several exploration steps is modelled.
Since the given task of deciding whether or not a cell is occupied is quite a complex one,
determining the probability that a cell is occupied will be complex as well. Finding a
single precise value of this probability may not be realistic, since this requires knowledge of
the situation as well as time and computational power. Instead, upper and lower bounds
are introduced and assessed.
When modelling the beliefs of a group of people or any other set of differing beliefs,
imprecise probabilites can merge the divergent opinions into one model. For instance, if
person A believes the probability of event X is 0.8, and person B believes that event will
occur with a probability of 0.5, an interval ranging from 0.5 to 0.8 can represent both
beliefs at once. The same applies to robotic exploration. In the given task, the sensor
will rotate around the object, scanning it from different angles and positions. Thus,
many cells will be scanned more than once, each scan resulting in a different probability
of occupancy. This data can be merged into a single hypothesis through the usage of
imprecise probabilities. Convergent data can be interpreted as highly consistent, whereas
non-convergent data can mean either inconsistency or lack of knowledge.

1.3 Structure

Chap. 2 gives an overview of the state-of-the-art of autonomous exploration and introduces
Interval Probabilities. In Chap. 3, the exploration strategy that this thesis is based on is
introduced. The exploration process is extended in Chap. 4 by introducing a novel update
type, the so-called Interval Update. A possibility to exploit the advantages of the Interval
Update is suggested and implemented. Experiments are conducted to examine how the
usage of interval probabilities affects performance, both in autonomous exploration and
object modelling. The results are described in Chap. 5. Chap. 6 sums up the thesis and
its results and gives an outlook on future work on the topic.



Chapter 2

Related Work

2.1 Data structure

When perceiving the environment with depth sensors, the data needs to be represented in
an internal structure. The most straightforward approach when measuring with time-
of-flight cameras is to convert the data to a point cloud. However, other structures
such as elevation maps [HCK+89], multi-level surface maps [TPB06] or occupancy grids
[WHB+10][Sup08] are also commonly used.
An occupancy grid represents the environment like a map. It divides the given space along
a grid and describes the occupancy of the resulting subspaces. This is especially helpful
when exploring environments, since the occupancy grid can be used for mapping as well as
for planning the next step. As described in the PhD thesis by Suppa [Sup08], a so-called
three-dimensional (3D) voxel space is often generated during the scanning process. The
space that is to be scanned is divided into cubic subspaces, also named volumetric elements
or so-called voxels. As with any occupancy grid, each subspace is assigned a probability of
occupancy and a corresponding state, e.g. “free”, “occupied” or “unknown”. In an octree,
groups of eight voxels are named children and assigned a superordinate parent node, while
eight of those parents are again assigned a superordinate node. Child nodes are pruned if
they are stable and have the same probability of occupancy.

2.2 Exploration Strategies in Comparison

2.2.1 State-of-the-Art of Autonomous Exploration

In order to be able to assess and evaluate the exploration strategy in use at the Ger-
man Aerospace Center, Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Robotics and

6
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Mechatronics Center (RMC)-Department of Perception and Cognition (PEK), other pub-
lished exploration strategies are examined. Chen et al. give an overview of various per-
ception strategies in their paper: Active vision in robotic systems: A survey of recent
developments [CLK11]. They describe two major issues of Next-Best-View (NBV) plan-
ning:

• Navigating safely in spite of the fact that the environment is partially unknown and
the sensors’ capabilities are limited

• Ensuring a sufficient overlap of the current map and the local model.

Farshidi et al. [FSK09]use two statistical metrics for rating a scan position: mutual
information and the Cramer-Rao lower bound.

In another paper, Holz and Amigoni present “A comparative evaluation of exploration
strategies and heuristics to improve them” [HBAB11]. The authors compare three explo-
ration strategies:
The “Closest Frontier Exploration Strategy” [Yam97] detects borders between explored
and unknown regions and selects the frontier closest to the current position.
Gonzalez Banos and Latombe‘s Exploration Strategy [GBL02] evaluates utility u(p) by
taking travelling cost L(p) and information gain I(p) into account and thereby selecting
the Next-Best-Scan (NBS) position:

u(p) = I(p) · e−λL(p,r). (2.1)

The information gain is given by the “difference [in] entropy before(H) and after(Ĥ) the
scan”(p.3)

I(p) = Ĥ − H (2.2)

H = −
�

c[xy]

�
p(c[xy])logp(c[xy]) + (1 − p(c[xy]))log(1 − p(c[xy]))

�
(2.3)

The authors thereby tackle the problem of balancing the requirements named in Chen et
al. article.
Another approach, the Multi-Criteria Decision Making (MCDM) - based Exploration Strat-
egy [BA09] uses the following criteria for decision making:

• travelling cost L()

• estimated information gain I()

• overlap O()

The utility of each criterion i, i ∈ {L(), I(), O()} is then calculated as follows:

uL(p) =
1 − (L(p, r) − minq∈C L(q, r))

maxq∈C L(q, r) − minq∈C L(q, r)
(2.4)
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and the utilities are combined by a Choquet fuzzy integral:

u(p) =

|N |�

i=1

(u(i)(p) − u(i−1)(p))µ(Ai) (2.5)

Furthermore, the authors make suggestions for improving the strategies above. They claim
that an improvement with respect to travelling cost can be achieved by introducing Repet-
itive Re-checking and Map Segmentation. Repetitive re-checking means that the map is
updated during navigation and the selected frontier is constantly challenged. If the frontier
becomes known during navigation to the chosen location, navigation is terminated and a
new frontier is selected. When using map segmentation, the map is divided into segments.
Frontiers inside the segment of the robots location are preferred to those in other segments.

2.2.2 Research on Autonomous Exploration and 3D Modelling
at DLR-RMC

The following section describes research conducted at DLR-RMC [DLR] in the field of
autonomous exploration and 3D modelling. Kriegel et al. present their various techniques
they use when scanning objects. They focus on model completeness as well as scene
exploration with multiple objects.
One of their first approaches [KRB+12] is to determine NBS candidates from boundary
search. The NBS position is selected using the Information Gain IG, which is based on
the sum of the entropies of all voxels visible from the sensor in the NBS position:

IGscan =
�

beams

�

voxels

Hvoxel(p) (2.6)

Hvoxel(p) = − p log(p)� �� �
occupied

− (1 − p) log(1 − p)� �� �
free

. (2.7)

with Hvoxel describing the entropy of a voxel and p being the probability of occupancy
of that voxel. Later, after a certain estimated coverage of the mesh is reached, a hole
detection algorithm is applied. I.e. NBS positions are planned based on the location and
size of holes in the mesh.
In a recent paper([KRBS13]), that approach is modified: Again, NBS positions are selected
by analysing a volumetric model of the unknown object. In this case, however, the selection
of a scan position is based on a utility function:

futility = (1 − ω) · ev� �� �
Exploration

+ω · (1 − qs)� �� �
3D Modeling

(2.8)

using the entropy of volumetric model ev, the weighting ω, and a surface quality value qs.
qs is calculated from the local sampling density, the incidence angle, and the amount of



CHAPTER 2. RELATED WORK 9

border edges. The scan position with the highest utility value is selected for the next scan.
With the same approach as in the paper published in 2012 [KRB+12], NBS candidates
are found and sorted, except that scenes are examined instead of individual objects
([KBM+13]). Therefore, a sensor pose that is not in collision with other objects and
with a minimally occluded view needs to be chosen. Similarly to the authors’ article in
2013 [KRBS13], a utility function f is used. In this case, however, an actual function is
given to evaluate the surface quality:

qs =
1

k

k�

i=1

λ · bi + (1 − λ) · di, λ, bi, di ∈ [0, 1]. (2.9)

Also, the weight is defined:

ω =

ns

nq�
ns

nq
+ 1

� (2.10)

with ns being the scan number, whereas nq is chosen and in this case set to 8.

An earlier approach by the authors [KBSH11] is similar to their other works, considering
boundary search is again used. The new aspect in this case is the classification of found
edges into left, right, top and bottom edges and the fact that rightmost, leftmost, low-
ermost and topmost boundaries are prioritized, respectively, when dealing with multiple
edges in a single scan.

The strategy by Kriegel et al.[KRBS13] has also been utilized by Thomas et al. [TKS14].
They select scan path candidates by extending the algorithm, i.e. using boundary
detection with surface trend estimation and, later, hole detection. Just like in Kriegel et
al.’s approach [KRBS13], a mesh and a voxel space are constructed. Once both the mesh
and the voxel space are completed, scans are performed on a cylinder around the object
in order to obtain color information. Additionally, the object is rotated and its bottom
part is scanned.
An autonomous exploration system at the DLR-RMC has been introduced by Suppa
and Hirzinger [SH07]. A multipurpose vision system is obtained by mounting multiple
sensors to a robot. The robot is thus enabled to explore an entirely or partially unknown
environment by building a map incrementally.

2.3 Coping with Conflicting Data in Exploration and

3D-Modelling

Alt et al. [ARS13] present a method to reconstruct transparent objects with a Kinect
sensor. First, the sensor moves around the scene containing the transparent object and
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creates a background model. Then a model consisting of model depth Dc, reliability Rc,
and the standard deviation valueσ�

c = max(σc, σs), obtained by taking the maximum of the
observed value σc and the expected value σs for the standard deviation. From these values,
a so-called error signal is calculated. This value allows detection of transparent as well as
reflecting areas. Experiments show that a location as well as a rough shape estimate can be
obtained. According to the authors, the approach is limited to surfaces with dominantly
refractive effects, i.e. objects with smooth and curved surfaces.
Another approach to coping with noisy data is presented by Magnusson et al. [MLD07].
They examine scan registration for autonomous mining vehicles, by applying a normal
distributions transform. In a NDT, the surface is represented by normal distributions,
combined to give insight on the probability that a surface point is present at the corre-
sponding location. Thus, a continuous, piecewise differentiable representation is modelled,
making the nearest neighbour search dispensable. This is helpful when dealing with rough
surfaces, which produce seemingly conflicting, but matchable data. The major challenge in
this case is matching point clouds, while the noisiness of the data is rather secondary. Its
applicability to situations where the central task is coping with noise has yet to be proved.
The presence of specular reflections is often noted ([HHHL+14]) as a source of noise and
errors, but a strategy to cope with the noise is scarcely suggested. Hansard et al. [MHH12]
examine the performance of Time-of-Flight(ToF) cameras when measuring specularly re-
flecting and translucent surfaces. Since the book is meant to give an overview over ToF-
cameras, it does not suggest a practical solution to this issue. An early approach suggested
by Yamauchi [Yam97] is the combination of sonar and laser sensors, the so-called laser-
limited sonar. This only considers the noise from the sonar sensor but neglects the noise
from the laser sensor.

