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Abstract

Optimal walking trajectories are essential for bipedal walking. Recent developments
enabled the use of motion planer based on nonlinear optimization. They are how-
ever, not directly applicable in real-time tasks due to a high computation time.
Therefore, a task space consisting of the stride-length and a step time is used to
precompute corresponding trajectory parameters in a certain range regarding a cost
function. The resulting trajecotries define an optimal joint space motion. The map-
ping from the task space to the joint space is generalized with multiple machine
learning methods. A parametrization of every method was determined to represent
the underlying model of the data as good as possible, whithout overfitting. Finally,
the performance regarding the accuracy and runtime and the evaluation of the cost
value and constraint violation in the walking tasks is discussed.
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ter’s Thesis als auch für die vielen Kommentare und Diskussionen in Besprechungen.

Ein besonderer Dank gilt meinen Eltern Svetlana und Eduard Trautmann, meinen
Bruder Christian Trautmann, meiner Oma Gertrud Trautmann sowie meiner Fre-
undin Alena Moiseeva für die moralische Unterstützung während der Arbeit.
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Chapter 1

Introduction

Humanoid robots are getting more attention then ever. The technological develop-
ment allows already not only the creation of robots with humanlike appearance, but
also with humanlike capabilities. This helps researcher to gain more understanding
about us humans, but offers also the possibility to use humanoid robots to serve for
human needs where it is either dangerous or impossible to work for humans or to
increase the productivity in the form of service-robots in households.
Most of the current service-robots investigated in research projects have an upper
humanlike body, a head with cameras and two arms with gripper or multifingered
hands, but often only a mobile plattform with wheels. Examples are the Rollin’
Justin [BWS+09] at the DLR, the PR21 from Willow Garage, Baxter2 from Rethink
Robotics or Pepper3 from Aldebaran. This systems are limited by their stationary
or wheeled plattform in environments build for humans and hence aren’t capable of
achieving a task where they have to overcome a step or a gap. Using biped walker,
general purpose service-robots are possible. The development started with the first
actuated biped walker WABIAN and WABIAN-II [OAS+06] at the University of
Waseda and since then a lot of humanoid walking robots were created. Examples of
humanoid walking machines are the HRP-2 [HKK+04] from AIST, LOLA [LBU09]
from the Technische Universiät München (TUM), ASIMO4 from Honda, Petman
and Atlas from Boston Dynamics5 and TORO [EWO+], the torque-controlled hu-
manoid robot from the German Aerospace Center (DLR). TORO was also the target
platform for the task in this thesis, see Fig. 1.1. The advancement in the field of hu-
manoid robots in recent years triggered the attention of several big companies, with
resulting multiple acquisitions. Softbank acquired Aldebaran and Google bought
Boston Dynamics and several other smaller robotic related companies. This invest-
ments promise an impact on the whole field of humanoid robotics.

1https://www.willowgarage.com/pages/pr2/overview
2http://www.rethinkrobotics.com/baxter/
3http://www.aldebaran.com/en/a-robots/who-is-pepper
4http://asimo.honda.com
5http://www.bostondynamics.com/robot Atlas.html
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Figure 1.1: TORO, the torque-controlled humanoid robot (DLR)

1.1 Humanoid Robot Locomotion

Walking is for humans an every day task and is accomplished without any hassle.
The mentioned importance of bipedal walking for humanoid robots in environments
created for humans is a popular research topic, since the robustness of the human
locomotion is not completely understood to this day. Therefore, this section will
present the theory and vocabulary used in this field since it is important for the
task targeted in this thesis.

A regular walking step for humans and humanoids (short for humanoid robots) is
divided into two phases, the single-support phase with only one foot contact at a
time to the ground and the double-support phase with both feet on the ground. The
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feet of a humanoid have therefore several contact points with the ground. Taking a
convex hull of all contact points in the single- and double-support phase results in
a supportpolygon for the current state of the robot.

The supportpolygon is important for statical walking. Projecting the center of mass
(CoM) as one point on the ground, the condition for statical walking implies that
as long as the projected CoM point stays within the supportpolygon, a statical sta-
ble gait is possible. To allow humanlike gaits, the CoM must be able to leave the
supportpolygon during a step. This is known as dynamical walking.

One of the major breakthroughs for biped walking was the introduction of the sta-
bility criterion by Vukobratovic [VB04], better known as the Zero-Moment-Point
(ZMP). Several control strategies were developed and succesfully applied for full
sized humanoids like the mentioned HRP-2 and ASIMO. The classical control ap-
proaches demand an accurate model of the robot dynamics and use the joint position
as the control variable. Systems with more recent controller are torque controlled
robots. Torque controller allow a safer interaction of a robotic system with the en-
vironment or humans due to the introduced compliance property. One example for
a torque controlled humanoid robot is TORO where the system gets also it’s name
from.

Another important aspect of humanoid robot locomotion is the generation and ex-
ecution of walking trajectories. The approach (presented later in more detail) in
this thesis works with walking trajectories generated from a nonlinear optimization
problem as stated in [WLO12, WLO14] and described via basic-splines. Certain
conditions regarding constraints must hold for one step to fulfill the demand for
cyclic motions.

1.2 Related Work

In [LNTC+11], the task of a ball catching with a robotarm was investigated. Mo-
tion trajectories were described by b-splines and found via non-linear optimization.
To make optimal trajectories available at runtime, a generalization of the trajecto-
ries was studied with several machine learning methods. Finally, highly dynamical
movement were applied in real-time.
The generation of energy optimal cyclic walking gaits for biped walking machines
was studied in [WLO12, WLO14] where only the parametrization of the joint states
was necessary. The developed motion planner treats complex motion constraint
while minimizaing for a defined cost function.
The generalization of optimal motions in real-time was also approached in [WHHAS13].
Learned trajectories were exactly reconstructed, while interpolated trajectories yielded
a near-optimal execution.
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1.3 Motivation

A motion planner was developed for TORO, a two-legged multibody system with
25 degrees of freedom (Fig. 1.1) at the institue of robotics and mechatronics, DLR.
This nonlinear optimization based motion planner from [WLO12] is capable of gen-
erating global optimal walking trajectories for a given cost function. However, the
computation of global optimal trajectories comes with a high computation cost and
is therefore not applicable in real-time task.

The motivation is to solve this issue. Hence the task is formulated as follow:
First, a data set which covers the whole task space is generated with the nonlinear
optimizer. Second, a generalization of this data set needs to be done, to represent
an underlying model of the data and third, to be able to make new predictions of
motion trajectories in real-time.

1.4 Contribution

The contribution of this thesis is illustrated as the thick black box in Fig. 1.2.
In summary, a pipeline for the generalization of optimal walking trajectories was
implemented, where first a data set was generated offline for a task space range and
a cost function and wrt given properties of a robotic system. Second, an underlying
model with several machine learning methods estimated (also offline) and third, the
prediction of new trajectories in online applications. The evaluation was done on
the accuracy and runtime of the machine learning methods and the costvalue from
the predicted trajectories and the resulting optimality loss through the constraint
violations.

1.5 Outline

The thesis is structured as follows: After the introduction in this chapter, the prob-
lem statement is given in chapter 2 were also the generation of the data sets is
stated. In chapter 3 first, an introduction to the field of machine learning is given
and second, the theoretical foundation of the applied machine learning methods in
this thesis. The application of the machine learning methods on the data sets will be
described in chapter 4 and finally the results in chapter 5 presented. The conclusion
and an outlook is given in the last chapter 6.
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Figure 1.2: Generalization of optimal walking trajectories pipeline
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Chapter 2

Problem Statement and
Optimization Problem

In this chapter the problem statement of this thesis, the optimization problem and
the generation of the data sets (from the optimization) which will be used in this
work will be introduced. The problem statement and the definition of the opti-
mization problem are borrowed from previous and related work at the institute of
robotics and mechatronics at the DLR1 [LNTC+11, WLO12, WLO14].

2.1 Problem Statement

The main task is to use global optimal trajectories regarding a cost function to
achieve bipedal walking for a humanoid robot. The task space is specified by two
task parameters, the stride-length ks and the step time kt. Hence, k determines a
full step which is divided into a single-support phase and a double support phase

k =
[
ks kt

]T
(2.1)

A trajectory which fulfills the robot kinematics and dynamics is defined in the joint
space of the robot q ∈ RNJOINTS and described by a basic-spline (piecewise defined
polynomial) q = fSPLINE(p, t) with the parameters p ∈ RNSPLINE .

