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Abstract 

The lithium–sulfur battery is a promising system for the future generation of 

rechargeable batteries. Its main advantages are the high theoretical capacity 

(1675 Ah kgS
−1), high energy density (2500 Wh kgS

−1), and low cost of sulfur. So 

far, the commercial application of this battery has been hindered by the reduced cycle-

life. The isolating properties of sulfur as well as the formation of polysulfides in a 

complex reaction mechanism, which is not completely understood, are mainly causes 

for battery degradation. 

This work is focused on the characterization of the Li–S battery by application of 

several characterization techniques under in situ and ex situ conditions. Using X–ray 

diffraction, the reaction of sulfur was monitored during discharge and charge, and the 

formation of nano–crystalline lithium sulfide as end product of discharge was 

identified for the first time in operando. The structural changes of sulfur and its partial 

amorphization were observed after charge and analyzed using the Rietveld method. 

Furthermore, electrochemical impedance spectroscopy was applied during cycling to 

measure the impedance characteristics of the cell. For this, an electrical equivalent 

circuit was designed to describe specific physical and electrochemical process. Thus, 

the resistance of the electrolyte, the charge transfer resistance in the electrodes, as 

well as the reaction and dissolution of isolating products were simulated and 

quantified. The polysulfides, as well as S8 and Li2S, were investigated in an organic 

electrolyte using UV–vis spectroscopy. Here, the species S6
2− and S3

•− were identified 

and semi–quantified at several states of discharge. Further characterization methods, 

like scanning electron microscopy, atomic force microscopy, and thermal analysis 

coupled with mass spectroscopy were used to understand the degradation processes 

that caused morphological changes in the cathode. 

The output obtained through the application of the different characterization 

techniques was compared with a physico–chemical model in order to obtain a deeper 

knowledge in the reaction mechanisms occurring in the battery. Moreover, through 

further developments on the fabrication process of the battery, main factors 

influencing the battery capacity were identified. Thereby, the capacity of the battery 

was increased from 275 Ah kgS
−1 to 800 Ah kgS

−1 (after 50 cycles, at a discharge rate 

of 0.18 C). 



viii  │ 

This thesis provides new insights into the electrochemical and degradation processes 

of Li–S batteries and will hopefully contribute to enhance the energy density of future 

Li–S batteries. 



Kurzfassung 

Die Lithium–Schwefel-Batterie (Li–S) ist ein vielversprechendes Energiespeicher-

system der nächsten Generation von Akkumulatoren. Wesentliche Vorteile dieser 

Batterien sind die hohe theoretische Kapazität (1675 Ah kg–1), die hohe Energiedichte 

(2500 Wh kg–1) und die geringen Kosten des Schwefels. Bis heute ist eine 

kommerzielle Anwendung aufgrund der starken Degradation der Batterien bei der 

Zyklisierung nicht erreicht. Grund hierfür sind die mangelnde Leitfähigkeit der 

Aktivmaterialien sowie die komplexen elektrochemischen Prozesse mit der Bildung 

von vielen Zwischenprodukten, welche bislang noch nicht vollständig verstanden 

sind.  

Der Fokus dieser Arbeit liegt auf der Charakterisierung von Li–S-Batterien durch 

Anwendung unterschiedlicher in situ- und ex situ- Techniken. Mithilfe der Röntgen-

diffraktometrie konnten die Reaktionsvorgänge von Schwefel während der Entladung 

und Ladung beobachtet werden. Dabei konnte erstmalig in operando die Bildung von 

nanokristallinem Lithiumsulfid als Endprodukt der Entladung identifiziert werden. 

Nach der Ladung der Batterien konnten strukturelle Veränderungen und teilweise eine 

Amorphisierung des Schwefels festgestellt und mittels Rietveld–Analyse quantifiziert 

werden. Durch die Anwendung der elektrochemischen Impedanzspektroskopie 

konnten die während des Zyklierens ablaufenden Zellprozesse untersucht werden. 

Hierzu wurde ein elektrisches Ersatzschaltbild entwickelt, um die physikalischen und 

elektrochemischen Prozesse zu beschreiben. Dafür wurde der Widerstand des 

Ladungsdurchtritts der Elektroden, der Widerstand des Elektrolyten sowie die Bildung 

und Auflösung der isolierenden Produkte als einzelne Impedanzbeiträge simuliert und 

quantifiziert. Die sich bildenden Polysulfide beim Entladevorgang sowie die 

Endprodukte S8 und Li2S wurden mittels UV–vis–Spektroskopie unter Ar–

Atmosphäre untersucht. Hierbei wurden die Spezies S6
2– und S3

•– bei 

unterschiedlichen Entladungstiefe semi–quantitativ analysiert. Darüber hinaus wurden 

die Degradationsprozesse, die die morphologischen Veränderungen in der Kathode 

verursachen mittels Rasterelektronenmikroskopie, Rasterkraftmikroskopie und 

thermogravimetrischen Methoden (DTA–MS) untersucht.  



x  │ 

Um ein tieferes Verständnis der in der Batterie ablaufenden Reaktionsmechanismen 

zu erhalten, wurden die experimentellen Charakterisierungsergebnisse mit einem 

physikalisch–chemischen Modell verglichen. Durch die Weiterentwicklung des 

Herstellungsverfahrens konnten wichtige Faktoren für die Steigerung der spezifischen 

Kapazität identifiziert werden. Dabei konnte die Kapazität der Batterie von ca. 

275 Ah kgS
–1 auf 800 Ah kgS

–1 erhöht werden (nach 50 Zyklen, Entladungsrate: 

0,18 C). 

Diese Arbeit liefert neue Einblicke in die elektrochemischen Vorgänge sowie in den 

Degradationsmechanismus von Li–S-Batterien und soll dazu beitragen die neuartigen 

Sekundärbatterien weiterzuentwickeln.  
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1 Introduction 

1.1 Motivation  

Electrical energy storage systems are becoming important to support renewable 

energy generation and electro–mobility. They should help to compensate the 

discrepancy of demand and supply of electricity produced by e.g. solar or wind based 

electrical generation. Furthermore, the electrification in the transportation sector is 

crucial for future mobility to reduce the dependence on oil and minimize emissions 

[1]. Current lithium–ion batteries do not meet the expectation of tomorrow´s energy 

storage system. New batteries with significantly higher energy density and long cycle 

life would have significant benefits for mobile and stationary storage applications.  

In 1962, Herbet and Ulam [2] introduced the concept of using elemental sulfur as a 

positive electrode in alkali–metal sulfur batteries. Especially in the last ten years, the 

investigation of Na–S and Li–S batteries has gained considerable interest. Sulfur has 

many advantageous characteristics such as low cost and toxicity, natural abundance, 

and low equivalent weight. Moreover, Li–S batteries have a high theoretical capacity 

(1675 Ah kgS
–1) and energy density (2500 Wh kgLi2S

–1, equivalent to 2800 Wh L–1). 

They are expected to provide 2–4 times higher specific energy than conventional 

lithium–ion batteries and for this reason, they are considered great candidates as 

future energy storage systems.  

Figure 1.1 presents a comparison of the main battery systems in regards to the specific 

energy, mileage, and cost; this is based on practical assumptions [3]. Li–S batteries 

can provide significantly increased energy density at a lower cost. Considering its use 

in electric cars, the energy density would be sufficient to deliver a driving range of 

more than 400 km, scaled to the driving range of the Nissan Leaf. For Li–O2
 batteries 

the theoretical energy density is much higher than that of the current batteries and of 

the one under development. Nevertheless, these practical values are questionable 

because of the difficult estimation due to the existence of few realistic prototypes.   

The main problems of Li–S batteries are low cyclability and high self–degradation. In 

order to understand these problems and improve the battery, it is important to gain a 

deeper knowledge of the electrochemical and physical processes that occur during 
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charge and discharge. Hence, this work is motivated by the necessity of a deeper 

understanding of the processes occurring in Li–S batteries. 

 
Figure 1.1: Battery systems: comparison of practical specific energy, mileage and cost 
[3]. The mileage are based on the minimum  specific energy for each system and scaled 
to the specific energy of Li–ion cells (140 Wh kg–1) and driving range of the Nissan Leaf 
(160 km) [4]. The cost for technologies under development are targets of the US 
Advanced Battery Consortium [5]. 

1.2 Organization of the thesis 

This work aims to understand the critical issues associated with the electrochemical 

processes occurring in Li–S batteries, establishing methods and procedures necessary 

to investigate this system. This has been reflected in the development of the research 

throughout the thesis, as outlined in Figure 1.2. This provides a schematic overview 

on the focus and the interconnections of the chapters.  

To begin with, a general background about Li–S batteries and an overview of the most 

relevant research done on this field in the last decades is provided in Chapter 2. The 

working principles of the characterization techniques used in this work are also 

described here. The description of the experimental work, as well as the results and 

discussion are presented in chapters 3 to 7. Chapter 3 begins with the investigations 

into the preparation of the positive electrode and the influence of the fabrication steps 

on the cycling performance of the battery. Besides, it shows the effect of LiNO3 as 
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electrolyte additive and the improvements on the cyclability. In chapter 4 the 

application of in situ X–ray diffraction (XRD) on the study of the products of 

discharge and charge (sulfur and lithium sulfide) are presented [6]. Furthermore, using 

electrochemical impedance spectroscopy (EIS), physical and chemical processes can 

be monitored during cycling of the battery and the impedance contribution can be 

determined [7]. The application of this method on Li–S batteries is covered in chapter 

5.  

 
Figure 1.2: Organization of the thesis, main focus and interconnection of the chapters. 