2.4 Interval Probabilities

Bayesian Probabilistics are limited in the way that they require a probability for each
event in question. The probability of an event A and the probability of a complementary
event A always add up to one. A number of other authors have managed to bypass this
limitation by introducing uncertainty. Dempster [Dem68] and Shafer [Sha76], for instance,
use uncertainty to provide a measure of probability of one event based on the probability
for another event. They call this measure a degree of belief. The degree of belief for an
event could be based on the probability of reliability of a person telling you about that
event. Moreover, Dempster has stated a rule for combining beliefs if they are based on
independent evidence. Thus, in contrast to Bayesian Probabilistics, when using Dempster-
Shafer belief functions, the degree of belief for an event A and the degree of belief for a
complementary event A do not necessarily add up to one. Authors like Suppa [Sup08] have
implemented the approach into a so-called Belief Update, which uses Dempster’s rule of
combination instead of the commonly used Bayes Update to update cells.
Another approach by Walley [Wal91] is motivated by gambles: The author defines so-called
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lower previsions as the maximum price at which buying a gamble is desirable. An upper
prevision, in contrast, is the minimum price at which selling a gamble is desirable. In
Bayesian Probabilistics, the lower prevision and the corresponding upper prevision match,
i.e. the buying price equals the selling price. The inconsistency in this model can be illus-
trated by interpreting gambles as goods bought and sold by a merchant. The merchant is
usually not willing to buy goods at the same price at which he wants to sell them. Thus
the lower and upper previsions differ. Many situations are better modelled through impre-
cision.
Lower previsions by themselves do not guarantee an advantage, though. Three principles
need to be followed: Avoiding sure loss, coherence, and natural extension. Avoiding sure
loss means not accepting a series of gambles which degrades your situation. Moreover,
a gamble whose outcome is better or equally as good as set of gambles that are already
accepted, should be accepted as well, i.e. beliefs should be coherent. Lastly, if a set of
gambles exist, coherent inferences are desirable. This can be achieved by natural extension
of the existing beliefs. If beliefs are extended under consideration of avoiding sure loss,
this automatically leads to coherent probabilities. Thus, natural extension can be used
to combine different assessments into a coherent model. Interval Probabilities take these
three principles into consideration and are therefore well-suited to combine different mea-
surements into a coherent 3D-model.
The idea of imprecision has been implemented into classification trees. Abellan and Moral
[AM01] introduce a total uncertainty criterion. By considering a combination of the max-
imum entropy and a measure for the total uncertainty, they reduce entropy while not
increasing nonspecificity. In a later publication, they state that a credal set’s “uncertainty
can be measured by considering maximum entropy” [AM03].



Chapter 3

Fundamentals of Autonomous
Exploration at DLR

An overview of the most important methods for the implementation of this thesis are de-
scribed in the following. As the name suggests, autonomous exploration requires autonomy,
i.e. independence and the capability and cognition to explore. This is achieved through
implementing intelligent algorithms on robots, enabling them to perceive, interpret, decide
and act autonomously.

3.1 Autonomous Robots

When it comes to three-dimensional scanning and exploration, the goal is to eventually
create a robotic intentional system in order to replace manual scanning by a “human
intentional system”. Firstly, the exploration algorithm of an intentional system should
be able to infer conclusions from previously gathered information. It can then decide on
actions based on those inferences, all the while pursuing a given objective. Lastly, the
actions that have been chosen are carried out. I.e., the robot should analyse measured
data and decide on a next-best-view such that a given goal is achieved while taking certain
demands into consideration. E.g. a robot finding its way through a maze would first
measure the walls that surround him, analyse where it can go and then decide where it
should go depending on what looks most promising.

12
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Figure 3.1: Room in which exploration will be performed

3.2 Perception

A typical laboratory environment as existent at DLR is displayed in Fig. 3.1. The walls
border an environment consisting of larger interior objects such as desks and closets, as
well as smaller items such as a trash can. Some of the passages are broad enough so the
robot can drive past them, others are narrowed by obstacles. In this setup, every element
diffusely reflects the sensor beams, such that the measurement data is noise-free.
In order to perceive such an environment, robots need sensors. Autonomous robots are
often equipped with odometers and optical sensors. While the odometry data is mainly
used for position estimation, optical data can additionally be utilized for various purposes,
including mapping, obstacle avoidance and object recognition. Nevertheless, odometry
data is crucial, since an approximate knowledge of the robot’s position is needed to match
measured datasets to known data.
In this thesis, the perception is seen as a circumstance that can not be influenced. The
emphasis is on the interpretation of the perceived data rather than on finding the optimal
sensor for the task. Choosing a different, optimal sensor for each task and mounting all of
the chosen sensors to the robot would not be resource conserving. Moreover, the task of
determining the type and number of appropriate sensors is complex in itself and thus not
considered in this thesis.
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Figure 3.2: A typical voxel map. Voxels with a high probability of occupancy are coloured
black, while voxels whose state is unknown are gray. Voxels that are likely free are trans-
parent, thus the white background is visible.

3.3 Interpretation

Once measurement data is perceived, it is interpreted by the robot as explained in the
following. First, the robot locates itself within the map using odometry data as well as the
obtained depth images. For details on this procedure, the interested reader is referred to
Wohlfahrt’s Thesis [Woh15]. Once the position is known, the depth images are mapped to
an occupancy grid. Details about this space representation are given in the following.

3.3.1 Creation of an Occupancy Map

The structure of the state-of-the-art octree has already been explained in Sect. 2.1. An
exemplary visualization of an octree can be seen in Fig. 3.2. Occupied voxels are black,
while free voxels are transparent. Gray voxels are unknown. The picture shows how the
sensors have already detected obstacles such as walls and office furniture, while the space
that has not been perceived by the sensors is still unknown. The image also shows why the
sensors do not perceive their entire environment at at once: In some cases, the environment
is occluded by obstacles, in other cases the environment is out of reach to the sensors, since
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Figure 3.3: Depending on the scanning angle, an obstacle is perceived differently

they can only measure reliably up to a distance of a few metres. Moreover, the number
and arrangement of sensors does usually not allow for a complete 360◦ view. Nevertheless,
the robot is able to fully explore its environment by performing additional measurement
steps from different viewpoints.
The voxel space’s resolution can be defined as the number of points within a three-
dimensional space that can be distinguished. In a voxel space, it is equivalent to the
number of voxels per spatial unit. Thus, the smaller the edge length of a voxel, the larger
the resolution. Choosing an appropriate resolution for the purpose is crucial: If using a
resolution that is too coarse, the accuracy of the map decreases. If it is chosen too fine, the
performance of the algorithm suffers, since more voxels need to be iterated for the same
size of space. As displayed in Fig. 3.3, there are two features of a voxel space that should
be considered.

• The voxel space does not represent the environment perfectly, unless the resolution
is infinitely high, or the objects’ outlines perfectly match the grid. A higher reso-
lution usually leads to a better representation of the environment. For exploration
purposes, a coarse grid is especially precarious. Fig. 3.3 shows that once an obstacle
is perceived, some free space becomes inaccessible, since the entire voxel is considered
to be occupied. The amount of inaccessible free space is linked to the grid size. This
means a higher resolution is advantageous.

• Moreover, when interpreting a measurement, the scanning angle should be taken
into consideration. If a surface is viewed from a flat angle, the measurement beams
might pass by the surface. As illustrated in Fig. 3.3, the flat scanning angle of the
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ToF-camera in position 1 is inferior to the near perpendicular angle from position
2. The beams emerging from the camera in position 1 pass through voxels 1 and 3
even though they contain obstacles, thereby giving the impression that those voxels
are free. If the robot relies on this information, it may collide with the obstacle.
In contrast, the beams emerging from the camera in position 2 hit the obstacle in
all three voxels, giving the impression that those three voxels are occupied. This
information will keep the robot from colliding with the obstacle.

The initial uncertainty about the map or object is typically modelled by setting the
probability of occupancy to 0.5 in each voxel. By analysing the amount and location of
unknown voxels, the position and angle of the next scan, the so-called “next-best-view”,
can be planned (see subsection 3.3.3). As more and more scans are performed, the state
of each voxel ideally changes from “unknown” to either “free” or “occupied”, such that
finally the state of all voxels is known. With sufficient resolution, the occupied voxels
imitate the shape of the scanned object, or trace the walls of the explored room. In some
cases, the voxel space is used exclusively for next-best-view planning. In other cases, a
mesh is additionally constructed from the scan data. This is especially important if the
goal is to construct a 3D-model, and can be omitted in exploration applications for the
sake of performance.
Since the position of the robot is known, the depth images from the eight ToF-cameras
can be positioned within the voxel space. The part of the depth images that makes up
the floor is cut off and not considered when building the voxel space, since the floor is
occupied, but does not pose an obstacle. The voxels’ states can then be updated using the
information from the depth images. The update strategy for updating each voxel state is
explained in the following.

3.3.2 Bayes Update

The Bayes update is a kind of iteration that allows to infer conclusions about the state of
voxels from measurement data.
Each beam is traced from the sensor’s light source to the supposed obstacle. All of the
voxels that are intersected by the trace are considered for the Bayes update. This is illus-
trated on the left hand side of Fig. 3.4. The farthest voxel which is intersected by the beam
contains the polygon which poses the obstacle. Knowing that the sensor has just found
an obstacle in that voxel, its probability of occupancy is increased. Similarly, if a voxel’s
probability of occupancy suggests that it is occupied, but the measurement beam passes
through it, the probability of occupancy can be decreased to display the information gain
from the latest measurement.
This means that if the probability of occupancy after several measurements is high, an
obstacle has repeatedly been detected in that voxel, while a low probability of occupancy
means the beam passed through that voxel several times. If the probability of occupancy
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(a) Voxel space before the update (b) Voxel space after the update

Figure 3.4: Applying the Bayes update to a voxel space

remains at 0.5, the area has either not been perceived by the sensor or the measurement
data is inconsistent, i.e. the voxel appears to be both occupied and free, depending on the
scan.
Decreasing and increasing the probability value is performed by a Bayes Updater
[Sti86][Joy08]:
The updater is based on Bayes’ theorem, which states that the probability of an event A
to occur given the event B, Pr(A|B), can be calculated from the probability of an event
B given A, Pr(B|A), if the probabilities of the individual events, Pr(A) and Pr(B), are
known.

Pr(A|B) =
Pr(B|A) · Pr(A)

Pr(B)
(3.1)

This can be rephrased and applied to the problem of finding the probability of occupancy
of a voxel:

Pr(Occi|Data) =
Pr(Data|Occi−1) · Pr(Occi−1)

Pr(Data)
(3.2)

In this interpretation, Bayes’ theorem acts as an iteration step, where the above formula
describes step i. It transforms the probability that a voxel is occupied, Pr(Occi−1), to the
probability of occupancy given a certain additional knowledge, or data. Pr(Occi|Data) is
calculated from the likelihood of the data, taking into consideration the knowledge about
the occupancy of the voxel. The theorem also considers the overall probability of the data,
which acts as a scaling factor. The next iteration step i + 1 is performed once new data is
available.
Pr(Occi−1) is referred to as A-priori-probability, whereas Pr(Occi|Data) is called the A-
posteriori-probability. Even though Pr(Data) is merely a scaling factor, it is difficult to
calculate, since every possible measurement has to be taken into consideration. In order to
avoid having to quantify Pr(Data), one can take advantage of the fact that Equation 3.2
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can be applied to the probability of vacancy Pr(Free) as well.