Knowing the joint space q allows the computation of the base state x through the
robot kinematics and therefore the description of the full system state y, see Eq.
2.2 and Eq. 2.3.

y =
[
x q

]T
(2.2)

x = f−1KIN(q) (2.3)

1www.dlr.de/rmc/
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The full system state is used in the equation of motion of the system, as stated in
Eq. 2.4 and applied in [WLO14] with the required torque τ which must satisfy the
robot hardware limitations and the resulting contact forces W i needed for a stable
contact

M (y)ÿ +C(y, ẏ)ẏ + g(y) = STτ +

NC∑
i=0

JTi (y)W i (2.4)

An optimal trajectory was received from the solution of the optimization problem
described below for one of the cost function defined in Eq. 2.5a a velocity cost
function or Eq. 2.5b a torque cost function.

Γq̇(p) =

∫
q̇T · q̇ dt (2.5a)

Γτ (p) =

∫
τ T · τ dt (2.5b)

2.2 Optimization Problem

The optimization problem is formulated as a minimization of a previously chosen
cost function wrt equality constraints e(p,k) and ineqaulity constraints h(p), see
Eq. 2.7.

minimize
p

Γ(p) (2.6)

e(p,k) = 0
h(p) < 0

(2.7)

Examples for constraints are: collision free trajectories, cyclic walking, contact
forces, and joint limits for position, velocity and torques. For collision free tra-
jectories, the safe distance between the swing foot and the surroundings is enforced.
The constraint for cyclic walking ensures continued walking for the same or adjusted
conditions in the next step by mirroring the step trajectories for the other foot. The
friction cone and Zero-Moment Point (ZMP) conditions must be fulfilled by the
contact force constraints to always provide a full contact to the ground. Inequality
constraints in the joint position q and velocity q̇ are linear in p, while constraints for
joint torques τ and contact forces W i are highly non-linear in p. An approximation
of the optimization problem is achieved by computing the cost function and satisfy-
ing the given constraints at discrete timestamps for the full walking trajectory. This
optimization problem was solved in previous work [LNTC+11, WLO12, WLO14].
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2.3 Data Set Generation

Multiple machine learning methods were applied to learn the mapping of k→ p from
the data sets computed in the optimization for the two mentioned cost functions.
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Figure 2.1: Illustration of the non-linearity of a parameter for the torque cost func-
tion. The sparse black dots are results of the optimization for given task space
set, while the blue dense grid represents the predicted values from Gaussian process
regression.

Generating the data sets from the optimization was done by first determining the
range for the task space parameters. The stride-length ks was varied from 0.0m
to 1.2m and the step-time kt from 0.5s to 1.08s. Second, for every pair of the task
space parameters the optimization problem was solved and the trajectory parameter
p received. An example of such a parameter pi is shown in Fig. 2.1. This allows to
generate cyclic gaits within the specified ranges for the task parameter.

Depending on the cost function, a smooth data set in the trajectory parameter space
could be generated for the velocity cost function, while noiser data sets (Fig. 2.1)
in the trajectory parameter space were computed for the torque cost data set. The
results in the later are twofold: First, the cost function regarding the torque τ is
complexer than the one for the velocity q̇ and second, since the computation takes
longer, the optimizer stops earlier for certain task space parameters due to a slow
convergence.

The 2D biped walker used as a model has NJOINTS = 6 with resulting trajectory
parameter NSPLINE = 192. The finally used data sets had a different amount of
samples due to different noisy samples on the boundaries of the task space which
were dropped for the machine learning application. One sample of the training and
test set has therefore 2 task paramter ks and kt and 192 trajectory parameters.
After learning to generalize the trajectory parameters, predicting the trajectory
parameters ppredicted for a new task parameter knew is possible. The applied machine
learning methods are introduced in the following Chapter 3.
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Chapter 3

Applied Machine Learning
Methods

This chapters gives an introduction to machine learning which was the driving tech-
nology in this thesis. Furthermore, the applied machine learning methods will be
introduced, the underlying mathematical foundation presented and the outcome for
each method on a 2D example data set shown. Last but not least a clustering
method, namely Gaussian Mixture Model will be presented since some data sets
with local minimas needed to be clustered for the application of machine learning
on subsets.

3.1 Machine Learning Introduction

Nowadays, several industries generate lots of data and rely on the processing of this
information. The accessibility of high computing power and huge storage capacity
makes this possible. Machine Learning is the approach to reason on data after
building a representative model of it. For a certain process it is asumed that if we
gather lots of samples from it, we can obtain with machine learning methods, were
some of them applied in the thesis will be discussed in section 3.2, the underlying
model of the process.

The observed data has often a certain degree of noise and is not complete so it is
difficult to estimate the true model. However, different machine learning methods
and approaches from several disciplines such as statistics in mathematics and arti-
ficial intelligence in computer science, as a few examples, were derived to address
this issues.

With machine learning we can detect patterns automatically and based on this pre-
dict needed information or make a decision with uncertainty. Successful commercial
applications such as speech recognition, computer vision, search engine page ranking
and the continuous growth in further research areas like the field of robotics, made
machine learning now seen as an own discipline.
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Another important aspect of machine learning is the generalization of the model,
since it is of high interest that the trained model provides good performance (low
error rate) not only on seen data, but also on new data in the domain.

Figure 3.1: Machine Learning Approaches and Categories

The knowledge and the basic vocabulary of machine learnig as stated in [Mit97,
HTFF05, Mur12, JWHT13, Alp14] will be discussed below.

Machine Learning Categories In Fig.3.1 the main approaches of machine learn-
ing are shown (supervised, unsupervised and reinforcement learning).

Supervised learning deals with N input and output pairs:

D = {xi,yi}Ni=1

In the literature it is common to denote the input as X, which is in our case the
task parameter k and the output is denoted as Y , which are our spline parameter p.
Thus supervised learning provides a mapping betwen an input space and an output
space. Furthermore, supervised learning is again divided into two subfield which are
namely regression and classification. The former has a continuous output which is
also referenced as quantitative, while the later deals with g groups. In this thesis
supervised learning and the regression case was applied.

In unsupersived learning, data without a label, hence only input data is provided.
Therefore, the main focus in this approach is to find clusters and group similar data.
Between supervised and unsupervised learning is semi-supervised learning, where in-
put data is only partially labeled so both approaches are combined to estimate a
model.

The last main machine learning category is reinforcement learning. Here, an algo-
rithm learn the output through trial and error. The goal is to find a policy upon a
task can be achieved. This method is popular in the field of robotics, but was not
part of this thesis.
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Data Set Handling As discussed, we operate with machine learning on a dataset
with N samples. Depending on the task and data distribution, a sufficient high
sample number is desirable to gurantee a well covered taskspace.
To determine if there is a representative amount of data points the performance
of the estimated model can be analysed. This consideration is due to a possible
underfitting of the model.
To also overcome the opposite of this, namely overfitting, we are interesed in a
generalization of our model and not in a perfect fit of the model to the data, since
overfitting results in a high error on new unseen data.
Therefore it is common to divide the data set beforehand into three groups, a training
set, a validation set and a evaluation set.
On the training set we will fit our model and estimate the test error for the model
parameter with the validation set. Upon this, we can finally assess the generalization
error for the final model parameters with the evaluation set. The evaluation set is
not part of the model parameter estimation. It serves only for the evaluation of the
accuracy of the estimated model on not before seen data.

Cross-Validation Another approach to investigate over- or underfitting and in
general to improve the model accuracy is to apply cross-validation in the model
estimation. In cross-validation we divide as previously mentioned the data set into
a small evaluation set, while dividing the rest of the samples into f -folds. Now, the
model parameters are estimated for f − 1-folds, while the remaining fold is used as
an validation set. In each of the f iteration, the training set and the validation set
changes and we can ensure that we cover the full available sample space. Otherwise
if we choose only one set to validate, we run the risk to pick a non-represantative
subset and hence perform worse on the evaluation set.

Accuracy To measure the estimated model accuracy, we can choose several op-
tions, but since we deal with a regression problem in this work, it is convenient to
apply the mean squared error (MSE) see Eq. 3.1, the mean absolute error (MAE)
see Eq. 3.2 or the R2-Score in Eq. 3.3 as stated in [JWHT13]. A good model esti-
mation results in a low MSE or low MAE, while the value of the R2-Score should be
close to 1 for a good model estimate. Furthermore, the MSE can also be normalized
by the variance of the output, which serves a more meaningful interpretation.