The intermediate products of the batteries are dissolved in the electrolyte and are 

extremely reactive in air. Not many techniques are applicable for its detection. In this 

work, ultraviolet–visible (UV–vis) spectroscopy was chosen for the study of these 

species and this is shown in chapter 6 [8]. Furthermore, chapter 7 describes the 

degradation of the battery in relation with the morphological and structural changes in 

the cathode. This was investigated using atomic force microscopy (AFM), scanning 
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electron microscopy (SEM) and the combination of thermal analysis (TG/DSC) and 

mass spectroscopy (MS). A physico–chemical model for Li–S batteries is presented in 

chapter 8 and the results obtained using experimental analytical techniques are 

compared with the simulations in order to obtain a deeper knowledge in the reaction 

mechanisms occurring in the battery. Finally, the summary of this thesis with the 

conclusions and recommendations for future work is described in chapter 9. 

 

 



2 Fundamentals 

This chapter introduces Li–S batteries, describing the electrochemistry of the system 

and the main degradation problems. In addition, a literature review summarizes the 

efforts of the last years in improving the cycling stability through the use of new 

materials and concepts for electrodes and electrolytes. Afterwards, the main 

characterization techniques used in this work are explained.  

2.1 Lithium–sulfur batteries 

2.1.1 Operating principles 

The most investigated Li–S battery system consists of a lithium anode, an organic 

liquid electrolyte containing a lithium salt, a porous polymeric membrane, and a sulfur 

composite cathode (Figure 2.1). A high electrical conductive material is necessary in 

the cathode to be in contact with the low conductor sulfur. For this purpose, carbon 

black, graphite or carbon nanotubes are normally chosen.  

7,  
Figure 2.1: Illustration of the Li–S battery components. 

The electrical energy is generated by several redox reactions (2.6–2.12). During 

discharge, lithium (anode) is oxidized to Li+ ion at the anode/electrolyte interface and 

the electron is transferred to the outer circuit. Sulfur is reduced at the cathode side 
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where electrons are added. While the electrolyte provides Li+ ions to allow the 

electrons to keep flowing and the reactions to continue; the separator allows ions to 

flow between electrons, while isolating them electrically. Overall, the electrochemical 

reaction can be described with the followings reactions: 

The discharge and charge profiles of the Li–S battery, considering complete reaction 

at room temperature, are schematically shown in Figure 2.2. The discharge curve 

presents two distinguishable stages or plateaus, one steep and short at high potential 

between 2.5 and 2.2 V, and other relative flat and longer at about 2 V. The reaction of 

sulfur to high order polysulfides is expected in the first plateau while in the second 

plateau the reaction to form Li2S occurs. When charging, reverse reactions follows 

and sulfur is formed at the end of charge at 2.5 V. 

 
Figure 2.2: Schematic discharge (a) and charge (b) profile expected for a fully cycled 
Li–S battery. 

The enthalpy of formation of Li2S, ΔHf
0 (at 298 K) is –106.5 kcal mol–1[9]. The 

specific capacity of sulfur is calculated in equation (2.4), where ne is the number of 

electrons per atom of sulfur (2), F the Faraday constant (96485 C), and Ms the molar 

mass of sulfur (32 g mol–1).   
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Oxidation:  S8(s) +16 e− → 8S2−        (2.1)

Reduction:  Li → Li+ + e−       (2.2)

S8(s) +16 Li ⇄ 8 Li2S(s)  ; E = 2.1 V   (2.3)
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Specific capacity	ൌ
݊௘·F
MS

ሺAs	g–1ሻ		ൌ
1000·݊௘·F
3600·Ms

ሺAh	kg–1ሻ ൌ	1675	Ah	kg–1								 (2.4)

Based on the discharge profile, the average discharge potential (E) is at around 2.1 V 

vs. Li+ / Li (2.5) and the specific energy can be calculated as follows: 

Energy	density		ൌ	E·
݊௘·F
Ms

ሺAs	g–1ሻ ൌE·
1000·݊௘·F
3600·MLi2S

ሺWh	kg–1ሻ ൌ	2445	Wh	kg–1				 (2.5)

After cell assembling (charged cell) sulfur exists mostly in the orthorhombic 

crystalline form as cyclo–S8 and a low percentage is dissolved in the electrolyte. 

During discharge, the partially dissolved sulfur reduces to polysulfide ions with 

progressively lower states of oxidation, according to the electrochemical reactions 

(2.6)–(2.13). As the discharge proceeds, the dissolved S8(diss) in the electrolyte is 

consumed by the electrochemical reaction (2.8), the concentration of S8(diss) decreases, 

enhancing further dissolution of crystalline sulfur into the liquid phase. While Li2S 

precipitates during discharge, the intermediate polysulfides are soluble in the 

electrolyte. 

Here, a simple reaction mechanism was presented. Nevertheless, there are still many 

discussions about the reactions steps occurring during cycling. Different hypothesis 

were presented in the last years which includes often several additional reactions and 

radical intermediates. Regarding the solid end product of reactions, some authors 

mention the formation of solid Li2S2(s), besides Li2S(s). However, in the phase diagram 

of Li–S only Li2S is shown as stable phase [10] and Li2S2(s) may exist as metastable 

solid compound [10,11]. The main mechanisms of reactions proposed in the last years 

2Li  ⇄ 2Li+ +  2e− (2.6)

S8(s) ⇄  S8(diss)  (2.7)

S8(diss) +2 e− ⇄ + S8
2−  (2.8) 

3/2 S8
2−+ e−  ⇄  2S6

2− (2.9)

S6
2− + e− ⇄  3/2 S4

2−  (2.10) 

1/2 S4
2− + e−  ⇄ S2

2− (2.11)

1/2 S2
2− + e−  ⇄  S2− (2.12)

2Li+ + S2− ⇄ Li2S(s) ↓ (2.13)
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for the Li–S system [12–17] are summarized in additional information (section 

11.4.1).  

2.1.2 Main problems and challenges 

In spite of the intensive research of the last decades, Li–S batteries are still not 

commercially available. This is explained by the numerous limitations of the system, 

which are basically related to the isolating properties of the reaction products, the 

dissolution of the intermediates of reaction, and the high reactivity of the lithium 

anode. These are explained as follows: 

▪ Sulfur, the product of charge, is an electronic insulator and no reaction is 

possible without the use of an additive electronic conductor. High carbon 

content increases electrical conductivity; however, it also reduces the energy 

density. Furthermore, sulfur is partially soluble in several organic solvents used 

in Li–S batteries. It diffuses through the electrolyte, reaches the anode surface, 

which is in most all the cases lithium metal. Here, sulfur can reacts chemically 

with the unprotected surface reducing to polysulfides and corroding lithium. 

Moreover, the morphology of the cathode can change upon cycling due to the 

changes on state of aggregation, and the formerly well–dispersed sulfur can 

aggregate and become isolated for further reaction. 

▪ The dissolution of polysulfides (Li2Sx with 2 ≤ x ≤ 8) is also one of the causes 

of degradation. Polysulfide can diffuse to the anode and react directly with 

lithium metal and be reduced to lower order polysulfides. This is called shuttle 

mechanism and leads to irreversible loss of sulfur in the battery, corrosion of 

lithium metal, self–discharge, and poor Coulombic efficiency [18,19]. In the 

extreme case, the polysulfides react with Li to form Li2S, which deposits on the 

negative electrode, partially blocking it for further reactions [20]. Furthermore, 

the dissolution of lithium polysulfides causes an increase in viscosity of the 

electrolyte and the concentration can rise up to 10 mol L–1, decreasing the ion 

mobility between electrodes [21].  

▪ Lithium sulfide, the product of discharge, is also non–conductive, precipitates 

during discharge and is almost insoluble in organic electrolytes. It generates 

inactive areas over the electrode which reduces the capacity of the battery. 

Volume changes occurs in the cathode during cycling due to the density 

difference between sulfur (α–phase, 2.07 g cm–3) and Li2S (1.66 g cm–3) [22]. 

Thus, sulfur composites electrodes are expanded during discharge and 
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contracted during charge. Thickness change of the electrode of about 22% was 

measured by Paris and collegues [23]. This can lead to failure of batteries 

caused by crack formation in the cathode matrix. 

▪ Lithium metal is the standard material in Li–S batteries. It is extremely reactive 

in air and water, this leads to severe security problems for example in mobile 

applications. Lithium can form dendrites during cycling, which can conduct to 

short circuits in the battery. Lithium reacts also with impurities present in the 

electrolyte and generates a passivation layer between anode and electrolyte 

[24]. If the ion conductivity of this layer is not high enough, it can block the 

electrode, and the battery fails. Moreover, if this layer is continuously formed 

during cycling, it consumes the anode material, which will not be available 

anymore for further reactions. 

▪ Decomposition of electrolyte occurs by reaction of polysufides with several 

common electrolyte solvents: esters, carbonates and phosphates [25]. 

Conventional lithium salts such as lithium hexafluorophosphate (LiPF6), 

lithium tetrafluoroborate (LiBF4), lithium bisoxalatoborate (LiBOB) and 

lithium difluoro(oxalato)borate (LiBF2C2O4) can also react with polysulfides 

producing LiF.  

2.1.3 State of art 

In the last two decades, researchers have been investigating new concepts for Li–S 

batteries in order to overcome the limitations listed above. In the following 

paragraphs, the most important approaches related with improvements on the cathode, 

electrolyte and anode are presented.  