Pr(Freei|Data) =
Pr(Data|Freei−1) · Pr(Freei−1)

Pr(Data)
(3.3)

Solving Equation 3.3 for Pr(Data)

Pr(Data) =
Pr(Data|Freei−1) · Pr(Freei−1)

Pr(Freei|Data)
(3.4)

and inserting it into Equation 3.2 eliminates Pr(Data). This is called an odds-
representation of Bayes’ theorem. Odds are a way of expressing how strongly two events
are associated with each other.

Pr(Occi|Data) =
Pr(Data|Occi−1)

Pr(Data|Freei−1)
· Pr(Occi−1)

Pr(Freei−1)
· Pr(Freei|Data) (3.5)

Pr(Occi|Data)

Pr(Freei|Data)� �� �
:= o(i)

=
Pr(Data|Occi−1)

Pr(Data|Freei−1)� �� �
:= lq

· Pr(Occi−1)

Pr(Freei−1)� �� �
:= o(i-1)

(3.6)

The result is a posterior odd o(i), which is created from an updated prior odd o(i − 1)
using the likelihood quotient lq.
In the next calculation step i+1, the former posterior odd becomes the prior odd. Applying
the logarithm to both sides of the equation leads to a simple summation:

log(o(i)) = log(lq · o(i − 1)) = log(lq) + log(o(i − 1)), (3.7)

assuming Pr(Occi|Data), Pr(Data|Occi−1) and Pr(Occi−1) are greater than zero. This
is commonly called the log-odds representation. To retrieve the posterior probability of
occupancy, the fact that Pr(Free) can be calculated from Pr(Occ) is exploited:

Pr(Free) = 1 − Pr(Occ) (3.8)

log(o(i)) = log(
Pr(Occi)

Pr(Freei)
) = log(

Pr(Occi)

1 − Pr(Occi)
), (3.9)

o(i) =
Pr(Occi)

Pr(Freei)
=

Pr(Occi)

1 − Pr(Occi)
, (3.10)

the posterior probability of occupancy can be retrieved from the posterior odd by reversing
Equation 3.10:

Pr(Occi) =
o(i)

1 + o(i)
. (3.11)

Combining all of the calculations above results in the following mapping relation for up-
dating the prior probability Pr(Occi−1):

Pr(Occi) =

Pr(Occi−1)
1−Pr(Occi−1)

· lq

1 + Pr(Occi−1)
1−Pr(Occi−1)

· lq
. (3.12)
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Pr(Occ) < 0.05 > 0.95 0.05< Pr(Occ) < 0.95
set to state FREE OCCUPIED unchanged(UNKNOWN)
set to Pr(Occ) 0 1 unchanged

Table 3.1: State adjustments depending on Pr(Occ)
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Figure 3.5: Mapping from prior to posterior probability depending on the likelihood quo-
tient

If the probability of occupancy of a voxel passes the threshold for being occupied or being
free, the state is adjusted accordingly. As listed in Tab. 3.1, if the probability of occupancy
of an individual cell drops below 0.05, the cell’s state is set to FREE. Similarly, the state
is set to OCCUPIED if the Pr(Occ) increases past 0.95.

The effect of the likelihood quotient is visualized in Fig. 3.5, which shows the update from
the prior probability Pr(Occi−1) to the posterior probability Pr(Occi).

It can be seen that a likelihood quotient smaller than 1 maps the prior probability to a
lower posterior probability, i.e. it decreases the probability of occupancy. Similarly, a like-
lihood quotient greater than 1 maps the prior probability to a higher posterior probability,
increasing the probability of occupancy. This effect is intuitive if the likelihood quotient
is examined closely: The numerator contains the probability of measuring this data in the
examined voxel, assuming it is occupied. The denominator contains the opposite, i.e the
probability of measuring this data, assuming the voxel is free. If it is more likely that the
data occurred due to an occupied than to a free voxel, the likelihood quotient is larger than
1. The voxel is probably occupied and the probability of occupancy should be increased.
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This analogously applies if the likelihood quotient is smaller than 1.
Another feature of the update is that once a voxel’s state reaches the numerical limits of
its type, the update has no effect on it any more. The numerical limits of the chars stored
in the voxel space are 0 and 255, which, converted to double for the update step, results
in limits of 0.0 and 1.0.

Pr(Occi)|Pr(Occi−1)=0. =
0

1−0
· lq

1 + 0
1−0

· lq
= 0 (3.13)

Pr(Occi)|Pr(Occi−1)=1. = lim
Pr(Occi−1)→1.

P r(Occi−1)
1−Pr(Occi−1)

· lq

1 + Pr(Occi−1)
1−Pr(Occi−1)

· lq
= 1. (3.14)

From the updated voxel space, an exploration map can be created as explained in the
following section.

3.3.3 Designing an Exploration Map

As explained earlier, the movement of autonomous robotic platforms considered in this
thesis is limited to two dimensions. Thus, while the data contained in third dimension is
crucial to exploration itself, i.e. to its purpose of discovering and collecting information, it
is hardly relevant for planning exploration steps. Thus the three-dimensional voxel space
is transformed into a two-dimensional (2D) so-called exploration map. This decreases
computational effort significantly when pursuing objectives such as finding frontiers and
path planning. The 2D map is transformed into an exploration map designed for pursuing
such objectives as explained in the following. A detailed explanation and motivation for
the usage of an exploration map is described by Wohlfahrt [Woh15].
As a preparatory step for creating the exploration map, the 3D voxel space is projected
along its z-axis onto a 2D map. Since the voxels that represent the floor have already been
excluded, they are likewise not considered in the projected map. For each column of voxels
along the z-axis, a pixel is created on the map. If the column contains one or more occupied
voxels, the pixel is considered occupied, as the area represented by the pixel contains an
obstacle. If all of the voxels’ states in one column are free, the pixel is considered free as
well and the area represented by the pixel is possibly reachable.
Once the occupied areas are determined, i.e. obstacles are identified, the robot needs to
plan its next step. Before planning where it should go, delimiting the areas it can go is
important.
Since the robot should be able to rotate freely at any time, its geometry needs to be
taken into account. The omniRob has a cuboid shape and therefore requires a sufficient
cylindrical obstacle free area in order to rotate without collision. The radius of this cylinder
defines the safety distance that the robot needs to keep to all obstacles. This area is called
collision space in the following. As a result, passages may appear too narrow to navigate
for the robot even though it could pass them at the right rotation. However, navigation is
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Figure 3.6: Exploration map created
from voxel space

colour meaning

blank unknown area
black occupied
gray collision space
blue free, reachable
dark red unknown voxel
light green maybe collision space
dark green unreachable

maybe collision space
light red border
light yellow selected frontier
purple scan area around frontier
orange sampled robot positions
yellow selected robot position

Table 3.2: Colors in the exploration map and their
meanings

not the main area of concern in this thesis. Therefore creating a collision space is a handy
simplification.

Once a 2D-representation of the voxel space has been created, the exploration map as
displayed in Fig. 3.6 is designed from the information contained in that representation.
As summarized in Fig. 3.2, the exploration map is a color coded 2D-representation of the
voxel map. The area that is still unknown is blank. This usually means the voxels are
either too far away from the sensor or hidden due to an obstacle. If information is available
about an area, it is coloured as follows: Occupied pixels pose obstacles and are painted
black. As explained previously, the robot’s rotation is not considered and it needs to keep
a certain distance to all obstacles. This collision space is marked in gray in the exploration
map. Space which is not collision space and which is reachable from the robot’s current
position is considered reachable free space, marked in blue.
Voxels that lie within the collision space, but whose state is unknown, are coloured dark
red. Such voxels may occur if the omniRob’s sensors have not perceived that particular
voxel yet, or if the measurements are inconsistent. A so-called maybe-collision space (light
green) needs to be created around them for safety, even though navigating through the
area is uncritical if the unknown voxel is free. Since these voxels can pose an issue to the
exploration algorithm, their number should be reduced as much as possible. The fewer
unreachable voxels are unknown, the smaller the chance a maybe collision space obstructs
the path.
In order to plan the next exploration step, the target of that next step is determined.
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Figure 3.7: Determining the information gain of each point of view

Since the information gain from scanning a large amount of unknown voxels is likely to be
high, any reachable area bordering an unknown area is considered worth exploring. Out
of all the borders(light red) that fulfil this condition, the closest one is chosen as the next
frontier(yellow).
A circular area in appropriate distance to frontier is marked in purple color in the explo-
ration map. NBV-positions are sampled within that area. The decision process between
the sampled candidates is described in the following section.

3.4 Decision: Next-Best-View Selection at DLR

Several state-of-the-art decision strategies have been examined in Sect. 2.2. The strategy
used for exploration at DLR-RMC is explained in the following: As depicted in Fig. 3.7,
different next-best-view candidates, or viewpoints, are considered. For each viewpoint, the
paths of all sensor beams are simulated. Each sensor beam passes through a number of
voxels before it either hits an obstacle or reaches the maximum measuring distance. In
the figure, two of the beams emerging from sensor 1 pass through a free area and enter
an unknown area. Occupied and free voxels are not taken into account when calculating
the entropy, since their entropy is close to zero. Thus, the entropy is only calculated for
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the voxels within the unknown area. The same applies to the ToF-Camera in position 2.
Assuming that the probability of occupancy in each frontier and unknown voxel is

Pr(Occ) = p = 0.5, (3.15)

as it is usually the case when using the Bayes update, the entropy H as defined by Shannon
[SW48] of an individual voxel is calculated as:

H = −(p · log(p) + (1 − p) · log(1 − p)) (3.16)

From that, the entropy of a set of voxels can be calculated by summing up the entropies
of all voxels in the set:

H =

num of
voxels�

i=1

−(Pr(Occi) · log(Pr(Occi)) + (1 − Pr(Occi)) · log(1 − Pr(Occi))) (3.17)

The robot position from which the voxels with the highest sum of entropies can be viewed
is selected as the next-best-view. The robot then plans its path to that position and moves
accordingly. A new exploration step as described in the previous sections is started.

3.5 Termination

Once all reachable unknown voxels have been explored, no new frontier and no new next-
best-view can be found. Therefore, the exploration process is terminated. Ideally, the
environment is now fully explored and the exploration map is a representation of the entire
environment.



Chapter 4

Interval Update

The previously described exploration algorithm uses Bayesian probabilistics. Another ap-
proach is the usage of Interval Probabilities. Similar approaches are the theory of belief
and imprecise probabilities. The usage itself as well as a reasoning is explained in the
following.