MSE =
1

n

N∑
i=1

(yi − f(xi))
2 (3.1)

MAE =
1

n

N∑
i=1

|yi − f(xi)| (3.2)
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R2 ≡ 1−
∑

i(yi − f(xi))
2∑

i(yi − ȳ))2
(3.3)

Parametric and non-parametric approaches The applied machine learning
methods as later discussed in 3.2 can be devided into two groups: the parametric
approach and the non-parametric approach.

The parametric approach as stated in [JWHT13] is composed of two steps. First,
to assume a certain underlying hyperplane shape of the given data points and sec-
ond, to determine the parameters for this hyperplane. Thus we reduce with the
parametric approach the problem of estimating the true underlying hyperplane to
just an estimation of our model parameters, which is also the main advantage of
parametric approaches, since the amount of model parameters is far lower than the
amount of sample data points. However, assuming an underlying hyperplane shape
claims some knowledge about it. Linear and polynomial regression is an example
for a parametric approach.

While the non-parametric approach as stated in [JWHT13] can be seen as a data
driven approach. In this approach, we do not make an assumption about the true
underlying hyperplane but try to fit the model close to the data. Through this,
we avoid the assumption of a underlying hyperplane, with the drawback of the
incorporation of many samples for an precise model estimation. Examples for a
non-parametric approach is the n-nearest neighbors method or the gaussian process
regression.

Example Data Set In order to demonstrate the different outcome of the applied
machine learning methods, an example data set in 2D was generated. Thus, the
methods outcome can also be visually compared and the underlying methodoly for
each method is presented. Figure 3.2 shows the example data set, where the dash-
dotted red line is the true underlying function, while the black dots are the generated
noisy obervations.

0 1 2 3 4 5 6 7 8

x

0
1
2
3
4
5
6
7

f(
x)

Example Data Set

true function
observations

Figure 3.2: Plot of the example data set
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3.2 Machine Learning Methods

After the introduction to the general concept of machine learning, this section
presents in this study applied machine learning methods. Following methods were
applied for regression in supervised learning:

• n-Nearest Neighbors

• Regression Tree

• Linear and Polynomial Regression

• Support Vector Machine for Regression

• Gaussian Process for Regression

3.2.1 N-Nearest Neighbors

The n-nearest neighbors (n-NN) method [HTFF05, CH67] is a memory based or
data driven machine learning method and hence no model estimation is required.
This method operates directly on the available data set.

For the regression case, the n-NN prediction can be obtained through several ap-
proaches. These approaches are either local interpolation, local regression, averaging
or local weighted averaging between n samples.

First, all distances (Euclidean see equation 3.4 or Manhatten see equation 3.5) be-
tween a new input xnew and the available data points X from the data set are
computed and second, the n minimum distances are chosen.

d(xi,xnew) =

√∑
j

(xi,j − xnew,j)2) (3.4)

d(xi,xnew) =
∑
j

|xi,j − xnew,j| (3.5)

Furthermore, a weight function is defined, where we can choose either uniform
weighting see 3.6a, or a inverse distance weight function see 3.6b of each n-NN.

wi =


1 (3.6a)

‖xnew − xi‖−2∑
j ‖xnew − xj‖−2

(3.6b)
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(a) 1-NN (look-up table)
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(b) 5-NN (uniform weight)
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(c) 5-NN (distance weight)

Figure 3.3: n-Nearest Neighbor Regression plots with a dash-dotted red line as a
true underlying function, the black dots are the noisy observations and the blue lines
as the outcome for n-NN. In (a) n = 1 which results in a simple look-up table, (b)
with n = 5 and an uniform weight function for the n-Nearest Neighbor and (c) with
n = 5 and a distance weight function.

The computation of the in our case local averaged output value n-NN(xnew) for a
new input xnew is shown in equation 3.7. Here n is the number of nearest neighbors,
wi is the weight function value between point xi and the new input xnew and yi is
the output for point xi.

n-NN(xnew) =
1

n

n∑
i=1

wi · yi (3.7)

N -nearest neighbor was applied for different n and different weight functions in this
study to determine the best possible neighbor number and which weight function
performance better. The result are presented in chapter 4.

In figure 3.3 the n-NN was applied on the generated 2D example data set. The
first plot (a) shows the results of 1-NN regression, which is seen as a look-up table,
since for a new input xnew the output of the next possible neighbor is taken. The
result for the full range is the blue line, where the occurence of big jumps of the
outcome between two close samples is high. A smoother result for the output can
be achieved by increasing the number of neighbors, which is in the subplots (b)
and (c) 5. While in subplot (b) a uniform weight function was applied, subplot
(c) displays the outcome of a inverse distance weight function. Uniform weighting
generalizes better in the sense of fewer big changes in the output value for two close
samples. Prediction close to the border of the data set range are worse than those
from within, since on the border, points for the local weighted averaging are taken
from one side of the sample.
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3.2.2 Regression Tree

An additional conceptional simple and fast regression method is the regression tree
(RT) [HTFF05]. The RT is also a non-parametric approach, where the whole task
space is partitioned into M regions Rm and the outcome is the average of the samples
from this leaf m. The minimum leaf size or samples per region was one sample. A
RT has a root node and at least two branches as illustrated in figure 3.4. Inequality
conditions in each node can be composed of more complex inequality conditions
than the one in figure 3.4.

Figure 3.4: Regression Tree

In our task space we have N observations, where each input xi has a corresponding
output yi. Starting from the root node, the RT partitions the task space until a
specified maximum depth d. To simplify the splitting, the RT is restricted to per-
form only binary splits. Thus, we first split the task space into two regions, then
each region again into two subregions and so on. This procedure is performed until
some criterion is achieved.

A RT predicts ym for a region Rm as cm, which is a constant value in the correponding
region, see equation 3.8 as stated in [HTFF05]. The constant is for example the
average of samples in each region (Equation 3.9).

f̂(xi) =
M∑
m=1

cmI{xi ∈ Rm} (3.8)

cm = avg(yi|xi ∈ Rm) (3.9)

Finding the best splitting point is challenging. [HTFF05] suggest a greedy approach,
where they define two regions Rleft and Rright (Equation 3.10), determined by the
splitting variable j and the splitting point s.
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Figure 3.5: Applied Regression Tree plots with a dash-dotted red line as a true
underlying function, the black dots are the noisy observations and the blue lines as
the outcome for the RT. In (a) with no limited max-depth of the tree which also
results in a simple look-up table, (b) with a set maximum tree depth of 3 and (c)
with a maximal tree depth of 5.

Rleft(j, s) = {x|xj ≤ s} and Rleft(j, s) = {x|xj > s} (3.10)

The two introduced variable are estimated by minimizing equation 3.11 with 3.12.
Applying this on all samples in the task space is faster than a minimization of the
mean-squared error in each region to determine a splitting variable and a splitting
point.

min
j,s

[min
cleft

∑
xi∈Rleft

(yi − cleft)2 + min
cright

∑
xi∈Rright

(yi − cright)2] (3.11)

cleft = avg(yi|xi ∈ Rleft(j, s)) and cright = avg(yi|xi ∈ Rright(j, s)) (3.12)

The result of a RT is local averaging of the task space and the partitioned task space
can be described by one fitted RT. Without limiting the RT depth, the estimated
model overfits as illustrated in figure 3.5 (a). The result is similar to 1-NN in the
previous section, a look-up table since each leaf or region has only one sample and
there are as many leafs as observations in the task space. Figure 3.5 (b) shows a
RT with a depth of 3, while figure 3.5 (c) a RT with a depth of 5, which performs
better with respect of the error for new unseen data. To improve the generalization
of RT, trees can be pruned to reduce the amount of splits and therefore to reduce
the depth. Regions with small changes in their average value can be combined to
one region.
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3.2.3 Linear and Polynomial Regression

A parametric approach in this study is the linear and polynomial regression [HTFF05].
With this machine learning methods the relation between the input X and the Out-
put Y is assumed to be either linear, or this mapping is done with a n-th degree
polynomial. Therefore we approximate a true underlying function f(x) of the ob-
served noissy data (Eq. 3.13) with f̂(x) (Eq. 3.14). For x0 = 1, the equation can
be rewritten as in Eq. 3.15 The random noise is assumed to be normaldistributed
with zero mean. However, polynomial regression is not considered to be non-linear.
Although it fits non-linear hyperplanes, the free model parameters change linearly.

yi = f(xi) + εi (3.13)

f̂(xi) = ω0 +
n∑
j=1

ωjxi,j =
n∑
j=0

ωjxi,j (3.14)

f̂(xi) = ωTxi (3.15)

The extension of linear regression to polynomial regression can be achieved by the
construction of polynomial features zi from the input xi as in Eq. 3.16. The resulting
model (Eq. 3.17) is similar to Eq. 3.15 since it is also a linear model (linear in
the parameter). Applying polynomial features comes at a cost. The computational
complexity increases as the number of free model parameter increases and complexer
models tend to overfitting. This must be considered in the application of the method.

zi = {1,xi,x2
i ,x

3
i , · · · ,xni } (3.16)

f̂(zi) = ωTzi (3.17)

With the residual sum of squares (Eq. 3.18) we can compute the free model param-
eter ω (Eq. 3.21), where X are all input samples and Y all output samples.