Cathode materials 

Most attempts to improve the electrochemical performance of Li–S batteries have 

been focused on the positive electrode. Due to the low electrical conductivity of 

sulfur, the incorporation of a conductive material in the cathode of Li–S batteries is 

one of the main issues related to the fabrication of the electrode. Different strategies 

were developed associated to the selection of the conductive material and the method 

of incorporating sulfur in the composite. Carbon black [19,23,26–31], active carbon 

[32,33] carbon nanotubes [26], and graphene [34,35] are common conductive 

materials applied in Li–S batteries. The sulfur composite is prepared by mechanical 

mixing/milling of both components, by melting or sublimation of sulfur, or by in situ 
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reaction of sulfur. These last strategies facilitate the incorporation of sulfur in nano 

materials. The incorporation of sulfur in a nano–porous conductive matrix were first 

presented by Wang and coworkers [32,33]. The pore size was around 2.5 nm and 

resulted in batteries with a reversible capacity of 400 Ah kgS
–1 (current density: 

0.3 mA cm–2, max. 25 cycles). Ji and coworkers [20] obtained better cyclability with 

the utilization of high order meso–porous carbon; 6.5 nm diameter carbon tubes 

separated by 3–4 nm wide channel voids. This configuration should help to trap the 

polysulfides and facilitate the conduction of ions and electrons in the matrix. 

Reversible capacity of 1005 Ah gS
–1 was achieved (current density: 0.37 mA cm–2, 

max. 20 cycles). Further attempts were made using the same approach to encapsulate 

sulfur in an conductive matrix , among others: [36–39]. 

Li–S batteries fabricated by Wang and coworkers [40] achieved discharge capacities 

of 800 Ah kgS
–1 up to 400 cycles at a discharge rate of 0.2 C. They created hollow 

carbonized polypyrolle spheres of around 450 nm diameter, in which melted sulfur 

was embedded. High cycling performance until now were demonstrated by Seh and 

colleagues [41]. They generated a TiO2 yolk shell with internal void to encapsulate 

sulfur and retain intermediate products. This configuration showed capacity retention 

of 67% after 1000 cycles.  

The binder plays also an important role in creating a good electric network structure 

and maintaining the cathode morphology during cycling. Polyethylene oxide (PEO) 

and polyvinylidene fluoride (PVDF) are often chosen as binders for Li–S batteries. 

Because of the poor adhesion of PEO [42] and the oft used toxic solvent N–methyl–2–

pyrrolidone (NMP) for PVDF, alternative binders have been tested in the last years. 

Some of these are gelatin [28,43,44], Nafion® [45] and also conductive polymers 

such as poly(3,4)–ethylenedioxythiophene (PEDOT) [46]. Binder free electrodes, with 

moderate capacity retention, have been also investigated recently to avoid the use of 

solvents in the industrial fabrication [47–50]. 

Other approach to retain the active material during cycling is the use of protective 

layers. Polyaniline [51], graphene nano–sheets [52–54], carbon fiber cloth [48], 

Nafion® [55] are some of the materials used to coat the surface of the cathode. High 

capacity retention was achieved by a cell with an interlayer consisting of reduced 

graphene oxide (rGO) and CB, showing an initial discharge capacity of 1260 Ah kgS
–1 

and 895 Ah kgS
–1 after 100 cycles [54]. When considering the use of interlayers, it is 

important to calculate the full cell capacity, because the application of interlayers 
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normally involved an increase of the total weight of the cell while lowering its 

capacity.  

Electrolyte 

High ionic conductivity ( 10–4 S cm–1), electrochemical stability, and safety are the 

most important characteristics required in the electrolyte [56]. A lower electro-

chemical stability window (ESW) is required for Li–S batteries compared with Li–ion 

batteries, 2.5 V vs. 4 V. As it was already described, polysulfides dissolve in 

conventional organic electrolytes, generating a chemical shuttle. In order to avoid this, 

the use of additives, as well as the substitution of conventional organic electrolytes by 

polymer electrolytes or ionic liquid (IL) based electrolytes, has been implemented 

during the last decade.   

A common liquid electrolyte for Li–S batteries is a binary mixture, normally 1:1 (v/v) 

of 1,3–dioxolane (DOL) and 1,2–dimethoxyethane (DME) [50,57–60] doped with 1M 

lithium bis(tri–fluoromethanesulfonyl)imide (Li[N(SO2CF3)2], LiTFSI). Moreover, 

glycol ethers (glymes, Gn) such as diglyme, triglyme, and specially tetraglyme 

(TEGDME) has also been applied as a single solvent [40,61–63], or in mixtures with 

DOL [64–66] or IL [67]. The mixture of electrolytes, like TEGDME/DOL [68] or 

DOL/DME [69], enhances the ion transportation, lowers the viscosity, and improves 

the wettability of the electrode [68,69].  

The utilization of solid electrolytes is attractive mainly due to safety reasons and the 

better control of polysulfide dissolution, contrary to flammable organic solvents. 

Batteries based on PEO electrolytes show limitation in operation above 70 °C to avoid 

the crystallization of polymer, which induces low ionic conductivity [70]. Alternative 

gel polymer electrolytes (GPEs) can be used [30,33,56,71,72]. Usually, Li–GPE–S 

cells suffer from capacity fading due to the poor liquid electrolyte retention of the 

membrane. High performance was achieved by using a functional poly(methyl–

methacrylate) containing inorganic trimethoxysilane domains synthesized and blended 

with poly(vinylidenefluoride–co–hexafluoropropylene) [73]. The capacity retention 

obtained was around 88% after 100 cycles (1050 Ah kgS
–1). 

ILs have been used to replace liquid electrolytes due to the following advantages: 

non–volatility, non–flammability, large ESW, and large solubility power [56]. 

Drawbacks are their high viscosity, which reduces the ion mobility, and the high 

material costs. The application of ILs in Li–S started in 2006 [74] and their 

investigation continues until now [75–77]. Bis(trifluoromethan–sulfonyl)imide/amide 
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[TFSI/TFSA] is often used as an anion, while some examples of cations are 1–butyl–

3methylimidaolium [BMIM], 1–ethyhl–3methylpyrrolidinium [PYR14], and 1–butyl–

1–methylpiperidinium [PiP14] [78–80]. Among the IL–based electrolytes, low 

viscosity TFSA–based ILs reach high capacity (around 700 Ah kgS
–1 after 50 cycles) 

and high Coulombic efficiency.  

Anode materials 

Lithium is a suitable anode material because of its light weight and low standard 

reduction potential. Nevertheless, it remains as the main safety problem for 

application of Li–S batteries in mobile applications due to its high reactivity and the 

formation of dendrites. New concepts of Li–S batteries must be developed for 

addressing the safety concerns of metallic Li anodes. In order to replace the anode by 

an intercalation material, sulfur must be replaced by its lithiated counterpart. By 

starting with Li2S as active material in the cathode [81–85], the metallic lithium can 

be replaced by a silicon, tin or graphite anode, where Li can be intercalated. 

Moreover, the stability of the cathode may be enhanced using Li2S as starting active 

material because further expansion of the cathode is avoided. Nevertheless, Li2S has 

also a low electrical conductivity and has the additional disadvantage that it reacts 

extremely fast in air atmosphere, and the fabrication of such cathodes must be carried 

out under Ar–atmosphere. Discharge capacities of around 300 Ah kgS
–1 were 

presented using cathodes made of micro–sized carbon–Li2S composite [86]. Higher 

capacity was achieved combining this electrode with a solid electrolyte [87]. Pre–

lithiated sulfur composite as a cathode and graphite as an anode have been also 

proposed by He and coworkers [23]. This type of cathode was also tested with a gel 

electrolyte and a Sn–C–Li composite anode with moderate capacities [82]. Si 

nanowire [81], Li–Al [88], and Li2,6BMg0,05 [89] were also investigated as anode 

materials. Furthermore, Visco and colleagues proposed the use of Li–conducting 

ceramic electrolytes to protect lithium electrodes [90]. All solid state batteries were 

fabricated: In/Li2S–P2S5 and glass–ceramic/Li2S–Cu showed an initial capacity of 

about 490 Ah kg−1 [91].  

Magnesium is also one of the most attractive anode materials for sulfur cathodes. This 

is abundant in the earth´s crust and also safer than lithium, because no dendrite 

formation occurs. Mg–S batteries have a higher theoretical capacity (3200 Wh L–1) 

than Li–S batteries; this is based on the two–electron conversion reaction: Mg2+ + S + 

2e– ↔ MgS [92]. Currently, the main research is focused in finding an appropriate 
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electrolyte [93–95]. Recently, a simple aproach to synthesis electrolyte solutions for 

recheargable magnesium batteries consisted of binuclear magnesium aluminate 

complexes was presented by Zhao-Karger et. al.[96]. 

A new concept was presented recently by Duan and colleagues [97]. They fabricated a 

sulfur/lithium–ion battery that consists of a lithium/Sn–C composite anode, a carbyne 

polysulfide cathode, and a carbonic ester electrolyte. The battery delivers a reversible 

capacity of 500 Ah kgS
−1 after 50 cycles at a current density of 200 A kgS

−1.  

These new concepts developed to replace the “classical Li–S” system, which 

substitute the lithium anode by safer materials, define a trend for reaching a sulfur 

battery with real perspective in the industrial fabrication and its application in a wide 

consumer market.  

2.1.4 Importance of characterization 

The development of Li–S cells requires a deeper understanding of the electrochemical 

processes. Changes of composition and structure in the electrodes, as well as the 

processes occurring in the interface electrode/electrolyte during cycling are very 

complex. Characterization studies must be carried out to create a robust basis of 

fundamental knowledge that allows the generation of new ideas to improve this 

system. In the next section the basic principles of the main characterization techniques 

used in this work are presented. The application of these techniques on the Li–S 

system will be described in chapters 4–7. 