4.1 Basic Concept

Bayesian probabilistics are commonly used in a wide array of robotic applications. This
has hardly been questioned by researchers, since the uncertainty modelled by Bayesian
probabilistics is often sufficient. However, when confronted with non-ideal environments
which inadvertently occur in real-life situations, an additional level of uncertainty may be
desirable.
According to the ideas of Dempster and Shafer as introduced in Chap. 2, knowing the
probability for an event A to occur does not induce any knowledge about the complemen-
tary event A. Instead, uncertainty is modelled through interval probabilities.
In Bayesian probabilistics, each voxel is assigned a state, which is an interpretation of
its probability of occupancy. When using interval probabilities, each voxel is assigned
not only a state, but also an interval of upper and lower bounds of that state. The
lower bound Pr(Occ) is the lowest probability of occupancy that can be justified with
data. Analogously, the upper bound Pr(Occ) is the highest probability of occupancy
which can be assumed for that voxel. As described in Tab. 4.1, the same can be said
about the probability of vacancy Pr(Free): The lower bound Pr(Occ) is the lowest
justifiable probability that a voxel is free. Since the voxel can only be free or occupied, the
probability that either of the two occurs is 1. In this model, the state is calculated from
the interval bounds and thereby becomes a mere interpretation of the interval. Using the
average value as the state may seem obvious, but using the upper or lower interval bound
or any other value calculated from the interval as the state is just as consequential. Using

24
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upper bound lower bound

occupied Pr(Occ) Pr(Occ) = 1 − Pr(Free)

free Pr(Free) Pr(Free) = 1 − Pr(Occ)
uncertain(both free and occupied) 1 1

Table 4.1: Expressions for upper and lower bounds for different states of a voxel

the lower interval bound as the state is an optimistic approach: It is initially assumed
that all surrounding areas are free and the robot can go anywhere. Obstacles are only
considered if they have been perceived by the robot. Moreover, obstacles are only seen
as obstacles if the lower interval bound, i.e. the state, exceeds the occupancy threshold:
Pr(Occ) > 0.95.
In contrast, using the upper interval bound as the state is a pessimistic approach which
assumes a worst-case scenario. Initially, the entire environment is assumed occupied:
Pr(Occ) = 0.95. The robot can not go anywhere, except if measurements lower the upper
interval bound below the threshold for free voxels: Pr(Free) = 0.05.

4.2 Derivation of Interval Update from Bayes Update

The State-of-the-Art Bayes update as described in subsection 3.3.2 is already in use in
several applications at DLR. In order to cope with the noise from measuring non-ideal
surfaces, the update is to be applied to a probability interval. This replaces the usual
single value for the probability of occupancy Pocc of a voxel. The interval consists of an
upper and lower bound for the probability of occupancy.

The probability interval in use consists of a lower bound for the probability of occupancy
Pr(Occ) and a lower bound for the probability of vacancy Pr(Free). Equation 3.8 needs
to be rephrased accordingly:

Pr(Free) = 1 − Pr(Occ) (4.1)

Pr(Occ) = 1 − Pr(Free) (4.2)

The posterior odds for the interval bounds are calculated in analogy to Equation 3.6.

o(i) =
Pr(Occi)

Pr(Freei)
=

Pr(Data|Occi−1)

Pr(Data|Freei−1)� �� �
likelihood quotient

· Pr(Occi−1)

Pr(Freei−1)� �� �
prior odd o(i−1)

(4.3)

Over time, the two probabilities Pr(Occi) and Pr(Freei) will approach each other. If the
data is consistent, the interval will converge towards an occupied or free state. Otherwise,
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Figure 4.1: Updating a probability interval vs. updating a probability value

the interval will narrow towards varying values. If the data is consistent and the interval
is narrow enough to fall below a lower threshold or exceed an upper threshold, the cell’s
state is adjusted.

The previously introduced interval update does need a little more storage space, since two
double values need to be stored to define each voxel’s probability of occupancy instead
of one. However, chances are that the additional information will bring advantages in
exploration performance as well as a better insight about the current situation of the
robot.
Moreover, an update step will have less effect on the state than with the Bayes update.
As explained in subsection 3.3.2, the update function is not linear, unless the likelihood
quotient equals 1. Furthermore, the relation between the state and the interval bounds is
often defined linearly, e.g. if the state is set to the mean of the interval limits. This results
in a rather inert update compared to the Bayes update.
An exemplary update step is illustrated in Fig. 4.1. Assuming the interval bounds before
the update are Ii−1 = [0.2, 0.9], the state, defined as the mean, equals 0.55. If a state of
si−1 = 0.55 is updated by a Bayes update with a likelihood quotient of lq = 0.33, the state
is mapped to approximately si = 0.3. In contrast, updating each interval bound separately
and then calculating the mean results in a state of approximately si = 0.4, which is much
closer to the original value of 0.55. An Interval Update will therefore require more steps
for the state to reach the threshold for defining the voxel as occupied or free. Whether or
not this difference is beneficial for the exploration process will be discussed in Chap. 5.
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4.3 Application of Imprecise Probabilities

In the following section, the properties of the previously introduced interval update are
examined. A strategy on how to take advantage of the additional information is suggested.

4.3.1 Advantages of the Interval Update

The update type introduced in Chap. 4 does need more storage space, since two double
values need to be stored to define each voxel’s probability of occupancy instead of one.
However, the lack of information is modelled more precisely using probability intervals.
Describing the knowledge about the cell through intervals means that an additional level
of uncertainty is modelled.
Assuming a certain value for the probability of occupancy is unsubstantiated unless it is
supported by data. This ignorance, or lack of knowledge, is modelled through a large prob-
ability interval. Once data is collected, the certainty about the assumed probability value
increases. This is modelled through a narrowing interval. Chances are that the additional
information and computational effort will bring advantages in exploration performance as
well as a better insight about the current situation of the robot. A suggestion on how
to exploit the properties of the newly introduced update type is detailed in the following:
Using a maximum entropy criterion for decision on NBV. The method is implemented and
empirically investigated in Chap. 5.

4.3.2 Decision on Next-Best-View by Maximum Entropy

As explained in Sect. 3.4, once a frontier has been selected, a good scan position is sought.
The reachable area in appropriate viewing distance to the frontier and possible scan po-
sitions are determined. When using the Interval Update, the information gain from each
scan position is determined as explained in Sect. 3.4. This is sufficient when using a Bayes
Update. However, using the interval update, another strategy better exploits the advan-
tages of that update type. (Fig. 4.2a - Fig. 4.2b). The figures display different positions
of the interval bounds relative to the entropy. As suggested in [AM03], minimizing the
maximum of entropy is a promising strategy. In each exploration step, the maximum of
entropy in each cell is determined. Depending on the location of the interval bounds, a
different value is used for calculating the entropy.
According to Shannon [SW48], the entropy H is calculated as:

H =

num of
voxels�

i=1

−(Pr(Occi) · log(Pr(Occi)) + (1 − Pr(Occi)) · log(1 − Pr(Occi))) (4.4)

Since the entropy function is symmetrical and strictly monotonic within [0; 0.5[ and ]0.5; 1],
it reaches its maximum at 0.5. The entropy function and some exemplary intervals are
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(b) Maximum of entropy at 0.5

Figure 4.2: The calculation of the maximum of entropy depends on the position of interval
bounds. The black and the blue interval in Fig. 4.2a do not cover the value 0.5. The
function is thus evaluated at the bound closest to 0.5. In contrast, the maximum entropy
of the interval in Fig. 4.2b is reached at 0.5.

displayed in Fig. 4.2a and Fig. 4.2b. The value of maimum entropy is marked with a bold
dot. The interval coloured in black in Fig. 4.2a lies entirely below the point at which the
entropy function reaches its maximum. Conversely, the blue interval lies entirely above
that point. Thus, if

0.5 �∈ [a, b], a, b ∈ [0, 1], a < b, (4.5)

the entropy function is evaluated at the interval bound closest to 0.5. If 0.5 ∈ [a, b], the
maximum of entropy is Hmax = H (0.5). This is illustrated in Fig. 4.2b.
Having determined the maximum of entropy in each cell, the procedure continues as ex-
plained in Sect. 3.4.



Chapter 5

Experiments

5.1 Hardware

(a) omniRob, equipped to explore labora-
tory environments: Eight ToF-Cameras as
well as two laserScanners and one Xtion are
mounted to the robot

(b) KR16, equipped to scan objects: a laser
striper is mounted

Figure 5.1: Hardware used for the simulated exploration experiments (Fig. 5.1a) and for
3D-modelling of real objects (Fig. 5.1b)

At the RMC at DLR in Oberpfaffenhofen, Germany, several robotic platforms are available
for testing autonomous exploration and mapping approaches. Two of them are especially
important to this thesis: A mobile platform called omniRob and the KR16 [KUKb], a
large moveable arm anchored to the ground. Both are manufactured by KUKA Robotics
(KUKA).
The omniRob is equipped with two S300 laser scanners, located at opposite corners of the
platform. They can be used to record a two dimensional, horizontal profile of the robot’s
surroundings. Built-in odometry sensors determine the distance covered. A timestamp is
added to both the odometry and laser scanner measurements. At DLR, the omniRob is

29
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Table 5.1: Sensor types and specifications of the robots and sensors used in this
thesis[O3D],[Sca],[Sic10]

robot type omniRob KR16
sensor type O3D-100 Sick S300 ScanControl 2700-100
number of sensors 8 2 1
resolution 64px × 48px 30mm − 70mm, 640px

configurable
opening angle 30◦ × 40◦ 270◦ 14◦

additionally equipped with eight time-of-flight-cameras(ToF-Cameras), mounted around
the robot at knee-level. They contain a light source and evaluate the time needed by
the light to reach an obstacle, which results in a three-dimensional depth image. These
cameras enable the robot to perceive its environment in almost any direction. As specified
in Tab. 5.1, the ToF cameras of type O3D-100 [O3D] have a resolution of 64 × 48 pixels
and an opening angle of 30◦ × 40◦. Due to the number and arrangement of sensors, the
omniRob is unable to perceive its entire surroundings in one scan. However, considering
that the robot can move omnidirectionally -hence the name- it is able to turn around
without changing its location and can therefore iteratively scan areas that are not covered
by a single measurement.
For 3D-scanning purposes, the KUKA KR16 can be equipped with a ScanControl 2700-100
[Sca] laser striper. In contrast to the S300 Laser scanner, which measures time-of-flight of
a laser beam, this laser striper measures object distance through triangulation. By moving
the laser striper perpendicularly to the measured profile, a three-dimensional image can
be constructed. Since the robotic arm has six axes, it is well-suited for modelling objects
by moving around the object and gradually assembling a model from the obtained 3D-
images. In this application, an exploration map is not created. Rather, a collision space
is constructed around all occupied voxels and paths are planned outside of that collision
space. Moreover, a frontier is not considered, which inhibits sampling scan positions.
Instead, scan paths are sampled on a sphere around the entire object, regardless of which
areas are known or unknown. The decision process then decides between those scan paths
instead of deciding between samples around a frontier.