RSS(ω) =
N∑
i=1

(yi − f̂ω(xi))
2 and RSS(ω) =

N∑
i=1

(yi − f̂ω(zi))
2 (3.18)

ω = (XTX)−1XTY (3.19)
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Figure 3.6: Linear / Polynomial Regression plots with a dash-dotted red line as
a true underlying function, the black dots are the noisy observations and the blue
lines as the outcome of the regression. In (a) Linear Regression, (b) Polynomial
Regression with a fit of a 4th order polynom and (c) with a fit of a 6th order
polynom.

As mentioned, the increase of the polynomial order runs the risk to overfit the data.
Furthermore, the free model parameter can became really big. To prevent this
we can apply ridge regression [HTFF05] which shrinks the model parameter by a
penalizing coefficient λ (Eq. 3.20).

RSS(ω, λ) =
N∑
i=1

(yi − f̂ω(zi))
2 + λωTω (3.20)

ωridge = (XTX + λI)−1XTY (3.21)

The results on the example data set for linear and polynomial regression are il-
lustrated in Fig. 3.6. Linear regression should always be considered since it is a
good initial guess of a underlying function. However, as seen in (a) the fitted model
poses a bad estimate on the example data set. Extending linear regression to poly-
nomial features results in a better fit. In the subplot (b) a 4th order polynomial
was applied which is a better guess than before but poses still a recognizable model
error, while subplot (c) shows the best result for polynomial regression with a 6th
order polynomial. Ridge Regression was also applied in (c) to shrink the free model
parameters.
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3.2.4 Support Vector Regression

One of the more sophisticated machine learning methods applied in this thesis is the
support vector machine (SVM). The SVM was initally developed for classification
tasks but was then extended so serve in regression problems where also multidimen-
sional hyperplanes can be fitted to the given data set (xi, yi), i = 1, ..., N . The term
support vector regression (SVR) as introduced in [VGS97, DBK+97, SS04] is used
for this method.
In contrast to the method (linear regression) from the previous section, where all
samples are taken to estimate the free model parameter at once, the SVR uses
only as many samples as defined support vectors (SV) which are by far less. This
approach is better known as a sparse estimation and an advantage of SVR in high
dimensions.
Within the SVR method, there are two different approaches for defining the SVs.
This section will start with the ε-SVR, where the free parameters are ε and the
regularization C. A second approach, namely the ν-SVR introduced in [SSWB00,
CL02], with ν and C as the free parameters will be investigated in this study.
Additionally, the kernel trick will be introduced and the application of both SVR
approaches on the example data set shown.
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7

y y y + ε

y− εξ− < 0

ξ + > 0

Figure 3.7: From [SS04], ε-tube and slack variable ξ

ε-SVR As with the previous method we want to estimate the underlying function
for a given data set, see Eq. 3.22. A good estimate is achieved by minimizing the
risk function in Eq. 3.23 with which the training error and the model complexity
can be controlled. The in [VGS97] defined ε-insensitive loss function in Eq. 3.24
penalizes all samples outside of the ε-tube. From [SS04], see Fig. 3.7, we can say that
ε-SVR does not care about errors with a lower deviation than ε from the estimated
model.

yi = f(xi,ω) = b+
M∑
j=1

ωjφj(xi) = b+ ωTφ(xi) (3.22)
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R(y, f̂(xi),ω) = C
1

l

l∑
i=1

|yi − f̂ω(xi)|ε +
1

2
‖ω‖2 (3.23)

|yi − f̂ω(xi)|ε =

{
0 if |yi − f̂(xi,ω)| < ε,

|yi − f̂(xi,ω)| − ε otherwise
(3.24)

Furthermore, a soft-margin and hence a slack variable ξ (Eq. 3.26) is introduced
[SS04] which describes the degree and direction of the deviation of a sample from
the ε-tube, where ξ+i penalizes samples above the ε-tube and ξ−i those below. Again,
free model parameter can be estimated by minimizing the updated risk function in
Eq. 3.25 which is subject to the constraints in Eq. 3.26.

R(ξ+i , ξ
−
i ,ω) = C

1

l

l∑
i=1

(ξ+i + ξ−i ) +
1

2
‖ω‖2 (3.25)

yi − (ωTφ(xi) + b) ≤ ε+ ξ+i (3.26a)

(ωTφ(xi) + b)− yi ≤ ε+ ξ−i (3.26b)

ξ+i , ξ
−
i ≥ 0, i = 1, ..., l ε ≥ 0

The risk function minimization is achieved by the application of the Lagrange mul-
tiplier technique (Eq. 3.27). Therefore partial derivatives wrt. ω, b, ξ+i , ξ

+
i are

computed and set to zero as in Eq. 3.28. Now, we can insert those results in our
function estimation from Eq. 3.22 and we receive Eq. 3.29. The coefficients α can be
obtained through quadratic (convex) programming. The amount of support vector
can be determined by finding the indices i where ξ+i = 0 or ξ−i = 0 and for α where
following condition holds: 0 < α < C

L = C
1

l

l∑
i=1

(ξ+i + ξ−i ) +
1

2
‖ω‖2 −

l∑
i=1

(µ+
i ξ

+
i + µ−i ξ

−
i )

−
l∑

i=1

α+
i (ε+ ξ+i + yi − (ωTφ(xi) + b))

−
l∑

i=1

α−i (ε+ ξ−i − yi + (ωTφ(xi) + b))

(3.27)
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∂L

∂ω
= 0⇒ ω̂ =

l∑
i=1

(α+
i − α−i )φ(xi) (3.28a)

∂L

∂b
= 0⇒

l∑
i=1

(α+
i − α−i ) = 0 (3.28b)

∂L

∂ξ+i
= 0⇒ C = l(α+

i + µ+
i ) (3.28c)

∂L

∂ξ−i
= 0⇒ C = l(α−i + µ−i ) (3.28d)

f̂(x) =
l∑

i=1

(α+
i − α−i )φ(xi)

Tφ(x) + b (3.29)

ν-SVR The other SVR approach is introduced in [SSWB00] as the ν-SVR. Al-
though ν-SVR is basically the same as the previously mentioned ε-SVR, it omits the
determination of a desired accuracy beforehand through the ε-parameter. Instead
it replaces the free parameter ε with the ν-parameter, which allows an automatical
minimization of the accuracy ε. The risk function and the Langrangian are extended
as seen in Eq. 3.30 and Eq. 3.31, and the solution can be found through the same
procedure as before for Eq. 3.29.

R(ξ+i , ξ
−
i ,ω, ε) = C(νε+

1

l

l∑
i=1

(ξ+i + ξ−i )) +
1

2
‖ω‖2 (3.30)

L = Cνε+ C
1

l

l∑
i=1

(ξ+i + ξ−i ) +
1

2
‖ω‖2 −

l∑
i=1

(µ+
i ξ

+
i + µ−i ξ

−
i )

−
l∑

i=1

α+
i (ε+ ξ+i + yi − (ωTφ(xi) + b))

−
l∑

i=1

α−i (ε+ ξ−i − yi + (ωTφ(xi) + b))

(3.31)

The parameters of the former SVR, C and ε are in the range [0,∞) while ν in
ν-SVR is in the range [0, 1). With ν-SVR, a more meaningful representation of the
penalty parameter is achieved, since the ν-parameter represents an upper bound on
the fraction of training samples and a lower bound on the fraction of samples which
are support vectors. For both SVR methods, the free parameters are found via a
grid-search.