2.2 X–ray diffraction (XRD) 

XRD is an important technique for the quantitative and qualitative investigation of 

crystalline materials. This technique has been intensively applied in the last decades 

for the investigation of structural changes occurring in batteries. Thank to modern X–

ray diffractometers, diffractogramms can be taken in few minutes; allowing, with a 

proper experimental layout, the investigation of electrodes materials during cycling 

(in situ/operando).  

2.2.1 Generation of X–rays and its interaction with materials 

X–rays are electromagnetic waves with a wavelength between 10−3 and 10−1 nm and a 

technical energy interval of 3‒500 keV. Their use allows the investigation of 

crystalline materials since their wavelengths are lower than the atomic distance in the 
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lattice structure (~1 Å). In order to produce X–rays,  a tungsten filament (the cathode) 

is heated at high temperature. Electrons are emitted and accelerated in an electric field 

located between the cathode and a copper or cobalt anode. The X–rays are produced 

in the focal spot of the anode. Two spectra are obtained: the bremsspectrum and the 

characteristic spectrum. The first one is produced by the deceleration of the electrons 

in the electrical field of the atoms in the anode. The atoms of the anode material are 

ionized in the most internal shells by the electrons produced in the cathode. Then a 

radiation of quantum energy occurs when an electron jumps from an external orbital 

into the free place of an internal orbital with lower energy level. The quantum energy 

differences are characteristic for each element and provide a discontinuous 

characteristic spectrum (Figure 2.3 (a)). Three characteristics lines are emitted: Kα1, 

Kα2 and Kβ. For standard XRD measurement the characteristic line Kα1 is used. 

 
Figure 2.3: (a) Schematic representation of the spectrum emitted by an X–ray tube: the 
smooth continuous curve is due to bremsstrahlung and the spikes are characteristic k 
lines. (b) Elastic scattering of X–ray in the lattice of a crystalline solid.  

To obtain monochromatic radiation for the measurements, the characteristic lines Kα2 

and Kβ have to be eliminated or reduced. The elimination of the Kβ line as well as the 

parallelization of K1/K2 can be done by using a Göbel mirror. A thin monocrystal, as 

monocromator and slit apertures can be applied to cut out lines K2 and K. The 

monocrystal is set in a position where the Bragg`s law applied only to Kα1; 

consequently, other wavelengths are eliminated. A characteristic Cu K1 radiation is 

obtained at the end of this process [98]. When a material is radiated by X–rays; the 

energy and intensity of the radiation decrease and the direction of propagation 
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changes. For crystalline or long range order materials, the incident radiation is 

diffracted, when the wavelength  multiplied by an integer n is equal to 2d sin  

(Bragg´s reflection law: n = 2d·sin), where d is the distance between the planes and 

 the angle between the incident ray and the scattering planes (Figure 2.3 (b)). The 

reflected X–rays are detected at several  and they are represented in diffractograms, 

in which the intensity is plotted versus 2. By analyzing the diffractograms, the 

distribution of lattice plane in the crystal can be predicted and the properties of the 

crystal structure can be obtained [99]. 

The main information that can be obtained from a XRD analysis is related to: 

▪ Identification of crystalline phase: the space group and unit cell of the crystal 

structure can be determined by analyzing the peak position and peak intensity 

of the sample.  

▪ Crystallinity: sharp peaks in the diffractogram are related to the crystallinity of 

the phases. Amorphous phase are present as broad bands. The crystallinity of 

the sample can be calculated by comparing the area under the peaks and bands, 

which is proportional to the volume of the crystalline and amorphous volume 

respectively. 

▪ Crystallite size: the width of the peaks becomes larger when the crystalline size 

decreases. The average size of crystalline primary particles (τ) can be 

calculated by the Scherrer equation: τ = k/Bcos, where k is the shape 

function and B is the full width of the peak at half maximum. Modern 

refinement programs allow calculating the crystallite size by the use of 

mathematical refinements. 

▪ Orientation of particles in a sample: preferred orientations of a phase in a 

sample are related to the relation between the intensity of the hkl–peaks. 

A refinement method must be applied when quantitative analysis of a diffractogram is 

desired. A short review of the structure refinement method developed by the physician 

Hugo Rietveld is described below [100,101]. 

2.2.2 Rietveld–Method 

The Rietveld method, firstly implemented to analyze neutron diffractograms, is 

frequently applied to evaluate XRD diffractograms. The advantage of this method is 

that employs directly the profile intensities instead of the integrated intensity; 
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considering, in this way, each intensity–point of the diffractogram. First, the 

diffractogram is indexed, the Miller indices are correlated to observed reflexes, and 

the lattice parameters are calculated. Thus, indexing of a diffractogram can be very 

complicated, when some reflexes overlap. The approach of this method is basically 

the use of analytical profile´s functions and least squares algorithm, in which the 

theoretical line profile is refined with the measured profile. A function M compares 

the measured intensity yio with the calculated intensity yic from the structural model 

(2.14). This function is minimized with respect to the profile parameter wi= σi
–2 [101], 

where σi is the standard deviation of yi. 

Mൌ෍wi

i

ሺyio–yicሻ2	 (2.14)

The observed intensity is hence the sum of the contributions of all the Bragg–reflexes 

k in the position i and the background yb. Here, s is a scale factor; mk, the multiplicity 

factor; Lk, the Lorentz polarization factor; Fk, the structure factor; G, the profile 

function of the reflex k; i position of the observed intensity i; and k, the calculated 

position of reflex k. 

yic	ൌ	s෍mkLk|Fk|2	G൫2θi–2θk൯
k

൅yb (2.15)

The least–squares refinement is applied by a computer program using approximate 

values for the first refinement. Subsequent refinement is carried out until a certain 

convergence criterion is achieved. Some parameters can be kept constant during 

refinement, and constraints can be introduced as well between them. The progress and 

quality of a Rietveld refinement, i.e. the minimization of the function M, is evaluated 

by a “residue” parameter, calculating also the standard deviation for each refined 

parameter [102]. It is important to clarify that this “residue” parameter describe only 

how good is the agreement between observed and calculated intensities; however, it 

does not state if the values calculated are physical possible or not. The weighted 

profile of the “residue” parameter (Rwp) is described in (2.16), where i = yio – yic. 

Rwpൌ ൥෍ሺwi∆i
2ሻ

i

/෍ሺwi

i

yioሻ2൩

1/2

(2.16)

The principal interest in applying the Rietveld analysis is to obtain physical 

parameters of the structure like lattice constant, atom positions, and phase 
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composition, in case of mixtures. One of the main issues related to this method is 

finding a suitable profile functions and background curve. Additionally, the shape of 

the reflex is influenced by instrumental factors (e. g. intensity distribution of the X–

ray source, the dimension of the slit filter, etc.) and by sample properties, like 

crystallite size, lattice defect, and strains. Each of these factors requires a function that 

describes the intensity distribution of each reflex. Basically, the profile of the reflex 

function (G) can be described as a convolution of the instrumental factors (If) and the 

sample (P), this means G = PIf. The emission profile is then described by the 

following parameters: area under the emission profile line, wavelength of the emission 

profile (in Å), and the Lorentzian and Gaussian half width of the emission profile. 

Generally, the instrument function is represented by a Lorentzian function, while the 

sample contribution using a Gaussian (Table 1). Voigt functions [103,104] are applied 

successfully for reflex profiles in which the particle size and strain are studied. An 

approximation of this function, carried out using Rietveld programs, results in a 

Pseudo–Voigt function (PVUA). For asymmetric peaks split functions, such as Split–

Pearson and Split–Pseudo functions, are often used. They allow the fitting of reflexes 

with asymmetric profiles [105]. 

Table 1: Unit area peak types for the Gaussian, Lorentzian and Pseudo Voigt 
symmetric functions [105]. fwhm is the full width at half maximum, x = 2 − k, and : 
mixing parameter. 

Profile function Definition 

Gaussian, GUA(x) GUAሺxሻൌ ቀ
g1

fwhm
ቁ expቆ

–g2x2

fwhm2ቇ 		g1ൌ2ඨ
Ln	ሺ2ሻ
π

	;			g2ൌLn	ሺ2ሻ

Lorentzian, LUA(x) ܮ௎஺ሺݔሻ ൌ ൬
2

ߨ ݄݉ݓ݂
൰ቆ
1 ൅ ଶݔ4

ଶቇ݄݉ݓ݂
ିଵ

Pseudo–Voigt, 
PVUA(x) 

ܲ ௎ܸ஺ሺݔሻ ൌ ሻ൅ሺ1ݔ௎஺ሺܮߟ െ ߟ ሻሻݔ௎஺ሺܩ

2.3 Electrochemical Impedance Spectroscopy (EIS) 

EIS has become one of the most powerful techniques for investigating processes 

occurring in electrochemical power sources. An important advantage of this method is 
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the capability to characterize and identify in a single measurement, without external 

influences, different physical or chemical steps taking place in a complex system. 

2.3.1 The transfer function: impedance 

The impedance spectroscopy is based on the classical method of the Transfer Function 

(TF). If a system is perturbed by a sinusoidal wave input X(o), it results in a 

sinusoidal output signal Y(o) with the same frequency (o) but with different phase 

and amplitude. The ratio between output and input signal is the complex transfer 

coefficient H(o) = Y(o)/X(o). The transfer coefficient describes the properties of 

linear steady–state systems and is affected by the frequency and also by the properties 

of the analyzed system. If the input signal includes a set of frequencies (), the 

transfer function is described by H() = Y()/X(). The Fourier transform is 

employed to move from the time domain to the frequency domain back and forward 

[106].  