5.2 Simulation

Before putting all the steps above into practice, they are tested and evaluated in a simu-
lated environment. In the following, the parts that are most important for this thesis are
explained.
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(a) Simulation of omniRob in laboratory with reflecting
closet

(b) Bird’s eye view of the room
used for the exploration experi-
ments. The closet which will have
different surface properties is high-
lighted in red.

5.2.1 Simulating the Environment

In order to be able to compare real and simulated measurements, the robotic laboratory is
imitated as closely as possible. Chairs and desks as well as doors and walls are in the same
place as they are in the real laboratory. On the one hand, the 3D-model is a replica of
the real-world laboratory, but on the other hand, it can be modified to simulate different
environmental conditions such as less than ideal surfaces or dynamic environments.

5.2.2 Modifications to the Simulated Environment

Imitating a real-world measurement requires imitating the real-world surface properties
as well as the sensor’s capabilities and flaws. The following sections describe how this is
implemented in the simulation.

Creating a Challenging Environment

As described above, the simulated laboratory can easily be modified for testing. In the
scope of this thesis, elements with unusual surface properties are added to the map. E.g.,
doors are assigned reflective properties and a cupboard is given an absorbing surface.
In reality, unusual surface properties such as reflective, absorbing or even transparent
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surfaces are a major cause of sensor noise and can lead to erroneous interpretation of the
measurement data. By introducing these properties to the simulated environment, one can
safely examine strategies to cope with inconsistent measurement data.
Surface properties are assigned to both the internal storage structure of the polygons as
well as to the 3D-model of the laboratory. In doing so, any interaction of the sensors
with an unusual surface can be monitored in the visualization. Results can therefore be
interpreted and reviewed more easily.

Simulating Noise

After introducing surface properties to the simulated environment, the sensors’ behavior
needs to be modeled. This is achieved through a function that adds noise to every distance
value that is obtained from a measurement. For each measurement beam, the material of
the surface intersecting with the beam is identified. Depending on the surface properties,
noise is added differently.
In the ideal case, the surface is neither strongly specularly reflective nor strongly absorbing.
Rather, a diffuse reflection yields best results. In that case, Gaussian noise is added. If
the surface is absorbing, it is treated as if no beam is returned. Therefore, the maximal
measurable distance is returned. Thus, the robot remains ignorant about the area that
comprehends absorbing items. In case of a specular surface, an entirely random value is
returned. Lastly, if the surface is transparent, it is randomly decided whether the surface
is treated as diffuse or transparent. In case it is treated as transparent, the beam’s path is
followed until it reaches another surface. The procedure as well as the results of comparing
the Interval Update and the Bayes Update, as well as comparing different next-best-view
criteria, are explained in the following.

5.3 Interval vs. Bayes

The two update types that are used in this experiment have been explained in subsec-
tion 3.3.2 and Sect. 4.2. The Bayes Update has only one configuration, whereas the Interval
Update is tested in three different configurations, depending on how the state of each cell
is calculated. Either the upper interval bound, the lower interval bound or the average of
the two bounds is defined as the state.
All of the four configurations described above are confronted with different surface types:

• a noise-free, ideal surface

• a reflecting surface, such as a mirror

• an absorbing surface

• a transparent surface
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(a) Interval: Exploration map after ini-
tial look-around in room with ideal sur-
faces

(b) Interval: Voxel space after initial
look-around

(c) Bayes: Exploration map after ini-
tial look-around in room with ideal sur-
faces

(d) Bayes: Voxel space after initial
look-around

Figure 5.3: Exploration maps and voxel spaces after initial look-around using the Interval
Update (top) and Bayes Update (bottom)

As a reference, an ideal surface is examined in the experiment. This means that the surface
has the same properties as any other surface in the room, i.e. it returns all measurement
beams to the sensor with no modification. By looking at the voxel space, it can be seen
in Fig. 5.3b that the sensors detect the surface and the probability of occupancy of the
surface voxels is already high after the initial look-around. The area in front of the closet
is identified as free. Thus, the surface is displayed in the exploration map in Fig. 5.3a as
a black line of voxels.
The voxels in the top left corner remain unknown, even though they might technically be
visible from the robot’s position. However, their distance to the robot exceeds the sensors’
maximum measurement distance.
Moreover, the area in the lower left corner is noteworthy. Surfaces have been identified,
but the area in front of the surfaces is seemingly still unknown. This is due to the fact
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that the barriers that guide the robot to the upper left part of the room are fairly low.
They do block part of the sensors’ field of view, but allow to measure an area that is
further away from the barriers. Thereby, the wall can be detected, while the area near the
floor and close to the barriers remains unperceived.
Since the robot is able to definitively locate the walls that surround it, it can continue
exploring the room. After about six to seven exploration steps, the reachable area is fully
explored and the exploration is considered to have finished successfully. The resulting
exploration map is dominantly coloured black, gray and blue, i.e. all voxels are either
reachable and explored or not reachable.

The Bayes-update achieves similar results. The room is fully explored after five to six
exploration steps. This means the Bayes Update is a little bit faster on average. After the
initial look-around, there remain uncertain unreachable voxels in the exploration maps in
both algorithms. However, their number has decreased significantly after the exploration
has finished.

5.3.1 Absorbing Surfaces

(a) Voxel space after initial look-around (b) Voxel space after the outline of the sur-
face has become visible in spite of its absorbing
property

Figure 5.4: Voxel space after initial look-around (Fig. 5.4a) in comparison to the space
after the outline of the surface has been identified (Fig. 5.4b).
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The first non-ideal surface that is examined in the experiment is absorbing, which means
that some of the measurement beams are not returned, resulting in no measurement data.
It can be seen in Fig. 5.3a that the sensors do not receive much data from the surface of
the closet, thus the area remains unknown. However, the voxel space (Fig. 5.4a) already
reveals that some measurement beams are returned by the surface. The front of the closet
is visible as a series of black voxels, while the unreturned measurement beams have led to
an accumulation of gray, i.e. unknown voxels in front of the closet. Since the area in front
of the surface is still unknown, the shape of the absorbing object can not yet be displayed
in the map.
Moreover, when examining the interval width and the state simultaneously, the underlying
process becomes clearer. After the initial look-around, the certainty about the voxels along
the walls is quite high, therefore they are coloured black. Since hardly any measurement
beams are returned by the absorbing surface, the uncertainty of the voxels in front of the
critical surface remains high. Furthermore, an approximate outline of the surface itself can
be identified.
Due to the fact that border of the unknown area is reachable, the algorithm selects the
border as the new frontier and continues measurement of the region. In spite of most
beams being absorbed, occasionally a beam is reflected to the sensor. By viewing the
absorbing surface repeatedly, the algorithm collects data from the measurement beams
that did return and is eventually able to reconstruct the surface, as seen in Fig. 5.3b and
Fig. 5.4a This is achieved after the second exploration step. The robot can then continue
to further explore the room and is able to complete the exploration.

The Bayes Update performs similarly well. The exploration maps after the initial look-
around and after the first exploration step are shown in Fig. 5.3c and Fig. 5.3d. In the
first step, both algorithms tackle the absorbing surface, examining it more closely. Since
some measurement beams are returned correctly, the surface outline is determined correctly
after one or two exploration steps. The robot then continues to explore the room. When
comparing the voxel spaces of the Bayes Update and the Interval Update after the first
exploration step, it becomes evident that the Bayes Update updates the state faster, i.e.
in fewer exploration steps. On average, it takes one exploration step for the Bayes Update
to correctly detect the outline of the aborbing surface, while it takes two to three steps for
the Interval Update. The exploration map in Fig. 5.3c shows that the Bayes Update has
already identified most of the voxels in front of the absorbing surface as free just after the
initial look-around. The reason behind this slower update has been explained in Sect. 4.2.

5.3.2 Transparent Surfaces

Another non-ideal surface that is examined in the experiment is transparent, which means
that some of the measurement beams are reflected by the object’s surface, while other
beams pass through the object and are reflected by the surface behind the object. This
results in two conflicting measured distances, both of which can be supported with data.
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(a) Exploration map after initial look-
around in room with transparent sur-
face

(b) Bayes: The shape of the closet can
be seen clearly in spite of its transpar-
ent property

Figure 5.5: Exploration maps after initial look-around. The left image is generated using
an interval update with the mean of the interval as the state, while the right image is
generated using a Bayes Update.

However, it can be seen in Fig. 5.5 that the transparency does not result in an erroneous
map representation. Only when examining the voxel space, the effect of the transparent
surface becomes apparent, as the wall behind the cupboard is visible as well. Again, the
Bayes Update performs similarly well. A mostly noise-free representation of the transpar-
ent surface is visible in the exploration map immediately after the initial turn-around and
the sensor noise does therefore not pose an obstacle to the exploration.
The fact that both update types perform well in this experiment regardless of the trans-
parency is owed mainly to two circumstances:

• The surface of the closet facing the robot is a flat plane apart from some small details
like handles of the cabinet doors. This allows the surface to be easily fitted into the
voxel space grid.

• Moreover, the transparent closet is placed right in front of a wall. Even if the light
beams pass through the closet, they are reflected by the wall. Thus, only the closet
and the wall behind it are measured when aiming the sensor’s beams at it. If the
closet was placed in the middle of the room, light passing through the closet would be
reflected by other objects in the room. If the closet was viewed at a different angle,
light would be reflected from different objects. Instead of measuring two different
distances, the sensors would measure a wide range of distances, which would be more
difficult to interpret.
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Figure 5.6: Voxel space after initial look-around in room containing a transparent surface

5.3.3 Reflecting Surfaces

The third non-ideal surface that is examined in the experiment is reflecting, which means
a random distance value is returned if the measurement beam hits the surface. As a result,
all voxels in the area in front of and behind the surface are updated with conflicting data.
Some free voxels are set an occupied state, while the state of voxels that contain an actual
obstacle remains unknown or is set to free. Both the voxel space and the exploration map
reflect the erroneous data, and the surface of the closet can not be identified in the voxel
space nor in the exploration map.
The voxels that have spuriously been defined as occupied are interpreted as obstacles in
the exploration map and thus restrain the robot from continuing the exploration through
other parts of the room. In some cases, however, the erroneous voxels are located in a way
that lets the robot pass the closet and continue exploration.
The Bayes Update copes similarly with the reflecting surface. Some voxels are spuriously
set to an occupied state, while others remain unknown or are set to a free state. As a
result, the outline of the reflecting surface is occluded by voxels with an erroneous state.
These occupied and unknown voxels are spread across the left half of the room, such that
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(a) Exploration map after initial look-around
in room with reflecting surface

(b) The exploration map proves that the
robot is able to continue exploration past the
reflecting closet

(c) Voxel space after initial look-around (d) The robot successfully continues explor-
ing the unknown space in spite of the presence
of a reflecting surface

Figure 5.7: Exploration map and voxel space after initial look-around and after the re-
flecting surface has been passed. The simulation uses interval update with the mean of the
interval as the state

the robot can not pass the reflecting cupboard. It can thus not continue exploration. It
can therefore be stated that the qualitative performance of the Bayes Update is worse than
that of the Interval Update with regard to this simulated reflecting surface.