24 CHAPTER 3. APPLIED MACHINE LEARNING METHODS

0 1 2 3 4 5 6 7 8

x

0
1
2
3
4
5
6
7

f(
x)

(a) SVR (kernel: lin/poly)

0 1 2 3 4 5 6 7 8

x

(b) SVR (kernel: rbf)

0 1 2 3 4 5 6 7 8

x

(c) NuSVR (kernel: rbf)

Figure 3.8: Support Vector Regression plots with a dash-dotted red line as a true un-
derlying function, the black dots are the noisy observations and the blue (full/dotted)
lines as the outcome of the regression. In (a) applied ε-SVR with a linear kernel
(blue full line) and with a polynomial kernel (blue dotted line), in (b) a ε-SVR with
a rbf kernel and in (c) ν-SVR also with a rbf kernel.

Kernel Trick Applying kernels means transforming not linear fitable data into a
higher dimension where we can determine the multidimensional hyperplane. There-
fore, a linear kernel (Eq. 3.32a), a polynomial kernel (Eq. 3.32b) and a gaussian
kernel (Eq. 3.32c) as stated below were applied in this study:

κ(xi,xj) = (xTi xj) (3.32a)

κ(xi,xj) = (xTi xj + c)n (3.32b)

κ(xi,xj) = exp

(
−(xi − xj)2

2σ

)
(3.32c)

Kernelizing the estimated function from Eq. 3.29 leads to the solution of the esti-
mated function as shown in Eq. 3.33.

f̂(x) =
l∑

i=1

(α+
i − α−i )κ(φ(xi), φ(x)) + b (3.33)

Application of SVR As with the previous methods, the ε-SVR and ν-SVR was
applied on the example data set. In Fig. 3.8 (a) ε-SVR was applied with a linear
kernel (blue full line) and with a 4th order polynomial kernel (blue dotted line). The
function estimation failed for both kernels. In the subplot (b), ε-SVR was applied
with a gaussian kernel and yielded a good estimation with a small error, while in
subplot (c) ν-SVR, also with a gaussian kernel was applied which performed similar
good, however slightly different, e.g. for x between 3 and 4.
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3.2.5 Gaussian Process Regression

Gaussian Process Regression (GPR) [RW06, Ebd08] is considered to be like the SVR
from the previous section a kernel machine. While the SVR is sparse and therefore
fast, it lacks of a probabilistic output. That’s were the GPR comes in: With GPR
we define a distribution over functions. Starting from a prior, where we incorporate
our initial belief over functions, we compute a posterior with the help of Bayes’ rule
and marginal likelihood after some observations. The key idea is that for similar
samples x and x′, the output of the functions of f(x) and f(x′) are expected to be
similar.

Again, we use the standard linear regression model with Gaussian noise ε ∼ N (0, σ2
n),

see Eq. (3.34). The GP can be written as in Eq. (3.35), where the Kronecker delta
δ(x,x′) is 1 iff x = x′ and otherwise 0, with mean m(x) and covariance function or
kernel κ(x,x′) (Eq. (3.36)).

y = f(x) + ε (3.34)

y ∼ GP(m(x), κ(x,x′) + σ2
nδ(x,x

′)) (3.35)

m(x) = E[y] (3.36a)

κ(x,x′) = E[(y −m(x))(y′ −m(x′))T ] (3.36b)

A popular choice for a covariance function is the squared-exponential kernel, as
stated below in Eq.(3.37), with M = l−2I.

κ(x,x′) = σ2
f exp

(
−1

2
(x− x′)TM(x− x′)

)
+ σ2

nδ(x,x
′) (3.37)

After the observation of the training data set we can make prediction with the pos-
terior for new data. Therefore, we need to compute the covariance values from the
covariance function for every observation sample. Here, K represents the covari-
ance between training samples (Eq.(3.38a), K∗ the training-test samples covariance
(Eq.(3.38b)) and K∗∗ the covariance of the test sample (Eq.(3.38c)).

K =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x1, xn)
...

...
. . .

...
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)

 (3.38a)

K∗ =
[
κ(x∗, x1) κ(x∗, x2) · · · κ(x∗, xn)

]
(3.38b)

K∗∗ = κ(x∗, x∗) (3.38c)
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Recalling [RW06, Ebd08] we know that Eq.(3.39) holds, so we compute the condi-
tional distribution of y∗ given y (Eq.(3.40)).[

y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
(3.39)

y∗|y ∼ N
(
K∗K

−1y,K∗∗ −K∗K−1KT
∗
)

(3.40)

From the conditional distribution in Eq.(3.40) we receive with the mean our best
estimation for a new sample x∗ (Eq.(3.41)), while the uncertainty of the output is
described by Eq.(3.42). Furthermore, the expected value for y∗ in Eq. (3.41) can
be rewritten, which is similar to the solution in the previous section for SVR, with
α = K−1y.

E(y∗) = K∗K
−1y =

n∑
i=1

αiκ(xi, x∗) (3.41)

V(y∗) = K∗∗ −K∗K−1KT
∗ (3.42)

The posterior variance in Eq.(3.42) is smaller than the prior variance from Eq.(3.38c),
since a positive term is substracted. Another interpretation is that the data brings
in information, therefore the uncertainty is smaller. Furthermore, the posterior
variance depends only on the input data.

GP Hyperparameters After we learned how to compute the posterior from the
prior, it is of interest to know how to determine the hyperparameters θ = {l, σf , σn}
of the GP with respect of the given data set. The hyperparameters are within the
kernel function (Eq.(3.37)) and are as follows:

• characteristic length-scale l

• vertical scale of functions σ2
f

• noise variance σ2
n

There are two options to determine the kernel parameters, either via an exhaustive
grid search over discrete values which can be slow, or with a continuous optimiza-
tion. Therefore, we need to find the best p(θ|x,y), that according to Baeyes rule
means the maximization of the marginal log likelihood w.r.t. hyperparamters θ, see
Eq.(3.43).

L = log p(y|X,θ) = −1

2
log |K| − 1

2
yTK−1y − n

2
log(2π) (3.43)

The first term is known as a complexity penalty term, the second one is the data fit
term, while the last represents a constant.
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Figure 3.9: Gaussian Process Regression plots with a dash-dotted red line as a true
underlying function, the black dots are the observations, the blue (full/dotted) lines
as the outcome of the regression and the red filled areas as the 95% confidence
interval. In (a) GPR was applied on many observations. In (b) the amount of
observations was reduced, while also assuming noise free observations. In (c) and
(d) the GPR was applied with noisy observations, while in (c) the estimated model
fits well, the length-scale in (d) is to high.

To estimate the appropriate hyperparameters, we apply numerical optimization e.g.
conjugate gradients, on the partial derivatives from the marginal log likelihood
(Eq.(3.44)), with α = K−1y:

∂L

∂θj
=

∂

∂θj
log p(y|X,θ) =

1

2
yTK−1

∂K

∂θj
K−1y − 1

2
tr(K−1

∂K

∂θj
) (3.44a)

=
1

2
tr

(
(ααT −K−1)∂K

∂θj

)
(3.44b)

Since the GP uses all samples to make new prediction, one must be careful with
the amount of observations. Especially in high dimensions with many features, the
computational complexity becomes infeasible. This is one drawback of GPs. In Fig.
3.9 some examples for GPR are shown. Starting with the subplot (a) where many
noisy observations were incorporated, the GPR leads to a good model fit with a
low error. The GPR for noise free observation, see subplot (b), leads to a equally
good model while incorporating much less samples. In addition, since noise should
always be considered, (c) and (d) show the outcome of GPR for noisy data. Whereas
optimal hyperparameter were applied in (c), subplot (d) shows the result for a higher
lenght scale l.
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3.3 Clustering with Gaussian Mixture Models

In contrast to previously introduced machine learning methods for supervised learn-
ing, clustering with Gaussian Mixture Models (GMM) [Rey09] is an unsupervised
learning approach. The task is to find for a given data set D the N predefined
clusters. A Gaussian mixture distribution can be written as in Eq. 3.45. The
mixing coefficients πi are prior probabilities for every cluster and must satisfy the
conditions in Eq. 3.46. Furthermore, the samples from a cluster are assumed to be
normal distributed with mean µi and covariance Σi, see Eq. 3.47.

p(x) =
N∑
i=1

p(k)p(x|k) =
N∑
i=1

πiN (x|µi,Σi) (3.45)

N∑
i=1

πi = 1 0 ≤ πi ≤ 1 (3.46)

N (x|µi,Σi) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)TΣi(x− µi)

)
(3.47)

The GMM can be fitted to the data by finding the parameters θ = {π,µ,Σ},
through the maximization of the log likelihood [B+06] in Eq. 3.48. It is however
not possible to find a solution in closed form due to the sum of the term inside the
logarithm in Eq. 3.48.

log p(D|π,µ,Σ) =
M∑
j=1

log

[
N∑
i=1

πiN (xj|µi,Σi)

]
(3.48)

A feasible solution for finding the maximum log likelihood wrt to the parameter
is an iterativ approach better known as the expectation-maximization algorithm
[B+06]. In the first step, the initialization step, random prior probabilities π, random
means µ and covariance Σ with non-zero entries are chosen and the log likelihood
computed. After this, the posterior probability called responsibility (Eq. 3.49) is
computed with the current parameter in the expectation step. This is seen as a soft
assignment of every observation to a cluster.

rik =
p(k)p(x|k)

p(x)
=

πkN (x|µk,Σk)
N∑
i=1

πiN (x|µi,Σi)

(3.49)
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In the maximization step, the means (Eq. 3.50a) and the covariance (Eq. 3.50b)
are reestimated with the responsibility from the previous step. Also the cluster
weights (Eq. 3.50c) are updated, where Nk (Eq. 3.50d) is the number of samples in
a cluster.