EIS can be applied either galvanostatic or potentiostatic. In the galvanostatic mode, 

the input signal is an alternating electrical current (AC), and the output voltage is 

measured. The potentiostatic mode is conducted in the opposite way; a sinusoidal 

voltage is applied in the system and the response measured is the electrical current. 

The transfer function is called in this case complex impedance (Z) and is obtained 

from the changes in amplitude and phase according with: 

Zሺωሻൌ
∆Uሺωሻ
∆Iሺωሻ

ൌ
U0ሺωሻ
I0ሺωሻ

ejቀφuሺωሻ–	φiሺωሻቁൌZ`ሺωሻ൅jZ``ሺωሻ (2.17)

where: 

Z: Impedance   Z`: Real part of impedance 

U: input voltage   Z``: Imaginary part of impedance 

I: output current   : angular frequency 

(): phase   
    

The transfer function is measured with a small amplitude perturbation signal in order 

to keep the state of the system stable. For this, only the linear part of the response is 

considered. The selection of the amplitude depends on the degree of non–linearity at 

the selected working point. For electrochemical kinetic studies, amplitudes between 

1 mV and 10 mV are normally acceptable [106]. The use of very low signal amplitude 
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can increase the level of noises in the measurement, while very high signal amplitude 

can produce errors due to non–linearity of the system. 

The measurements generate a three–dimensional data set: i, Zi` and Zi`` for each 

frequency. Commonly, the real part of the impedance is plotted on the X axis and the 

imaginary part on the Y axis (Nyquist plot) for each frequency (). Another common 

representation is the Bode plot, which describes the dependency of both log |Zi| and  

on log |i| [106]. 

2.3.2 Equivalent circuit for modeling 

To analyze the impedance spectra, the parameters of the system can be modeled either 

with a physicochemical model or with an equivalent electrical circuit (EC). When 

applying an EC, the aim is to correlate the individual contribution of the single 

components in the impedance to each element of the EC. The most common circuit 

elements and the corresponding impedance equation are summarized in Table 2 and 

represented in the Nyquist plot on the right.  

Table 2: Circuit components, their respective symbols and impedance equations. On the 
right a schematic explanation of the behavior of the impedance for each element. (W: 
Warburg parameter).  

Circuit component Symbol Impedance equation Schematic view 

Resistance   ZR = R 

Inductance    ZL ()= jL 

Capacitance   ZC ()= –(jC)–1 

R||C Element  
 

ZRC()= R (1+jC)–1 

R||CPE Element 
     (α ≤ 1)  

ZR||CPE()= R (1+jC)–α 

Warburg–Element   Zw () = W(j)–1/2 

 

A resistive element R can be correlated to an electrolyte resistance, charge transfer 

resistance or resistive behavior of barriers in activation processes. The inductance 

element describes the magnetic field originated from the pass of current through coils 

ZL. In an electrochemical cell, the impedance appears sometimes to be inductive due 
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to adsorption of reactants on the surface. Besides, inductive behavior is commonly 

observed in an electrochemical cell as result of non–uniform current distribution, 

inductance of cell cables or slow response of reference electrodes. The capacitance is 

a function of the frequency with only an imaginary part and a phase shifted –90° with 

respect to voltage. Electrochemical phenomena like double layer capacitance at the 

electrode/electrolyte interface are described using this element. This double layer is 

commonly produced by the charging occurring across the interface, which originates a 

charge separation and thus a potential difference. Capacitance can also be applied for 

describing adsorption or crystallization of phases. The combination of resistance and 

capacitance in parallel (RC) is commonly applied as a sub–model in more complex 

models to describe the charge transfer resistance of a layer.  

The constant phase element (CPE) is one of the most commonly applied elements to 

define frequency–dependent behavior. The replacement of the capacitance in the RC 

element by CPE generates a depressed semicircle, which is commonly found in real 

systems due to inhomogeneity of the sample, like roughness or non–uniform layer 

thickness. The variable α is dimensionless and defines the grade of compression of the 

CPE semicircle. Thus, the limit value of α = 1 represents ideal capacitive behavior.  

The diffusion of species is described here by the Warburg impedance [107]. This 

represents a linear semi–infinite diffusion layer, which obeys the second Fick´s law, 

and explains general diffusion affected by charge transfer reactions [107]. The real 

and imaginary components are equal and hence the phase shift is –45° and it is 

frequency independent. Nevertheless, diffusion length is finite in electrochemical 

systems, like batteries. This is normally represented by “General Warburg 

Impedance”, also called “Nernstian diffusion impedance” when the concentration is 

assumed as constant at certain distance from the electrode, or by the “Finite diffusion 

impedance”, when a phase boundary is present. These are explained in more detail in 

section 11.2.1.  

2.4 Ultraviolet–visible (UV–vis) spectroscopy 

UV–vis spectroscopy uses the light in the ultraviolet (200–400 nm) and visible (400–

800 nm) wavelength ranges to detect and quantify molecules which absorb at defined 

wavelengths. Modern spectrometers cover normally a greater range until near infrared 

(NIR) region (200–2000 nm). 
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The absorption of light by a material occurs due to the excitation of valence electrons 

of the compound from the normal (ground) state to a higher energy (excited) state 

[108]. Valence electrons can be found in single bonds (σ), double or triple bonds (π), 

and non–bonding (n) orbitals. A transition of an electron, from one of these orbitals to 

an empty orbital (normally anti–bonding orbital: σ*, π*), occurs when electromagnetic 

radiation in a defined frequency is absorbed (Figure 2.4). The energy difference 

between the orbitals is determined by the nature of bonding system and the number of 

atoms. Most of the absorptions measured comprise only π→π*, n→σ*, and n→π* 

transitions. 

The light source for the UV–region is usually a deuterium lamp and for the Vis–NIR, 

tungsten or halogen lamp. The sample is prepared normally as solution at low 

concentration and filled in a small square–section cuvette, usually 1 cm wide. Ideally, 

the solvent should not absorb in the same absorption region as the investigated 

species. When testing on transmission mode, the UV–vis radiation passes through the 

sample and the radiation across the whole UV–vis range is scanned simultaneously or 

step by step. This radiation can be compared simultaneously with a reference cell 

containing the solvent. Photocells detect the radiation transmitted and the 

spectrometer registers the absorption by comparing the initial intensity (Io) with the 

transmitted intensity (It).  

 
Figure 2.4: Energy levels of bonding orbitals and electron transitions in UV–vis 
spectroscopy [108]. 

For the quantification of low concentration solutions the Lambert–Beer´s law can be 

applied (2.18), where ε, the extinction coefficient (L mol–1 cm–1);  , wavelength 

(cm); A is the absorbance; da,  path length of the absorbing solution (cm); and c, 

concentration of the absorbing species (mol L–1). 
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Aൌlog
Io
I୲
ൌεdୟc	 (2.18)

Although the energies of the orbitals involved in electronic transitions have fixed 

values, the absorption peaks in UV–vis spectroscopy in condensed matter are 

normally broad and not very sharp. This is due to the several numbers of vibrational 

energy levels available at each electronic energy level, in which the transitions occur. 

2.5 Atomic force microscopy (AFM) 

AFM provides a 3D surface profile of materials with a spatial resolution up to the 

atomic scale. Forces between a sharp probe supported by a flexible cantilever 

(<10 nm) and surface are measured at very short distance (0.2–10 nm) (Figure 2.5). 

Repulsive forces result when the tip of the probe is brought close to sample due to the 

negative charge of the electrons on the surface. This results in a deflection of the 

cantilever. A laser focuses on the extreme of the cantilever, where the probe is 

located, and photodiodes measure the intensity reflected from the cantilever. The 

repulsive force is described using the Hooke´s law (F = kz), where k is the spring 

constant and z the cantilever deflection.  

 

Figure 2.5: Schematic of AFM instrument. PZT: piezoelectric tube.  

AFM can be applied to measure all materials, isolators or conductors. Topography and 

mechanical properties like adhesion force, electrical conductivity, deformation, and 

stiffness can be also evaluated by this technique. Furthermore, the microscope can 

operates in several modes such as contact, friction, tapping, and conducting mode 

[99]. Tapping mode was used in this work (section 7.1.2). Here, the cantilever is 
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oscillated at its resonance frequency using piezoelectric element drives. The 

advantage of this mode is that it diminishes the damages of the surface and tip 

compared with the contact mode, which maintains physical contact between tip and 

surface. 

2.6 Scanning electron microscopy (SEM) 

SEM produces images by focusing accelerated electron beams onto the surface of the 

sample. The images can reveal details in the order of 1 nm size. Electrons are 

generated in a tungsten filament cathode, a high voltage is applied, the temperature of 

the filament increases to over 2500 K, and electrons are emitted. The electrons are 

focused by one or two condensers lenses, accelerated to around 60 to 100 keV, and 

focused onto the surface using an objective lens (Figure 2.6, left) [99]. The sample 

chamber with the lens system is under vacuum to prevent scattering of electrons due 

to collisions with molecules of the air. The electrons interacts with the sample 

material and several signals are produced including Auger electrons (AE), secondary 

electrons (SE), backscattered electrons (BSE), characteristic X–rays (EDX), 

continuum X–ray, and cathodoluminescence (CL) (Figure 2.6, right). 

 

Figure 2.6: Schematic of SEM instrument and signals generated by the interaction of 
electron beam and sample [99]. 