The voxel space can be visualized differently to illustrate how the update process influences
the interval width. A possible visualization is depicted in Fig. 5.8. The figure depicts a
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(a) Color coded representation of interval
bounds: Blue: narrow interval, Red: Broad
interval

(b) Grayscale representation of voxels’ states

Figure 5.8: Interval width and probability of occupancy in a voxel space

voxel space after an initial look-around in a room with a reflecting surface. In the image
on the right hand side, the nuances of gray represent the state of the voxel Pr(Occ). The
gray scale is identical to the one explained in subsection 3.3.2. The image on the left
illustrates the interval width of the voxels. Blue voxels contain a narrow interval, while
red voxels contain a broad interval. The majority of voxels is orange in the color-coded
map, since the inital interval is set to [0.05; 0.95]. The interval can broaden under certain
circumstances, creating red voxels. Usually the interval narrows over time, creating ochre,
green, turquoise and blue voxels.
In Fig. 5.8, the main source of conflicting data is the reflecting surface on the left side of

the room. Thus, detecting conflicting measurements could be implemented by analyzing
the interval width as well as the state.

In Fig. 5.9, a combination of interval width and state value is visualized. Tab. 5.2 describes
which colors represent which state and which interval width. A broad interval is coloured
red, while narrow intervals are coloured depending on their state. Gray voxels are neither
definitively occupied or free, but the state has considerably shifted from its initial value of
127. Again, black voxels are treated as obstacles, while uncertainty remains about blue and
gray voxels. It can be seen that obstacles are assumed where walls are and most free area is
certain to be free. Furthermore, the majority of gray and yellow voxels appears within the
area in front of the reflecting surface. This phenomenon can be explained as follows: Since
the reflecting surface leads to a measurement of nearly random distance values, each cell
within a certain distance in front of and behind the surface is measured to have random
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Figure 5.9: Combination of in-
terval width and state

Figure 5.10: Detail of 5.9

Color Interval Width State

red >127 any
blue ≤127 75<state<180
black ≤127 >250
white ≤127 ≤4
gray ≤50 all other states
yellow 50≤width≤127 all other states

Table 5.2: Color code of Fig. 5.9 and Fig. 5.10. Each color
represents a different combination of state and interval width

probabilities of occupancy. It is unlikely that the number of measurements in which a voxel
is supposedly free will equal the number of measurements in which a voxel is supposedly
occupied, such that they would cancel out. Therefore, the probability of occupancy of
most voxels shifts away from the average 127. Furthermore, it is also unlikely that the
voxel is measured to be free each time, just as it is unlikely to be measured as occupied
each time. However, once one of the interval boundaries reaches either the upper or the
lower numerical limit, i.e. 255 or 0, it is numerically impossible for that bound to change
to another value. Thus, a few consecutive similar measurements are sufficient to define a
voxel as free or occupied, which explains the amount of black voxels in the area.

5.3.4 Examination of State Definitions

As explained in Sect. 4.1, the state can be defined in different ways when using the Interval
Update. Experiments are conducted for the three state definitions as explained at the
beginning of Sect. 5.3. The effects of taking the mean of the interval as the state have
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If voxels are black in the grayscale map and blue or turquoise
in the color-coded map, they can be interpreted as areas that
have repeatedly been measured as occupied. Therefore, they are
usually actual obstacles.

Voxels that are gray on the grayscale map and orange on the
color-coded map have usually not been perceived by the robot.

The voxels that remain are mostly blue and gray, which means
they contain a narrow interval, but their state is still “unknown”.
These are voxels that the robot has scanned and updated repeat-
edly, but which have become neither free nor occupied in spite
of the update steps. This means they have been updated with
conflicting measurements.

(a) Exploration map after initial look-
around using the lower interval bound as
the state.

(b) Exploration map after second,
final exploration step.

Figure 5.11: Exploration map after first and second exploration step.

already been examined above. In the following, the effects of the other two state definitions
will be explained.
Initially, the interval always ranges from about 0.05 to about 0.95. Thus, if the state is
defined as the lower interval bound, the entire map is initially set to have a “nearly free”
state of 0.05. The entire voxel space as well as the exploration map is free, unless the
robot measures an obstacle. After the initial look-around, the robot has measured some



CHAPTER 5. EXPERIMENTS 42

(a) Absorbing surface (b) Transparent surface (c) Reflecting surface. The
closet is impassable due to its
surface properties.

Figure 5.12: Exploration map of rooms with different non-ideal surfaces using the lower
interval bound as the state.

obstacles close to its position. However, the area behind the obstacles remains free, just
like it remains unknown if the mean is chosen as the state. Therefore, the frontier between
areas that have and those that have not been scanned is usually not visible. In these cases,
the algorithm chooses any other reachable unknown voxel as the frontier. In this setting,
unknown voxels often have been perceived and updated towards an occupied state, but
have not reached that state yet. The robot then performs its next-best-view planning on
that frontier and moves to the selected position.
Fig. 5.11a shows an exemplary exploration map. It can be seen that almost any voxel which
is not an obstacle or a collision space is both free and reachable. Thus, the robot concludes
after few exploration steps that all reachable voxels are known, i.e. free or occupied. The
exploration is terminated. The resulting exploration map is shown in Fig. 5.11b. There
are no red or yellow voxels left, i.e. no unknown reachable voxels are present in the map.
This is largely due to originally setting all voxels to a defined state.
Figures Fig. 5.12a-Fig. 5.12c show the exploration map of the same room, except that
the closet on the left hand side of the room has different surface properties in each of the
images. It can be seen that the algorithm copes well with both the absorbing surface and
the transparent surface, and the robot can continue the exploration in both cases. The
reflecting surface, however, is critical, since the algorithm identifies it as an accumulation of
unknown voxels, which are bordered by a few occupied voxels, making the area unreachable.
The robot cannot continue with exploration and terminates the process.
The same experiments are conducted with the state defined as the upper interval bound.

Thus the entire map’s probability of occupancy is initially set to about 0.95. The entire
voxel space as well as the exploration map is occupied, unless the robot measures a free
area. After the initial look-around, the robot has measured some free space around itself
and is able to move away from its original location. The voxel spaces generated from these
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(a) Exploration map after initial look-
around using the lower interval bound
as the state.

(b) Exploration map after second, final
exploration step.

Figure 5.13: Exploration map after first and second exploration step, using the lower
interval bound as the state in a room with ideal surfaces

experiments are shown in Fig. 5.14d - Fig. 5.14f. It can be seen that the results on the
absorbing and transparent surface are similar to the ones of the Interval Update with the
mean as the state. However, the results in the room with the reflecting surface are worse.
This is likely due to the fact that once a state reaches the numerical limit, i.e. 0 or 255, an
update has no effect on it any more. This has been explained in subsection 3.3.2. Thus,
if the voxels with a state of “nearly occupied” are spuriously measured as occupied, the
state is likely to reach the numerical limit. This could be the source of the accumulation
of occupied voxels in front of the reflecting surface.
In contrast to the configuration that uses the lower interval bound as the state, frontiers
are defined similarly as in the Bayes Update and the mean configuration of the Interval
Update. The voxels previously set to occupied are measured as free and thus their state
is lowered, becoming unknown and eventually free. The border between those unknown
and free voxels is set as the frontier. The results are therefore similar to the ones from the
mean configuration of the Interval Update.

5.4 Maximum Entropy vs. Entropy

After these tests have been conducted, next-best-view criteria are evaluated. The so-called
Entropy Criterion is explained in Sect. 3.4, while the criterion based on the maximum of
entropy is introduced in subsection 4.3.2. Since both next-best-view criteria are determined
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(a) Absorbing surface: Ex-
ploration map after initial
look-around using the lower
interval bound as the state.

(b) Transparent surface: Ex-
ploration map after initial
look-around. The transpar-
ent surface does not hinder
exploration.

(c) Reflecting surface: Explo-
ration map after initial look-
around. The exploration is
terminated, since no frontiers
are found.

(d) Absorbing surface: The
outline of the surface is visi-
ble in the voxel space

(e) Transparent surface:
Both the surface outline and
the wall behind the closet
are visible

(f) Reflecting surface: The
measurements are too noisy
to allow visibility of the
closet

Figure 5.14: Exploration map and voxel space of rooms with different non-ideal surfaces
using the upper interval bound as the state.

similarly, identical calculations can be necessary for both criteria in some special cases. If
the upper interval bound lies below 0.5, the Maximum Entropy Criterion uses the upper
interval boundary for its entropy calculation. If the state is defined as the upper interval
bound, the Entropy Criterion effectively uses the same values and yields the same results.
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(a) Entropy Criterion: Ex-
ploration is finished after
eight exploration steps

(b) Maximum Entropy Crite-
rion: Exploration terminates
after six exploration steps

(c) Bayes with Entropy Cri-
terion: Exploration termi-
nates after seven exploration
steps

Figure 5.15: Exploration in a room with an absorbing surface. In this case, the Maximum
Entropy Criterion needs the fewest exploration steps.

Similarly, if the lower interval bound exceeds Pr(Occ) = 0.5 and the state is defined as the
lower interval bound, the calculations of both criteria are identical.
As the name implies, a NBV criterion only affects the selection of NBV positions. Thus, it
determines which voxels are perceived and thus updated. In combination with the update
type, which determines how the collected information about the affected voxels is com-
bined, i.e. how the are updated, it can result in a different update process.
The results from experiments in a room with an absorbing surface are depicted in Fig. 5.15.
Fig. 5.15a displays the exploration map after the final exploration step with an Interval
Update. NBVs have been determined using the Entropy Criterion. Fig. 5.15b has been
generated under similar conditions, except that the Maximum Entropy Criterion has been
used to determine NBVs instead. Fig. 5.15c shows the exploration map after exploration
with the Bayes Update has terminated. As before, the Entropy Criterion is used to deter-
mine NBVs. Comparing the results from exploration with both criteria, it can be seen that
an exploration process using Maximum Entropy Criterion terminates faster. In some cases,
as few as six exploration steps are needed when coping with an absorbing surface. About
seven exploration steps are needed on average. When exploring a room with a reflecting or
transparent surface, an average of seven exploration steps are needed to explore the entire
room. Again, exploration with the same update type but using the Entropy Criterion needs
more steps on average. The Bayes Update, however, also needs about seven exploration
steps to explore the entire room if the robot is able to pass the surface causing depth noise.
Thus, planning NBVs with the Maximum Entropy Criterion is approximately as fast as an
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exploration with the Bayes Update. In this simulation, the NBV Criterion compensates
the additional time needed by the Interval Update.