µnewk =
1

Nk

N∑
i=1

rikxi (3.50a)

Σnew
k =

1

Nk

N∑
i=1

rik(xi − µnewk )(xi − µnewk )T (3.50b)

πnewk =
Nk

N
(3.50c)

Nk =
N∑
i=1

rik (3.50d)

Last but not least, the convergence of the log likelihood or of the parameter θ =
{π,µ,Σ} is evaluated. If there is still a change of the log likelihood, the expectation
step (E-Step) and the maximization step (M-Step) are repeated.
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Chapter 4

Application of Methods on Data

The previous chapter presented the theoretical foundation of the applied machine
learning methods for regression problems in this thesis. With this knowledge, each
method was applied on the data sets introduced in chapter 2 to find the best fit of
a model of the data and subsequently a low error for new predictions.
Therefore, chapter 4.1 starts with the search for the best parametrization of the
machine learning methods to fit and predict the data while still condsidering gen-
eralization of the models on the velocity cost data set. This chapter presents the
results for every method parametrization, while the best method parameters will
be discussed in the following chapter 5. The outcome for each method with the
best parametrization in the task space is illustrated in chapter 4.2 for one trajectory
parameter as an example. However, this was done for all trajectory parameters.
In addition, chapter 4.3 shows the application of clustering with the GMM on the
torque cost data set. This step was necessary since local subsets differ from neigh-
boring subsets due to a local convergence in the optimizer for certain task space
ranges and task space parameters. It is of interest if clustering and fitting of subsets
resulted in lower errors.

4.1 Methods Parameter Determination

From chapter 3 we know that in machine learning there are parametric and non-
parametric methods. The described parametrization in this chapter differ from the
previous chapter, since this parameters are those, which were forwarded to scikit-
learn [PVG+11] to call a class with this values and apply it. The amount of param-
eters for each method differ. Furthermore there are some parameters influencing
the outcome significant more than others. Reducing the amount of possible combi-
nations of parameters for the grid-search (explained on the next page), a few less
influential parameter were kept at a constant value while varying the other parame-
ters to compare the performance regarding the accuracy and the runtime. Although
the accuracy was the driving factor for the selection of the best parametrization,
the runtime of each methods was also investigated to prevent surprising outcome.
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Grid Search For finding the best parametrization of each method regarding the
data a technique called grid-search was applied. Another possible solution to this
problem would be determining the parameters via numerical optimization. But
since the parameters for each method are either discrete or the total range for a
parameter can be restricted to certain values, grid search is a fast and simple way
to find the best parametrization. Thus a possible feasible parametrization for each
method was chosen and as many runs to fit and predict on the data as combinations
of parameters were applied. This is illustrated in Fig. 4.1 where a grid for two
possible parameters was investigated as it was the case for the SVR.

Figure 4.1: Grid search illustration for two parameters

The possible parameters of each method are introduced and the results for each
parametrization is shown on the following pages. The best result is highlighted in
red, while special cases are green. Additionaly cross-validation with 11 folds was
applied. For each method and parametrization, the average of the results from all
folds was taken to determine the mean squared error (MSE) and also the runtime.
This values are visualized in the plots.

Nearest Neighbor For the n-NN the number of neighbors for the regression was
investigated which was in the range from 1 to 10 neighbors. Where 1 neighbor is a
simple look-up table. Additionally, the outcome for different weight functions was
compared. See Fig. 4.2 for the results for a uniform weight function and Fig. 4.3 for
a distance weight function. The results for the distance weigth function are better
than those for the uniform weight function, while the runtime increases by a factor
of 10 due to the computation of the distance between neighbors. Example class
instantiation and assignings in python are as stated below:

unn = NearestNeighbor(n=3, weight=’uniform’)

dnn = NearestNeighbor(n=5, weight=’distance’)



4.1. METHODS PARAMETER DETERMINATION 33

Regression Tree The RT has one main parameter − the max. depth of the tree.
This parameter was varied between 1 and 9. Other parameters are the minumum
leaf size which was one and the minimum samples to split which was two, but this
value were kept constant. Furthermore, a RT without depth limits was applied.
This results in a look-up table with as many leafs as samples. See Fig. 4.4 for the
outcome. An example call can be seen below:

rt = DecisionTreeRegressor(max depth=5)

Polynomial Regression In the PR, a feasible regularization factor was found and
kept constant (at 0.005), while the degree of the polynomial was altered. Therefore
polynomials from degree 1 to 10 were applied. The results are shown in Fig. 4.5. The
linear regression (degree=1) completely fails in representing the underlying model
of the data.

reg = make pipeline(PolynomialFeatures(degree=5), Ridge(alpha=0.005))

Support Vector Regression For SVR there are two cases: The ε-SVR and the
ν-SVR. For the former an ε value of 0.003 was determined, while for the later a ν
value of 0.473 was determined.
However, different kernels namely a Gaussian (rbf), a linear and a polynomial and
different regularization factors (0.1, 1, 10, 100 1000) were applied for comparison,
see Fig 4.6 and Fig. 4.7. The ν-SVR performs the best with an radial basis function
kernel and a regularization factor of 1000.
Example class instantiations in python can be found below:

svr = SVR(kernel=’rbf’, degree=3, C=1000, epsilon=0.003)

nusvr = NuSVR(kernel=’rbf’, degree=3, C=1000, nu=0.473)

Gaussian Process Regression The last investigated method is the GPR. The
method was applied with a constant regression function and an absolute exponential
correlation function between two points x and x′, since it represents the underlying
model the best. Furthermore, smoother prediction can be achieved through the
usage of a nugget parameter as illustrated in Fig. 4.8.
Again, the class instantiation and assignment in python was done as stated bellow.

gpr = GaussianProcess(regr=’constant’, corr=’absolute exponential’,
nugget=3e− 2)
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Figure 4.2: MSE and prediction runtime plots for Nearest Neighbor Regression with
uniform weight function
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(b) Prediction Runtime
Figure 4.3: MSE and prediction runtime plots for Nearest Neighbor Regression with
distance weight function
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Figure 4.4: MSE and prediction runtime plots for Regression Tree
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Figure 4.5: MSE and prediction runtime plots for Linear and Polynomial Regression
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Figure 4.6: MSE and prediction runtime plots for ε-Support Vector Regression
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Figure 4.7: MSE and prediction runtime plots for ν-Support Vector Regression
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Figure 4.8: MSE and prediction runtime plots for Gaussian Process Regression
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(a) n-NN with uniform weight function
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(b) n-NN with distance weight function
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(c) Regression Tree
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(d) Polynomial Regression
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(e) ε-Support Vector Regression
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(f) ν-Support Vector Regression
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(g) Gaussian Process Regression, with
squared exponential correlation
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(h) Gaussian Process Regression, with abso-
lute exponential correlation

Figure 4.9: Prediction results for different machine learning methods in the range
of the full task space shown for one spline parameter
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4.2 Full Task Space Prediction

The application of machine learning methods on a data set involves the estimation of
a model for the underlying function for the given data. In the previous section, the
investigation of the best parametrization was performed on the minimum velocity
cost data set. This set contains 242 samples, with 2 task parameters and 192 spline
parameters. A average mean squared error and a average runtime was determined
from cross-validation with 11 folds. But what does the resulting model and conse-
quently the accuracy mean for the full task space since we only trained and tested
the method on discrete task space samples? This is the topic of this section.