SE and BSE detectors are the most common detectors integrated in the equipment. 

High resolution images are obtained using the SE detector. SE are produced by 

inelastic interactions of beam electrons with valence electrons of atoms in the sample 
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which cause the expulsion of the electrons from the atoms. On the contrary, BSE are 

produced by elastic interaction of beam electrons with nuclei of atoms in the sample; 

hence, they are proportional to the mean atomic number of the sample (z). Thus, a 

"brighter" intensity correlates with higher average z in the sample, and "dark" areas 

have lower average z. For this reason BSE images are very helpful for distinguishing 

different phases in the sample. Furthermore, the measurement of energy dispersive X–

rays (EDX) allows the elemental analysis of a sample.  

2.7 Thermal analysis and mass spectroscopy 

Common methods used for thermal analysis are thermogravimetry (TG) and 

differential scanning calorimetry (DSC). TG measures weight changes in the material 

as a function of temperature under controlled atmosphere. It consists in a pan or a 

plate loaded with the sample placed over a high precision balance (Figure 2.7 (a)) 

[109]. The furnace is equipped with a thermocouple for precise temperature 

measurements and specific gases are purged into the atmosphere. DSC allows 

measuring the heat absorbed or released by a sample relative to a reference. DSC is 

useful to detect endothermic and exothermic processes, which are not necessary 

associated with loss of weight (e.g. melting, crystallization, amorphization). DSC 

consists of a sample and a normally empty reference pan, both connected to a 

thermocouple and placed over a balance; this last, in case of TG/DSC analysis (Figure 

2.7 (a)).  

 

Figure 2.7: (a) TG and DSC configurations. (b) Schematic determination of the 
enthalpy by measuring the temperature of the sample (Ts) and the reference (Tr). 
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The difference of temperature between reference and sample (ΔT) is measured over 

time, when the temperature drops; power is supplied to maintain the temperature 

constant. The heat realeased or absorbed is correlated to the area of the peak seen in 

the DSC thermogram, which corresponds to the enthalpy of the process, exothermic or 

endothermic (Figure 2.7 (b)). During heating of the sample in the TG–DSC, the gas 

evolved can be analyzed by running the equipment in couplings with a mass 

spectrometer (MS). With the MS fragmentation patterns of substances in the gaseous 

phase are obtained by electron ionization of the molecules at high energy. By 

analyzing the relation of the mass number of the particles and molecules detected, the 

chemical structures of molecules can be resolved.  





3 Battery fabrication and 
electrochemical characterization 

The processes included in the cathode fabrication, like mixing, milling, coating and 

thermal treatments, play an important role in the electrochemical performance of the 

battery. Furthermore, the preparation of a homogenous cathode layer is required to 

characterize properly the electrode before, during, and after cycling. This chapter 

introduces the cathode materials used in this work and the fabrication steps of the 

battery. Moreover, the influence of selected preparation steps on the capacity fading 

of the battery is presented.  

3.1 Experimental procedures 

3.1.1 Cathode materials 

The cathode components used for the fabrication of the cathode layer were sulfur 

powder (S, 99.5% purity, Alfa Aesar), Super P carbon black (CB, 99% purity, Alfa 

Aesar) as conductive material, and polyvinylidene fluoride (PVDF, Alfa Aesar) as 

binder. Figure 3.1 shows SEM pictures of the raw powders. The cathode layer in the 

electrode was composed by 50 wt. % S, 40 wt. % CB, and 10 wt. % PVDF. The 

composition of the cathode was maintained constant for all the experiments in this 

work. 

 
Figure 3.1: Raw materials (a) sulfur, (b) PVDF and (c) CB. SEM pictures, SE detector, 
EHT: 1 kV, 0.5 kV (PVDF). 

The sulfur had an initial average particle size of 39 µm and an orthorhombic crystal 

structure (Figure 4.4). CB was selected as conductive material for its high specific 
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surface area of 60 m2 g–1 (see section 11.1.3), low particle size (ca. 70 nm), and high 

electrical conductivity; necessary properties to improve the electron transfer between 

sulfur and collector. Furthermore, CB nano–particles create a conductive carbon 

network with a complex arrangement and high porosity, so called “structure”, which 

allows electrical conductive paths from the current collector to the active sites of 

reactions. These structures are basically aggregations of primary spherical particles 

(see magnification on top of Figure 3.1 (c)) with particle size smaller than 100 nm. An 

important aspect to consider during processing of raw powders is that the primary 

structure of CB can be destroyed when intensive shearing forces are applied. This 

results in a reduction of the electric conductivity due to the destruction of conductive 

paths. As binder, PVDF was chosen for its electrochemical, thermal, chemical 

stability, and its high adherence. The powder consists of agglomerations of well–

defined nano particles with a diameter of around 200 nm (Figure 3.1 (b)). 

As cathode collector, carbon coated aluminum foil was used (Showa Denko SDXTM 

[110]; see morphology of substrate in Figure 11.2). The high conductive carbon 

coating improves the adherence of the layer with the current collector, reducing the 

contact resistance between the cathode layer and collector by approximately 50% 

[110]. The stability of the layer over the substrate was also especially important for 

the ex situ analysis of the samples. With the use of conventional aluminum foil, the 

cathode layer was easily released from the collector while dissembling the cell.    

3.1.2 Fabrication of the cathode 

The main objective of the cathode fabrication was to obtain a homogenous electrode 

layer in which the sulfur particles are covered and in contact with the CB nano–

particles, while PVDF create bindings between particles and with the current 

collector. Moreover, the cathode had to be easily reproduced and industrially scalable. 

It is worth mentioning that the cathode should present high capacity at the beginning 

of its cycle life in order to assure a high conversion of the active material. Thus, 

reactions and physicochemical processes are not interrupted due to a low conversion, 

and the complete cycle of the battery can be studied. 

Several parameters and steps of the cathode fabrication were modified in the course of 

this dissertation. An overview is presented in Table 3 showing the main parameters of 

mixing, coating, and drying procedures. These will be explained in more detail in the 

following sections. 



3 Battery fabrication and electrochemical characterization │29 

3.1.3 Mixing and milling 

Cathode I was prepared by mixing all the solid components (S, PVDF, and CB) 

together and after that, solvents were added. The use of the roll mixer resulted in 

cathodes with large agglomerates of sulfur in the cathode, as well as the presence of 

PVDF particles after spraying, which were not dissolved during processing (see 

Figure 11.3). For this reason the roll mixer was replaced by a tumbling mixer, 

working at higher angular velocity; and PVDF was dissolved separately in the 

solvents before adding CB and S. In the tumbling mixer a more intensive mixing 

effect is expected due to a permanent shifting of product areas. In the new procedure 

(Cathode II), S and CB were mixed for twelve hours in a tumbling mixer. PVDF was 

dissolved separately in a 50:50 (v/v) mixture of DMSO and ethanol. Although N–

Methyl–2–pyrrolidone (NMP) is a better solvent for PVDF, it was not chosen due to 

its high toxicity.  

Table 3: Comparison of mixing, coating and drying procedures. 

Mixing/Milling Coating Drying 

Initial procedure (Cathode I) 

Roll mixer‡ Suspension spray In vacuum oven 

1) Mix of S, CB and PVDF    
    (5 rpm, t= 12 h) 
2) Mix with solvents†    
    (5 rpm, t= 12 h) 

− Internal mixing nozzle 
− Coating in one step 
− Heating plate under 

substrate (100 °C) 
 

80 °C (48 h) 
 
 
 

New procedure (Cathode II) 

Tumbling mixer‡ Suspension spray In vacuum oven 

1) Mix of S and CB              
    (20 rpm, t= 24 h) 
2) Dissolution of PVDF in 
solvents (magnet stirring) 
3) Mix of S and CB with 
dissolution (2)                          
   (20 rpm, t = 24 h) 

− External mixing nozzle 
− Coating in 3 steps or 

more 
− No heating plate 
− Drying between each 

sprayed layer 

Between sprayed 
layers, 60 °C (1.5–3 h) 
 
At the end of coating: 
60 °C (24 h) 
In vacuum in the glove 
box 

†Solvents: 1:1 (v/v) mixture of ethanol and DMSO. ‡In both cases ceramic balls of 
8 mm diameter were added in the tank. 
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3.1.4 Coating and drying 

Suspension spraying 

The cathodes were fabricated using a wet‒powder spraying system (Figure 3.2). In 

this process, the cathode suspension is applied onto a substrate by means of 

pressurized air. The suspension was placed in a pressurized tank and it was directed to 

the nozzle in a polypropylene tube. The movement of the nozzle as well as the sample 

holder was controlled by a 3D axis robot (Janome JR 2400N GLT). The axis with the 

nozzle moves in perpendicular direction (y) to the substrate holder at 300 mm s–1, 

while the substrate holder advances step by step in x–direction so all the surface of the 

substrate is coated. 

 
Figure 3.2: Wet‒powder spraying system for cathode fabrication.  

The internal mixing nozzle used in the first tests was replaced by an air–atomizing 

external mixing nozzle (LECHLER GmbH). This avoided blocking of suspension in 

the nozzle, while the slurry mixes with the air outside the nozzle. The pressure of air 

and suspension, as well the distance between nozzle and layer, were adjusted to obtain 

a uniform spraying. Homogenous layers were obtained by injecting the suspension at 

low pressures (between 0.2–0.4 bar) and atomizing externally with air at 0.5 bar 

pressure. The distance between nozzle and substrate was set at z = 180 mm. Each 

1

2

3
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cathode was prepared by spraying three to four layers over an aluminum foil. The 

thickness of the cathode can be increased according with demand, by inclusion of 

furthers spraying/drying steps. However, the electrode thickness is limited by the 

diffusional resistance or loss of adhesion. Lower sulfur utilization is observed in Li–S 

batteries for sulfur cathodes with increasing cathode thickness [111] and the formation 

of discharge and charge products may be concentrated at the surface of the electrode. 