5.5 Tests on Hardware

In order to verify the results obtained from experiments in the simulated environment and
to prove the portability of the concept, experiments are conducted on hardware. A robotic
arm, the KR16 introduced in Sect. 5.1, is used for autonomous object modelling. The space
update type as well as the next-best-view criterion are transferred to the implementation of
the autonomous scanning algorithm. The Bayes Update is used as a reference. Reflecting,
transparent and light-absorbing objects are tested. Not all results will be transferable
to this application. In object modelling, the robot needs to be able to scan the object
from each direction. This inhibits a setting like in the exploration experiments. Thus, a
transparent object, for instance, can not be placed in front of a perfectly diffusely reflecting
surface. The performance will likely be worse.

Fig. 5.16 shows the KR16 robotic arm while scanning objects. The reflections of the red
laser can be seen on both the mechanical component (Fig. 5.16b) and the transparent
bottle (Fig. 5.16a). The mechanical part reflects light in various directions. In contrast,
the transparent object reflects hardly any light. As seen in the photograph, light is
reflected towards the camera at two points due to the embossing of the bottle. Most of the
light passes through the object. Moreover, when looking at the mechanical component, it
can be seen that a 2D profile of the object is determined at once. The laser line is visible
on the component itself as well as on the wall behind the object. By moving the sensor
perpendicularly to that line, a 3D depth image is obtained. A voxel space and a mesh are
then constructed from the depth image.
Fig. 5.17 shows the results of scanning the mechanical component. One of the scans has

been performed according to the state-of-the-art, updating the voxel space with a Bayes
Update. The other one has been obtained in a similar way, except that an Interval Update
has been used to update the voxel space. When using the Bayes Update, the shape of the
object cannot be distinguished, since it is covered up by other voxels that have spuriously
been measured as occupied. In contrast, when using the Interval Update, the outline of
the object can easily be determined. The circular shape as well as the hole in the objects
center are visible. However, this volumetric model is not a perfect representation of the
object either. Some voxels have been measured as free, even though they lie within the
object. Thus, the outline of the object could become indistinct, or the robot could collide
with the object in a worst case scenario. Nevertheless, judging by the voxel space, the
Interval Update seems to cope better with the noise from a reflecting surface. This could
be due to difference in speed between Bayes and Interval Update. While the Interval
Update is slower, leaving voxels unknown for a longer amount of time, the Bayes Update
is faster, thereby prematurely giving voxels an occupied state.
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(a) A transparent water bottle is scanned (b) A mechanical component with a reflect-
ing surface

Figure 5.16: Objects with different surface properties are scanned with a laser striper
mounted to a KR16 robot

(a) Voxel space resulting from scanning a
mechanical component using the Bayes Up-
date

(b) Voxel space resulting from scanning the
same object using an Interval Update

Figure 5.17: Voxel space resulting from scanning a mechanical component with a laser
striper mounted to a KR16 robot.
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(a) Voxel space resulting from scanning a
transparent bottle using the Bayes Update

(b) Voxel space resulting from scanning the
same object using an Interval Update

Figure 5.18: Voxel space resulting from scanning a transparent bottle with a laser striper
mounted to a KR16 robot.

When examining the transparent object, the feature of the Interval Update is not as
advantageous. The results from updating the space with the Bayes Update and with the
Interval Update are shown in Fig. 5.18. The majority of the bottle is perceived as free
when updating the space with the Interval Update during the scan. The outline of the
object is indistinct, since only one side of the object is seen in the voxel space. The Bayes
Update, however, does not perform much better, leaving the shape of the bottle obscured
by voxels with an erroneous state. The result of the scans using different update types are
comparable, since neither achieves satisfactory results.
The following can be concluded from these results: Both the Bayes Update and the
Interval Update are error prone when confronted with real surfaces that do not reflect
diffusely. The Bayes Update tends to assume too many occupied voxels, while the Interval
Update tends to assume too much free space. Depending on the surface properties,
the behavior is less or more distinct. The Bayes Update is extremely error prone when
scanning a strongly reflecting object, and copes better with the transparent object. The
Interval Update is more prone to errors with transparent objects, and performs fairly well
with a reflecting object. The performance of the two update types is comparable when
confronted with transparent objects, while the Interval Update performs considerably
better when confronted with a reflecting surface. Thus, it is concluded that the overall
performance of the Interval Update is better. However, when scanning fragile objects
or in safety critical applications, the behaviour of the update should be considered. An
additional safety distance could be introduced to avoid collisions with obstacles within
the wrongly assigned free space.
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5.6 Summary of Experiments

Experiments have been conducted to examine four types of a space update: A state-of-
the-art Bayes Update and an Interval Update with three different state definitions. The
experiments comparing different state definitions have shown that the state influences
the performance of the update. Defining the state as the lower interval bound is a very
optimistic approach, while choosing the upper interval bound as the state yields a more
careful exploration. In future work, other state definitions that lie between the definitions
examined in this thesis could be trialled.
Moreover, the simluated experiments showed that Interval Update needs more exploration
steps on average. However, the number of required exploration steps has been reduced by
using another NBV criterion, namely the Maximum Entropy Criterion. Hence, the number
of exploration steps that are needed on average for an Interval Update with a Maximum
Entropy Criterion are about equal to the number of steps needed for exploration with the
Bayes Update and an Entropy Criterion.
The results from the simulated experiments and the experiments on hardware are
generally comparable. In both cases, the two update types perform similarly well on
most surfaces. The conclusion from the simulated experiments suggested that the Interval
Update performs better on reflecting surfaces. The same conclusion can be drawn from
the hardware experiments described above. In both the simulated and the hardware
experiments, the Interval Update interprets more space as free than the Bayes Update.
Considering the limitations of the experiments, e.g. sample size, possible errors in
simulating noise and possible bias by the test supervisor, it can be deducted that the
Interval Update is advantageous in coping with reflecting surfaces. Taking into account
that, on other surfaces, its performance is comparable to that of the Bayes Update, it can
be said that the update is advantageous when dealing with conflicting data in general.
However, this needs to be proven by additional experiments in the future.



Chapter 6

Conclusion and Outlook

In this thesis, a state-of-the-art exploration algorithm has been extended to better cope
with sensor noise from non-ideal environments. The interpretation of data and, more
specifically, the update of a space representation based on that data has been identified as
a good starting point to tackle the issue. Thus, a novel update type based on the concept
of imprecise probabilities, the so-called Interval update, has been introduced. Instead
of considering only a probability of occupancy for each element in the space, it adds a
measure of uncertainty to each voxel. This allows for a distinction between ignorance
and uncertainty about elements of the space that is to be explored. The Interval update
has successfully been developed, implemented and tested. The tests have been conducted
in a simulation, as well as on hardware. Three variants of the novel update type have
been designed, each of which have been examined in the simulation. They differ in their
definition of the state of the voxels, giving insight on how the state definition influences the
update. It has been discovered that defining the voxel’s state as the mean of the Interval is
most promising, while defining the state differently can be helpful in certain situations as
well. Defining the state as the lower interval bound yields a a fast, optimistic exploration.
Defining the state as the upper interval bound is a rather pessimistic approach, suited if
a slower, cautious exploration is desired.
The experiments have proven that, if the voxel’s state is set to the median, the novel up-
date can compete with a state-of-the-art Bayes update. When comparing the performance
of the two update types, it is observed that the Interval update does need a little more
time and storage space. However, the results from the simulated experiments suggest
that it offers better performance when exploring environments with reflecting surfaces.
The ability to distinguish between ignorance and uncertainty, i.e. to identify conflicting
data, has been demonstrated based on the results of the simulation. A strategy to use
the additional information to its full capacity, namely decision on NBV based on the
maximum of entropy, has been suggested, implemented and tested in the simulation.
Experiments on hardware show that the update type can be applied to real data as well.
Again, the performance of both update types is comparable. Moreover, the Interval
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(a) First scan of the surface, generating noisy
data

(b) Second scan of the area from a different
angle, reducing the noise

Figure 6.1: Reducing measurement noise by scanning from different angles

update performs better on reflecting surfaces, thereby supporting the conclusion deducted
from the simulated experiments.

As explained in Chap. 5, considering the interval width and the state of a voxel simultane-
ously can be beneficial. Whenever a voxel’s state is unknown and its interval is narrow, it
is considered to have been updated by conflicting measurements. If several of such voxels
occur within a relatively small area, there is likely a non-ideal surface inducing noise in the
measurement data. One way of identifying an accumulation of voxels with unknown state
and narrow interval could be searching neighbouring voxels for similar properties.
Such an area can then be identified as problematic, and the issue can be tackled. For
instance, it is advantageous to view the problematic area from a different angle, such that
the sensors perceive the free area around the surface rather than the noisy surface itself.
Revising the algorithms introduced previously, the next-best-position samples are selected
from a ring-shaped area around the frontier. This can be done again, except that the
distance from the sampled position to the current position should be taken into account.
A large distance will result in a larger difference of viewing angles, thereby reducing the
noise from the problematic surface. The reduction of noise is depicted in Fig. 6.1. Note
that in contrast to the statement of subsection 3.3.1, a flat scanning angle is advantageous
in this case. The same matter that is an issue when detecting a perfect surface becomes a
benefit when trying to approximate reasonable results from unreasonable data.
In 3D-scanning and object modelling, identifying voxels which remain uncertain could also
be beneficial. If a voxel’s state is unknown and the interval is narrow, i.e. if it has been
updated with conflicting data, the data can be discarded, as it will likely impede correct
object modelling. Thus, the majority of the remaining data will be non-conflicting, i.e. a
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mesh which is constructed from that data is hoped to contain fewer flaws.
Another approach to resolve the discrepancy between conflicting datasets could be the
usage of a different sensor. For instance, a 2D-camera could be used to perceive the area.
However, this would require an entirely different algorithm to interpret data measured by
the camera. In certain cases, heat or ultrasound sensors could also be trialled, if available
on the platform.
In future work, other strategies suggested to cope with the additional information could be
implemented. The areas inducing irregular depth noise could thereby be identified and the
conflict could be resolved by scanning the surface with a different sensor or from a different
angle. Moreover, the idea of introducing imprecision to depth-measurement interpretations
could be expanded to cope with conflicting data from other measurement devices. For ex-
ample, the interpretation of odometry data could benefit from this approach, if multiple
odometry sensors are mounted to one device.
Overall, the idea provides many possibilities for coping with depth noise. Further inves-
tigation and implementation of the above suggestions will likely improve results. Thus,
additional research in the field is recommended.