The resulting best parametrization for each method from chapter 4.1 (will be dis-
cussed in chapter 5 in more details), was used to fit every introduced machine
learning method on the full minimum velocity cost data set.

The task space for the minimum velocity cost data set ranges from 0.1m to 0.79m
in ks, the stride-length and from 0.48s to 0.71s in kt, the step time. The range in
both direction was divided into 100 entities which resulted in 10000 samples for the
prediction step to cover the full task space as intended.

In Fig. 4.9 the results for one spline parameter and every machine learning method is
plotted. Here, the black dots represent the training data from the minimum velocity
cost data set, while the blue dots are the results from the prediction of every method.

In general, the machine learning methods prediction outcome can be divided into
two groups: First, there are methods that define a continuous function for the given
data set, which are usually global operating methods. And second there are meth-
ods producing local plateaus, or better a discrete output. These methods operate
usually locally.

A detailed analysis for every machine learning method is given below:

Nearest Neighbor n-NN was applied with a uniform and a distance weighting
on all n nearest neighbors from a new sample in the task space. Fig. 4.9 (a) and
Fig. 4.9 (b) show the prediction for the full task space respectively. The predictions
between training samples from the true points for both methods results in a discrete
output along the task space dimensions. The distance weighting yields a better
approximation of a function with more discrete values than the uniform weighting.
However, function approximations from both methods are not continuously differ-
entiable. Another problem for n-NN regression are samples on the boundary of the
task space. This method uses the n nearest neighbors on the boundary only from
one side, hence the predicted value is biased to those points in contrast to a point
further inside the task space, which is equally surrounded by neighbors on all sides.
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Regression Tree The RT yields local plateaus for the outcome, which represent
the average values of the samples in the leafs. Fig. 4.9 (c) illustrates the output.
This method fails for the assumption of the underlying model for samples between
known points from the training set.

Polynomial Regression The PR with a 5th order polinomial produces a rea-
sonable underlying model assumption for the given minimum velocity cost data set.
The predicted samples between given samples, as shown in Fig. 4.9 (d), are suitable
and continous.

Support Vector Regression For the SVR we have again the two case with ε-
SVR and ν-SVR. Both methods approximate the underlying function equally good
as shown in Fig. 4.9 (e) and Fig. 4.9 (f), respectively. A small difference in the
prediction from both methods is noticeable in the corner for stride-lengths bigger
than 0.55m and a step time below 0.6s, since no samples are provided from the
training set.

Gaussian Process Regression The last method is the GPR were the fitting
and prediction was done with first a squared-exponential kernel, see Fig. 4.9 (g)
and second an absolute-exponential kernel, see Fig. 4.9 (h). Again, since this
more sophisticated method assumes a correlation between two samples, the resulting
prediction for samples between the trainig data samples is a reasonable outcome.
Altough the absolute-exponetial correlation function yields better results regarding
the accuracy in the previous section, it seems to overfit the data. A reason for
this statement is the small bump for kt = 0.67s, which is modeled by the absolute-
exponential correlation.

4.3 Data Clustering

The application of methods was done on two different sets. In the previous sections,
the data set from the minimum velocity cost optimization was used were the data set
was smooth for all trajectory parameters and hence the machine learning methods
could be directly applied. The data set from the other cost function for minimizing
the torque, however, resulted only in local smooth subsets in the task space, but an
higher offset between this subsets for certain spline parameters. Therefore, a good
model from the data couldn’t be estimated at once. The solution to this problem
was to preprocess the data set with an clustering algorithm to receive n clusters and
then applying each machine learning method on every cluster subsequently.

Gaussian mixture model (GMM), as introduced in chapter 3.3, was applied on the
data to receive the clusters. Since, there are parameters were the subsets are more
complicated to separate, GMM was applied on manually chosen parameters where a
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clear distinction was possible. This resulted in better clusters than applying GMM
on the full data set. An example for such a parameter is shown in Fig. 4.10 from
different angles. In Fig. 4.11 (a) the offset from subsets along a task space dimension
is illustrated. Initially, GMM was applied to find 12 clusters, but only cluster with
more than 50 samples were chosen for the fitting step. This can be seen in 4.11 (b),
where only the top 6 clusters are shown. The empty spaces are the dropped out
smaller clusters, in a otherwise fully covered task space. A separation from the cost
value was more difficult than in the task space on specified parameters due to a low
divergence, see Fig. 4.12 and Fig. 4.13.
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Figure 4.10: Clustering with GMM, 3D Plots
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Chapter 5

Results

After the formulation of the problem statement and the introduction of the genera-
tion of the two data sets for the velocity cost function and the torque cost function
in chapter 2, the presentation of the applied machine learning methods was done
in chapter 3. The results of the task in this thesis with the problem formulation to
generalize optimal walking trajectories for a biped walking machine based on ma-
chine learning will be presented in this chapter.
First, the best parametrization of the machine learning methods for both data sets
will be presented in chapter 5.1 since the optimal parametrization for every method
depends highly on the data were the machine learning method is applied on. Sec-
ond, a short presentation of the torque cost data set clustering will be presented in
chapter 5.2 since this data set was not smooth in the full task space as the data
set from the velocity cost function. Afterwards, the preformance of the methods
regarding the accuracy and the runtime is shown in chapter 5.3 and the evaluation
regarding the resulting optimality loss and the constraint violation in chapter 5.4.
Last but not least, the predicted trajectories were applied on a robot in a simulation
environment as demonstrated in chapter 5.5.

5.1 Best Parametrization

Finding the best parametrization for every machine learning method for a given data
set was done via a grid-search since the number of method parameters was small
and often only discrete parameters present. A detailed determination was discussed
in Chapter 4 for the velocity cost data set. However, the same methodology of the
grid-search was proceeded on the torque cost data set. The best parametrization
of the used machine learning methods like n-Nearest Neighbor (n-NN), Regression
Tree (RT), Polynomial Regression (PR), ν-Support Vector Regression (ν-SVR) and
Gaussian Process Regression (GPR) can be found in Tab. 5.1 for the velocity cost
data set and in Tab. 5.2 for the torque cost data set on the next page.
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Table 5.1: Best parametrization of each method for the velocity cost data set

ML-Methods Parametrization

n-NN
neighbors n = 5
distance weight function

RT maxium depth d = 5

PR 5th order polynomial

ν-SVR
Gaussian kernel
ν = 4.73 · 10−1

C = 1 · 103

GPR
absolute exponential correlation
constant regression function
nugget = 3 · 10−2

Table 5.2: Best parametrization of each method for the torque cost data set

ML-Methods Parametrization

n-NN
neighbors n = 3
distance weight function

RT maxium depth d = 5

PR 4th order polynomial

ν-SVR
Gaussian kernel
ν = 3.0 · 10−1

C = 1 · 103

GPR
absolute exponential correlation
constant regression function
nugget = 0
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5.2 Clustering of the Torque Cost Data Set

Due to reasons described in chapter 4.3, the torque cost data set was preprocessed
with a clustering algorithm to determine the local smoother subsets for the spline
parameter values for the full task space. Although GMM with 12 components was
applied, a dexterous merge of nearby smaller clusters yielded in the end 4 big cluster
with 197, 163, 108 and 59 samples as shown in Fig. 5.1 (a) and (b), whereas distinct
clusters can be seen for the parameter in (a) it is impossible to determine the cluster
for the parameter in (b). A clear distinction along a task space dimension (stride-
length ks) of the 4 cluster for one spline parameter is shown in Fig. 5.2 (a) and a
not clear distinction for the parameter in (b).
Since the clusters are overlapping in the task space, the prediction of the spline
paramter p for new task space parameter k was done on an estimated model from
a cluster with a lower cost value.
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Figure 5.1: Clustering of two parameter from the torque cost data set with resulting
4 biggest cluster
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Figure 5.2: 2D Plot of the 4 biggest cluster for two parameter from the torque cost
data set



44 CHAPTER 5. RESULTS

52 26 17 7

training set size in samples/s

0

1

2

3

4

5

6

7

M
A

E
of

p
in

ra
d

×10−3

ν-SVR
5-NN
1-NN

PR
GPR
RT

(a) Different sampling densities in the step
time direction

20 10 6

training set size in samples/m

0.0

0.5

1.0

1.5

2.0

M
A

E
of

p
in

ra
d

×10−2

(b) Different sampling densities in the
stride-length direction

Figure 5.3: MAE for predicted spline parameters from the velocity cost data set
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Figure 5.4: MAE for predicted spline parameters from the torque cost data set
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5.3 Machine Learning Methods Performance

The underlying model for the 192 trajectory parameter was estimated with different
machine learning methods on the two data sets to evaluate the quality of the mapping
k→ p with 11 fold cross-validation. The accuracy and the runtime of the 5 machine
learning methods RT, PR, GPR, n-NN and the ν-SVR were compared against each
other. Furthermore, a look-up table in the form of a 1-NN was also applied to
compare this straight forward approach to the more advanced machine learning
methods. The mean absolute error for both data sets can be seen in Fig. 5.3 and
Fig. 5.4. The first entries for the plots in Fig. 5.3 (a) and (b) and Fig. 5.4 (a) and
(b) are results from the full set, while the following entries are reduced subsets along
the corresponding task space dimension. The runtime was estimate from an average
of 1000 predictions of a full trajectory parameter set on a Intel Core i7 CPU.