A drawback in this fabrication process is the large amount of solvent (96 wt.%) used 

in the slurry preparation, which increases the manufacturing costs as well as the time 

of drying. 

Drying 

Between each spraying, the cathode was dried in an oven at 60 °C. At this temperature 

sulfur volatilization and formation of cracks in the layer due to rapid drying are 

avoided (Figure 11.5). Especially, the inclusion of a drying step between each sprayed 

layer improves the stability of the cathode, the adherence on the aluminum collector 

during spraying, and the homogeneity of the layers. The thickness of the cathode 

layer, without substrate, varied between 15–20 µm (Figure 11.4). In Figure 3.3 (a) the 

sprayed cathode after drying is shown, around 22 batteries can be built up from each 

of them (Figure 3.3 (b)). In the microscopic picture, the homogeneous layer and 

distribution of sulfur particles can be seen as light points (Figure 3.3 (c)). 

 
Figure 3.3: Cathode after spraying and drying (a) and after individual cathodes were 
punched out for cell preparation (b). Microscopic picture of the cathode surface (c), 
where the white spots are the non–totally covered sulfur particles. 

3.1.5 Cell construction and electrochemical testing 

The battery was built and tested in a so–called Swagelok® cell (Figure 3.4 (a)) to 

assure the hermetic sealing and to avoid reaction of the battery components with air. 

The selected material for the testing Swagelok® cell was polyether ether ketone 
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(PEEK®) for the body, and stainless steel for the electrodes bolts and nuts. More 

information concerning the selection of material for the Swagelok® cell is described 

in section 11.1.1. The battery was assembled in a glove box under an argon 

atmosphere. First, a 10 mm diameter cathode was punched out and placed on the 

cathode collector: an aluminum disk over the spring located inside the Swagelok cell. 

The separator, a 25 µm thick polypropylene microporous membrane (Celgard 2500), 

was placed on top of the cathode and soaked with 14 µL electrolyte, 1 M LiPF6 

(99.99%, Sigma–Aldrich) in TEGDME (99.9%, Sigma–Aldrich). Next, a 1.5 mm 

thick lithium anode (99.9%, Sigma–Aldrich) was placed on the separator. To 

complete the construction, the cell was tightened until there was no gap between the 

nut and body hexes of the Swagelok® cell. To avoid a short circuit, the diameters of 

the lithium foil and cathode were 10 mm, while the separator diameter was 2 mm 

larger.  

 
Figure 3.4: (a) Scheme of Swagelok®–cell with inside view of the battery components. 
(b) Components of the battery and dimensions.  

The electrochemical testing or cycling of the batteries was carried out with the battery 

test equipment BaSyTec. The charge–discharge proceeded galvanostatic at 0.18 C 

(300 A kgS
–1). The battery was first discharged until 1.5 V, charged at constant current 

density up to 2.8 V, and then a potentiostatic period followed for 15 min before 

starting the next cycle. 

3.2 Result and discussion 

3.2.1 Morphology of the cathode 

High resolution SEM pictures show that the uses of different fabrication procedures 

result in dissimilar cathode morphologies (Figure 3.5).  
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Figure 3.5: Surface of cathodes fabricated using different fabrication procedure. (a, c, e) 
Cathode I (initial procedure) and (b, d, f) Cathode II (new procedure).  

Cathode I presents larger particle size (up to ca. 20 µm) than Cathode II. Moreover, 

no homogenous particle size is obtained in Cathode I, probably by the agglomeration 

of S crystallites. This evidences that the roll mixer disperses the sulfur particles 

without destroying agglomerates of sulfur or reducing the particle size. On the other 
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hand, the tumbling mixer reduces the sulfur particle to less than 4 µm, and only some 

larger particles are present.  

The insets on the right side of Figure 3.5 (c–f) are the corresponding BSE pictures. 

Due to the higher atomic weight of sulfur, it is identified in light color. Thus, it can be 

seen that Cathode II has a surface completely covered by CB particles. Some CB 

particle seems to be embedded in the sulfur and some wrapped around the sulfur 

(Figure 3.5 (e,f)). The built CB network and the close contact between the conductive 

carbon and sulfur are responsible for providing electron pathways for the insulating 

sulfur. In case of Cathode I, the uncovered area of sulfur particle is higher. 

3.2.2 Influence of cathode fabrication on the capacity fading  

Figure 3.6 shows the discharge capacity vs. cycle number for Cathode I and Cathode 

II. Throughout this work, the discharge capacity is based on the mass of sulfur present 

in the battery. It should be keep in mind, that S represents 50 wt.% of the cathode 

layer; thus, the specific capacity considering the total mass of cathode is the half. 

 
Figure 3.6: Cyclability of batteries using Cathode I and Cathode II. (a) Discharge 
capacity vs cycle. (b) Coulombic efficiency. The average and error bars are calculated 
based on the results of 3 tested batteries. 

The improved dispersion of S particles, the high contact with carbon black network, 

as well as the reduction of S particle size, are responsible for the increase in the 

discharge capacity of batteries fabricated with Cathode II. This is related to the 

increase of active surface area which allows higher sulfur dissolution and utilization 

for the electrochemical reactions. Nevertheless, both systems display similar capacity 

retention. This means that improvements on the cathode morphology do not avoid the 
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degradation of the batteries by mechanisms already described in section 2.1.2, like 

deposition of isolating products covering the active surface and the shuttle 

mechanisms occurring in the electrolyte and anode interface.Batteries fabricated with 

Cathode II have a higher discharge capacity, in the first cycle 850 Ah kgS
–1 compared 

to 1150 Ah kgS
–1 for Cathode I. Moreover, the reversible discharge capacity after 50 

cycles remains at 528 Ah kgS
–1 while for Cathode I is 275 Ah kgS

–1, this represents 

32% and 47% capacity retention respectively. The Coulombic efficiency, ratio 

between discharge and charge capacity (expressed in percentage), is in both cases not 

stable during cycling with values lower than 100%. The high values of the error bars 

demonstrate the instability of the batteries due to the charge process. 

In Figure 3.7, discharge and charge profiles of the batteries fabricated with Cathode I 

and Cathode II are displayed. Both discharge plateaus, at high and low voltage, are 

larger for Cathode II. The charge capacity is in almost all cases higher than the 

discharge capacity. This is caused by the shuttle mechanism. According to these 

charge profiles, shuttling effect does not start at the beginning of the charge process. 

On the one hand, Li2S is oxidized in the cathode generating long–chain lithium 

polysulfides and elemental sulfur step by step. On the other hand, polysulfides are 

reduced chemically on the lithium surface. When the concentration of long–chain 

lithium polysulfides increases, the shuttle phenomenon is enhanced. Thus, at the high 

plateau (~ 2.5 V) two processes would be in competition: the electrochemical 

oxidation of polysulfide on the cathode surface and the chemical reduction of 

polysulfide on the anode. The active shuttle phenomenon prolonged consequently the 

charge process, which reduce the cycling performance of the batteries. 
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Figure 3.7: Discharge and charge profiles for cathode I (a,b) and cathode II (b,c). 
Cycling was performed between 1.5 and 2.8 V and current density of 300 A kgS

–1  
(0.18 C). 

Other phenomenon caused by the dissolution of active species is the self–discharge of 

the cell. The open circuit voltage (OCV) of the cell decreases with the time, as shown 

in Figure 3.8, and it is stabilized after 30 days at 2.1 V. This happens due to the 

chemical reaction of dissolved sulfur with lithium metal to form polysulfide:  Li + x/8 

S8 Li2Sx. Similar results were observed by Ryu and colleagues [112], they observed 

a decrease from 2.54 to 2.08V after 7 days, and then a slower but continuous drop of 

potential. Moreover, they declared that the self–discharge rate of Li/TEGDME/S 

battery depends on the materials of current collectors, linking a corrosion of the 

collector due to formation of polysulfides.  

 
Figure 3.8: Self discharge of Li–S batteries. 
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The formation of polysulfides cannot be avoided in this type of cell configuration due 

to the dissolution of sulfur and its diffusion to lithium surface. Self–degradation of the 

battery should be more influenced by the dissolution of sulfur in the electrolyte. Thus, 

it is expected that the amount of electrolyte has a higher impact on the self–discharge 

as well as the collector material.   

3.2.3 Influence of LiNO3 as co–salt for the electrolyte 

In 2008, Mikhaylik [113] studied the influence of lithium bis(trifluoromethane 

sulfonyl) imide (LiTFSI) in a 50:50 ratio mixture of 1,3–dioxolane (DOL) and 

dimethoxyethane (DME) as well as in a solution of trifluoromethyl sulfonate. He 

postulated that N–O chemical bond was the responsible for inhibition of the shuttle 

mechanism. To demonstrate this; he tested salts containing the N–O bond like 

potassium nitrate, cesium nitrate, ammonium nitrate, potassium nitrite, and dinitro–

toluene. The highest Coulombic efficiency and discharge capacity upon cycling were 

achieved with LiNO3 concentrations between 0.2 M and 1.0 M. After this, several 

studies have shown the benefits of LiNO3 [114–118]. LiNO3 avoids the large charging 

cycles, increasing the Coulombic efficiency to 100%. This is attributed to elimination 

of the shuttle mechanisms due to the formation of a “protective” and Li+ ion 

conductive layer on the anode surface. This layer is composed of LixNOy and/or 

LixSOy components [119] which are responsible to prevent the reaction of 

polysulfides with lithium metal and thus to eliminate the shuttle effect during charge.  