List of Figures

1.1 Robotic arms weld parts of a car. Photo courtesy of KUKA Robotics [KUKa] 2
1.2 Diffuse (left) and specular (right) reflection. The incoming beam is black,

while the reflected beams are coloured red. . . . . . . . . . . . . . . . . . 3
1.3 Bayesian Probabilities vs. so-called Imprecise Probabilities: States result-

ing from conflicting data can be distinguished with Imprecise Probabilities,
while the state remains unknown in certain cases of Bayesian Probabilistics. 4

3.1 Room in which exploration will be performed . . . . . . . . . . . . . . . . 13
3.2 A typical voxel map. Voxels with a high probability of occupancy are

coloured black, while voxels whose state is unknown are gray. Voxels that
are likely free are transparent, thus the white background is visible. . . . . 14

3.3 Depending on the scanning angle, an obstacle is perceived differently . . . 15
3.4 Applying the Bayes update to a voxel space . . . . . . . . . . . . . . . . . 17
3.5 Mapping from prior to posterior probability depending on the likelihood

quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Exploration map created from voxel space . . . . . . . . . . . . . . . . . . 21
3.7 Determining the information gain of each point of view . . . . . . . . . . . 22

4.1 Updating a probability interval vs. updating a probability value . . . . . . 26
4.2 The calculation of the maximum of entropy depends on the position of in-

terval bounds. The black and the blue interval in Figure 4.2a do not cover
the value 0.5. The function is thus evaluated at the bound closest to 0.5. In
contrast, the maximum entropy of the interval in Figure 4.2b is reached at
0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Hardware used for the simulated exploration experiments (Figure 5.1a) and
for 3D-modelling of real objects (Figure 5.1b) . . . . . . . . . . . . . . . . 29

5.3 Exploration maps and voxel spaces after initial look-around using the Inter-
val Update (top) and Bayes Update (bottom) . . . . . . . . . . . . . . . . 33

5.4 Voxel space after initial look-around (Figure 5.4a) in comparison to the space
after the outline of the surface has been identified (Figure 5.4b). . . . . . . 34

53



LIST OF FIGURES 54

5.5 Exploration maps after initial look-around. The left image is generated
using an interval update with the mean of the interval as the state, while
the right image is generated using a Bayes Update. . . . . . . . . . . . . . 36

5.6 Voxel space after initial look-around in room containing a transparent surface 37
5.7 Exploration map and voxel space after initial look-around and after the

reflecting surface has been passed. The simulation uses interval update with
the mean of the interval as the state . . . . . . . . . . . . . . . . . . . . . 38

5.8 Interval width and probability of occupancy in a voxel space . . . . . . . . 39
5.9 Combination of interval width and state . . . . . . . . . . . . . . . . . . . 40
5.10 Detail of 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.11 Exploration map after first and second exploration step. . . . . . . . . . . 41
5.12 Exploration map of rooms with different non-ideal surfaces using the lower

interval bound as the state. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.13 Exploration map after first and second exploration step, using the lower

interval bound as the state in a room with ideal surfaces . . . . . . . . . . 43
5.14 Exploration map and voxel space of rooms with different non-ideal surfaces

using the upper interval bound as the state. . . . . . . . . . . . . . . . . . 44
5.15 Exploration in a room with an absorbing surface. In this case, the Maximum

Entropy Criterion needs the fewest exploration steps. . . . . . . . . . . . . 45
5.16 Objects with different surface properties are scanned with a laser striper

mounted to a KR16 robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.17 Voxel space resulting from scanning a mechanical component with a laser

striper mounted to a KR16 robot. . . . . . . . . . . . . . . . . . . . . . . . 47
5.18 Voxel space resulting from scanning a transparent bottle with a laser striper

mounted to a KR16 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Reducing measurement noise by scanning from different angles . . . . . . . 51



List of Tables

3.1 State adjustments depending on Pr(Occ) . . . . . . . . . . . . . . . . . . . 19
3.2 Colors in the exploration map and their meanings . . . . . . . . . . . . . . 21

4.1 Expressions for upper and lower bounds for different states of a voxel . . . 25

5.1 Sensor types and specifications of the robots and sensors used in this
thesis[O3D],[Sca],[Sic10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Color code of Figure 5.9 and Figure 5.10. Each color represents a different
combination of state and interval width . . . . . . . . . . . . . . . . . . . . 40

55



Appendix A

Abbreviations

2D two-dimensional

3D three-dimensional

DLR German Aerospace Center, Deutsches Zentrum für Luft- und Raumfahrt

KUKA KUKA Robotics

MCDM Multi-Criteria Decision Making

NBV Next-Best-View

NBS Next-Best-Scan

PEK Department of Perception and Cognition

RMC Robotics and Mechatronics Center

ToF Time-of-Flight

56



Bibliography

[AM01] Abellan and Moral. Building classification trees using the total uncertainty
criterion. 2001.

[AM03] Abellan and Moral. Maximum of entropy in credal classification. ISIPTA03,
2003.

[ARS13] Nicolas Alt, Patrick Rives, and Eckehard Steinbach. Reconstruction of Trans-
parent Objects in Unstructured Scenes with a Depth Camera. Melbourne,
Australia, September 2013.

[BA09] N. Basilico and F. Amigoni. Exploration strategies based on multi-criteria-
decision-making for an autonomous mobile robot. pages pp.259–264, 2009.

[CLK11] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Active vision in robotic sys-
tems: A survey of recent developments. The international journal of Robotics
Research, 2011.

[Dem68] Arthur P. Dempster. A generalization of the bayesian inference. Journal of
Royal Statistical Society 30, 1968.

[Dic] Oxford Dictionaries. robot. accessed October 11, 2015.

[DLR] Institute of robotics and mechatronics. accessed 23.10.2015.

[FSK09] F. Farshidi, S. Sirouspour, and T. Kirubarajan. Robust sequential view plan-
ning for object recognition using multiple cameras. Image Vision Comput.,
27(8):1072–1082, July 2009.

[GBL02] Hector H Gonzales-Banos and Jean-Claude Latombe. Navigation strategies
for exploring indoor environments. The International Journal of Robotics
Research, 21(10-11):829–848, 2002.

[HBAB11] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke. A compar-
ative evaluation of exploration strategies and heuristics to improve them. In
European Conference on Mobile Robots, ECMR 2011, pages 25–30, 2011.

57



BIBLIOGRAPHY 58

[HCK+89] M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain
mapping for a roving planetary explorer. volume vol. 2, pages pp. 997–1002.,
May 1989.

[HHHL+14] L. Heng, D. Honegger, G. Hee Lee, L. Meier, P. Tanskanen, F. Fraundorfer,
and M. Pollefeys. Autonomous visual mapping and exploration with a micro
aerial vehicle. Journal of Field Robotics, 31(4):654–675, 2014.

[Joy08] James Joyce. Bayes’ theorem. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. The Metaphysics Research Lab, Center for the
Study of Language and Information, Stanford University Stanford, CA 94305-
4115, fall 2008 edition, 2008.

[Jud88] Scott M. Juds. Photoelectric Sensors and Controls: Selection and Applica-
tions. CRC Press, 04 1988.

[KBM+13] Simon Kriegel, Manuel Brucker, Zoltan-Csaba Marton, Tim Bodenmüller, and
Michael Suppa. Combining object modeling and recognition for active scene
exploration. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2384–2391, Tokyo, Japan, November 3–7, 2013. IEEE.

[KBSH11] Simon Kriegel, Tim Bodenmüller, Michael Suppa, and Gerd Hirzinger. A
surface-based next-best-view approach for automate 3d model completion of
unknown objects. 2011.

[KRB+12] Simon Kriegel, Christian Rink, Tim Bodenmüller, Alexander Narr, Michael
Suppa, and Gerd Hirzinger. Next-best-scan planning for autonomous 3D mod-
eling. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS, pages 2850–2856, Vilamoura, Algarve, Portugal, October 7–12,
2012. IEEE.

[KRBS13] Simon Kriegel, Christian Rink, Tim Bodenmüller, and Michael Suppa. Ef-
ficient next-best-scan planning for autonomous 3d surface reconstruction of
unknown objects. Journal of Real-Time Image Processing, pages 1–21, 2013.

[KUKa] KUKA Systems Spot welding. electronic. accessed 10.11.2015.

[KUKb] Specification robots KR 6, KR 16, KR 16 L6, KR 16 S. electronic. accessed
12.10.2015.

[MHH12] Ouk Choi Miles Hansard, Seungkyu Lee and Radu Horaud. Time of Flight
Cameras: Principles, Methods, and Applications. Springer Briefs in Computer
Science, 2012.

[MLD07] Martin Magnusson, Achim Lilienthal, and Tom Duckett. Scan registration
for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics,
24(10):803–827, 2007.

[O3D] O3D100, PMD 3D sensor. electronic. accessed 13.7.2015.



BIBLIOGRAPHY 59

[Sca] scanCONTROL 2700: Compact 2D/3D profile sensor with integrated con-
troller. electronic.

[SH07] M. Suppa and G. Hirzinger. Multisensory exploration of robot workspaces.
Tm - Technisches Messen, 74:139–146, 2007.

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, 1976.

[Sha92] Glenn Shafer. The Dempster-Shafer theory, pages 330–331. Wiley, 2 edition,
1992.

[Sic10] Sick AG. Sick Laser Sensor S300 Standard, 2010.

[Sti86] S.M. Stigler. The History of Statistics: The Measurement of Uncertainty
Before 1900. Belknap Series. Belknap Press of Harvard University Press,
1986.

[Sup08] Michael Suppa. Autonomous Robot Work Cell Exploration Using Multisensory
Eye-in-hand Systems. PhD thesis, Universität Hannover, 2008.

[SW48] Claude Elwood Shannon and Warren Weaver. A mathematical theory of com-
munication. American Telephone and Telegraph Company, 1948.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT Press, MA, 2005.

[TKS14] Ulrike Thomas, Simon Kriegel, and Michael Suppa. Fusing color and geom-
etry information for understanding cluttered scenes. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Robots in Clutter
Workshop, Chicago, Illinois, USA, September 14–18, 2014. IEEE.

[TPB06] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor
terrain mapping and loop closing. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, Beijing, China, October 9–15 2006.
IEEE/RSJ, IEEE.

[Wal91] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman &
Hall/CRC, 1991.

[WHB+10] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: A probabilistic, flexible, and compact 3D map representation for
robotic systems. In Proceedings of the ICRA 2010 Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation, Anchorage, AK,
USA, May 2010. Software available at http://octomap.sf.net/.

[Woh15] Thomas Wohlfahrt. Exploration for autonomous 3d voxel mapping of static
indoor environments with depth cameras and 2d odometry. Master’s thesis,
TUM, 2015.



BIBLIOGRAPHY 60

[Yam97] Brian Yamauchi. A frontier-based approach for autonomous exploration. In
IEEE International Symposium on Computational Intelligence in Robotics and
Automation, 1997, CIRA’97, Proceedings, pages 146–151. IEEE, 1997.



Statutory Declaration
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