5.3.1 Velocity Cost Data Set

The velocity cost data set consists of 242 samples per parameter, resulting in a
density of 52 samples per second in the task space dimension for the step time
and with a density of 20 samples per meter in the task space dimension for the
stride-length.

Accuracy In general all methods have had an acceptable MAE for our task, while
the reduction of the sample density along the step time had a smaller influence on
the error then the subsampling of the stride-length.

Runtime The runtime of every method (in seconds) regarding the number of
samples is shown in Tab. 5.3. All methods are ordered with the fastest method at
the top.

5.3.2 Torque Cost Data Set

The torque cost data set consists of 661 samples per parameter in the full set while
after clustering the set was reduced to 523 samples in the 4 clusters combined. This
data set was denser due to the more complicated cost function and hence known fact
of the non-smooth surfaces for certain parameter. In this set there was a maximum
of 110 samples per second in the task space dimension for the step time and a
maximum of 60 samples per meter in the task space dimension for the stride-length.

Accuracy The MAE for the torque cost data set was higher than for the previous
set since the methods were directly applied on the full set without clustering. The
higher error was due to the known issue that some parameters were not smooth in
the full task space.
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Cluster Since the torque cost data set was also divided into four cluster, a model
accuracy for every method per cluster was investigated. The resulting mean squared
error in Fig. 5.5 was as expected lower through the application of every method per
cluster than the application on the full set.

Runtime The prediction runtime (in seconds) per cluster is shown in Tab. 5.4
with the same ordering of the methods as before.

Table 5.3: Runtime for the prediction of a trajectory from the velocity cost data set

ML-Methods
Samples in training set

220 110 55 28

RT 2.3 · 10−6 2.3 · 10−6 2.3 · 10−6 2.5 · 10−6

PR 1.1 · 10−5 1.1 · 10−5 1.1 · 10−5 1.0 · 10−5

GPR 6.2 · 10−5 4.1 · 10−5 3.4 · 10−5 2.6 · 10−5

n-NN 2.1 · 10−4 2.2 · 10−4 2.1 · 10−4 2.2 · 10−4

ν-SVR 2.5 · 10−3 1.6 · 10−3 1.3 · 10−3 1.0 · 10−3

Table 5.4: Runtime for the prediction of a trajectory from the torque cost data set

ML-Methods
Cluster

0 1 2 3

RT 3.0 · 10−6 5.0 · 10−6 6.0 · 10−6 1.2 · 10−5

PR 1.4 · 10−5 1.9 · 10−5 1.4 · 10−5 2.8 · 10−5

GPR 8.2 · 10−5 7.5 · 10−5 7.5 · 10−5 8.7 · 10−5

n-NN 2.1 · 10−4 2.5 · 10−4 3.5 · 10−4 6.4 · 10−4

ν-SVR 1.5 · 10−3 1.2 · 10−3 1.9 · 10−3 2.2 · 10−3
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5.4 Evaluation of the Predicted Trajectory Pa-

rameters

The evaluation of the machine learning methods presented a relative low model error
for both data sets on almost all methods. Furthermore, the trajectory parameter
prediction runtime was at least (often even more) by a factor of 10 below the tar-
geted limit of 30ms, which was chosen to be applicable in real-time tasks. But what
does this mean for the task of biped walking? This is going to be investigated in
this chapter.

First, the relative optimality loss regarding the cost value determined by one of
the two cost functions was computed for the predicted trajectories. The optimality
loss was computed relative to the cost value for the trajectory from the optimiza-
tion. Second, due to an error from the model estimation, the resulting trajectories
are analysed wrt the constraint violation. The interval width of the inequality con-
straints was used to normalize the constraint violation to be able to compare different
constraints.

The relative optimality loss and the normalized constraint violation for the velocity
cost data set is shown in Fig. 5.6 and for the torque cost data set in Fig. 5.7 in the
top row and the bottom row of the figure respectively.
Again, the first entry in every plot corresponds to the full set, while the following
entries are subsets for one of the two task space dimensions.

5.4.1 Velocity Cost Data Set

Cost Value The resulting relative optimality loss for the velocity cost data set is
for some predicted trajectory parameter ppredicted negative. One reason for this is
that the given task space paramter k are not achieved and hence a smaller or slower
step is executed.

Constraint Violation Since a conservative bounding of the constraint was chosen
in the optimization the resulting normalized constraint violations from the prediction
for all methods are within a reasonable range.

5.4.2 Torque Cost Data Set

Cost Value As with the velocity cost data set, the relative optimality loss for
the predicted trajectory parameter from the torque cost data set resulted mostly in
negative values due to the reason as mentioned before.

Constraint Violation As before, the conservative bounding of the constraints in
the optimization resulted in small normalized constraint violations.
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Figure 5.6: Evaluation of predictions from the velocity cost data set
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Figure 5.7: Evaluation of predictions from the torque cost data set
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5.5 Simulation with Predicted Parameter

The final step in the task of generalizing walking trajectories from the data sets was
the application of the predicted trajectory parameter in a simulation environment to
show the feasibility of the approach. A popular rigid-body simulation environment
among researcher in the field of robotics is OpenHRP [KHK04] which was used to
evaluate the predicted trajectory parameter. Furthermore, OpenHRP can interface
with MATLAB/Simulink to allow the application of a walking controller.

(a) t = 0s (b) t = 0.2s (c) t = 0.4s (d) t = 0.6s

Figure 5.8: Walking simulation of a biped robot in OpenHRP

A biped walker model and a custom walking controller developed at the DLR were
used to show the execution of a step for a given task space parameter k as illustrated
in Fig. 5.8. The four snapshot were taken 0.2s apart for a full step. In this example,
the right foot was the stance foot and the left one the swing foot.

The simulation shows that a feasible walking trajectory from predicted trajectory
parameter can be executed.

Transition between different steps To allow the application of non-cyclic gaits,
a transition between motion primitives was developed.

qtransition = σ(β)qa(pa, t) + [1− σ(β)] qb(pb, t) (5.1)

The transition function in Eq. 5.1 allows the transformation of the trajectory qa with
the parameter pa from one step to the walking trajectory qb with the parameter pb
of another step. This can be done during one or several steps and is determined by
the sigmoid function σ(β).





51

Chapter 6

Conclusion & Outlook

The task in this thesis, to generalize optimal walking trajectories from non-linear
optimization for a biped walking machine was achieved. This was done on two
different data sets from a velocity cost function Γq̇ and a torque cost function Γτ .
The velocity cost data set was smooth for all trajectory parameter in the full task
space. The torque cost data set was however more complex structured and some
parameter hadn’t continous regions. To solve the problem with the torque cost data
set, two additional steps were done: First, the generation of a more denser data set
and second, a preprocessing with a clustering algorithm. The resulting four clusters
were fitted individually and for cluster with overlapping regions in the task space,
the one with the lower cost value chosen for new predictions.

All machine learning methods for regression problems were accordingly parameter-
ized to fit the data as good as possible while maintaining generalization. The perfor-
mance for all methods was good on the velocity cost data set and comparably well
on the cluster of the torque cost data set. The Gaussian Proces Regression method
had the best overall performance regarding the error and runtime and hence the
resulting constraint violations. The targeted limit for the prediction time of 30ms
was achieved. This allows the prediction of several walking trajectories for different
task space parameters for the next steps.

Future work can target the generalization of walking trajectories in 3D and a biped
walker with more degrees of freedom. Additionally, since the fast prediction of
the machine learning allows the computation of several trajectories, a task planner
on a higher level can take use of this to provide robust walking for unforeseen
disturbances.
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