In this section, LiNO3 is used as a co–salt in the electrolyte to stabilize the Coulombic 

efficiency and to increase the cyclability of the Li–S battery. Electrolyte solutions 

with different LiNO3 concentration (0, 0.1, 0.5, 0.75, and 1 M) (99.99%, Sigma–

Aldrich) were prepared. The concentration of LiPF6 was constant at 1 M in 

TEGDME. The electrolyte components were mixed with a magnetic stirrer for 24 h in 

the glove box under Ar atmosphere. The results of the electrochemical tests for 

different concentrations of LiNO3 are summarized in Figure 3.9. The capacity fading1 

is affected by the concentration of the co–salt and reaches a minimum of around 35% 

for 0.75 M LiNO3 (Figure 3.9 (b)). By further increase of concentration the capacity 

fading rises again. This last behavior may be explained by the formation of a thicker 

protective layer on the anode, which reduces the mobility of Li+, and thus its 

availability for further reactions. Although the Coulombic efficiency reaches already 

                                              
1 Capacity fading (%) = (Discharge Capacity(cycle x–1) –Discharge Capacity(cycle x))(Discharge Capacity cycle x–1))  
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values near to 100% with 0.1 M LiNO3, by increasing the concentration the 

Coulombic efficiency is more stable (lower error bars). Considering both the capacity 

fading and the Coulombic efficiency, the optimal concentration of LiNO3 for this cell 

configuration is found to be 0.75 M. 

 
Figure 3.9: Influence of concentration of LiNO3 in the capacity fading of batteries after 
50 cycles (a) and the Coulombic efficiency (b). *Calculated between cycle 1 and 50. The 
average and error bars are calculated based on the results of 3 tested batteries. 

In Figure 3.10, the improvements on capacity regarding cathode fabrication (Cathode 

I  Cathode II) and electrolyte modification (Cathode II without  with 0.75 M 

LiNO3) are presented.  

 
Figure 3.10: Improvements on the cyclability of the cell by modification of cathode and 
electrolyte. The average and error bars are calculated based on the results of 3 tested 
batteries. 
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The reduction of sulfur particle size and its homogenous distribution in the cathode 

layer influence mainly the initial discharge capacity (852 Ah kgS
−1 for Cathode I, 1127 

Ah kgS
−1 for Cathode II). The co–salt reduces the shuttle mechanism which is 

reflected by the lower capacity fading and thus a higher capacity at the 50th cycle 

(527 Ah kgS
−1 Cathode II without LiNO3, 800 Ah kgS

−1 with 0.75 M LiNO3). Figure 

3.11(a) shows the performance of the battery (Cathode II, 0.75 M LiNO3, 1M LiPF6) 

when discharging at 0.18 C and 2 C up to 1000 cycles. The red inset in the picture 

shows an example of the variation of the capacity caused by changes in the 

environmental temperature. The dependency of the capacity with the temperature can 

be seen in Figure 11.12. The capacity increases 12 Ah kgS
–1 per + 1 °C. As expected, 

the initial values of capacity are much lower for higher C–rate. However, the charge 

capacity increases in the first cycles reaching it maximum at cycles. This may be 

explained by the lower dissolution of sulfur at the initial stages of discharge and lower 

crystallization of Li2S at the end of discharge. The discharge reaction mechanism 

includes first the dissolution of sulfur in the electrolyte and second the reaction with 

Li ions to build up the polysulfides; when the discharge rate is fast, sulfur cannot 

dissolve completely and lower formation of polysulfides is reached. Moreover, the 

crystallization of Li2S is a slower process and this must favored after several cycles 

when polysulfides have been accumulated in the electrolyte.  

For both C–rates the Coulombic efficiency maintains constant confirming that the 

protective effect of LiNO3 against the shuttle mechanisms prevails up to 1000 cycles. 

Some investigations have shown that the effect of LiNO3 disappears at higher cycle 

number [116]; however, this is not observed in the cell tested through this work. After 

500 cycles both capacity curves meets and the capacity fading comes independent of 

the discharge rate. It is expected that inactive cores of S8 or Li2S are built up, and 

lower the utilization of active material in the subsequent cycles. Moreover, according 

with the similar discharge profile observed in Figure 3.11 (b), the reaction 

mechanisms at different C–rates seems to be similar after 500 cycles. The first 

discharge plateau is shorter due to the less amount of crystalline sulfur present in the 

charge state. Therefore, it is expected that most of the reactions occurs in the liquid 

phase; this means oxidation and reduction of polysulfides with less formation of S8 or 

Li2S. The difference on capacity for cathode II (Fig. 3.10 and Fig. 3.11), with 

electrolyte: 0.75 M LiNO3, 1 M LiPF6 in TEGDME, tested at 0.18 C is caused by a 

difference of sulfur loading (–30% for cahode in Fig. 3.11) because they were coated 
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in different production lots. The standard deviation (average of the first 50 cycles) 

between both production lots was 59 Ah kgS
–1. 

 
 Figure 3.11: (a) Discharge capacity and Coulombic efficiency of Li–S batteries at 0.18 C 
and 2 C. (b) Comparison of discharge profile between batteries tested at 0.18 C and 2 C. 
(c) Specific energy density based on the cathode mass for cycle 1, 50, and 1000.  

The average energy density of the cell calculated based on the total mass of cathode, 

is presented for cycle 1, and 1000 in Figure 3.11 (c). 

3.3 Conclusion 

The use of wet‒powder spraying allows the fabrication of homogenous sulfur–

composite layers. However, the use of large amount of solvents is a disadvantage, and 

a solvent recuperation system should be implemented for industrial applications. 

(a)

(b) (c)

1375

282

394

277

0

250

500

750

1000

1250

1500

1000        

S
p

e
ci

fic
 e

n
e

rg
y 

/ 
W

h
 k

g
-1 ca

th
o

de

Cycle / #

    2 C
 0.18 C

1        

0 200 400 600 800 1000
0

250

500

750

1000

1250

 2 C
 0.18 C

Cycle / #

D
is

ch
a

rg
e

 c
a

p
a

ci
ty

 /
 A

h
 k

g
-1 S

0

20

40

60

80

100

C
ou

lo
m

b
ic

 e
ff

ic
ie

nc
y 

/ 
%

T

0 200 400 600 800 1000 1200

1.6

1.8

2.0

2.2

2.4

2.6

V
o

lta
g

e
 /

 V

Discharge capacity / Ah kg-1
sulfur

 2 C     0.18 C
      1st cycle  
1000th cycle   



3 Battery fabrication and electrochemical characterization │41 

Improvements on the mixing and milling processes showed that well–dispersed and 

small sulfur particles, surrounded by CB particles, improves the sulfur utilization 

during the first cycles, which results in an increased of battery performance from 275 

to 528 Ah kgS
–1 after 50 cycles. Nevertheless, the capacity fading of the battery is still 

high (47 %) and it is caused among others by the low Coulombic efficiency generated 

by the shuttle mechanisms. This can be improved by the utilization of LiNO3 as co–

salt in the electrolyte. With this electrolyte additive and cell configuration discharge 

capacities of 800 Ah kgS
–1 were achieved (after 50 cycles, 0.18 C–rate). However, the 

capacity fading of the battery is still high (35% between the 1st and 50th cycle). This 

simple but industrially viable cell configuration can be further improved by the use of 

protective layers and electrolyte additives [45,51,114,120–122]. In the next chapters, 

the processes responsible for the degradation of the battery will be studied. 





4 In situ X–ray diffraction 

XRD is an important characterization method to follow structural and composition 

changes occurring in battery electrodes. This technique can be applied in situ or 

operando, this means that measurements are performed under operating conditions of 

the electrochemical cell, without exposure to the external environment. In the past, in 

situ XRD experiments were already performed successfully on lithium–ion batteries, 

bringing new insights into the lithium intercalation process [123–127]. However, there 

has been little application of this method to Li–S batteries to evaluate the crystalline 

reaction products S8 and Li2S [82,128]. On the contrary, many groups studied the Li–

S system by carrying out ex situ measurements [44,61,63,114,129,130]. They 

evidenced the reduction of sulfur to polysulfides and the formation of Li2S at the end 

of discharge [61,63], but until the date it was not clear if Li2S converts back to soluble 

polysulfides in the following charge step or if it becomes inaccessible due to its 

isolating properties after the first discharge. Moreover, no information about the rate 

of formation was available. Nelson and colleagues [128]  carried out the first in situ 

XRD study of Li–S batteries throughout the entire first cycle of the battery. They 

detected the reaction of sulfur during discharge and its recrystallization during charge; 

nevertheless, the formation of the discharge product Li2S was not detected.  

It is important to highlight that the high reactivity of Li2S is a problematic issue 

during measurements, because it hydrolyses easily in air, producing H2S and LiOH. 

Probable reasons why Li2S may not be detected are: a) the in situ cell is not air–tight, 

b) the discharge capacity of the cell is too low, Li2S does not precipitate and only 

soluble polysulfides are present at discharge state, or c) the penetration depth of the 

X–ray is not high enough and the structural information comes from a deeper region 

of the bulk cathode material. If this occurs, no information is obtained from the 

interface cathode/separator, where probably the main quantity of Li2S is formed. 

In this chapter, the reactions of crystalline phases in the Li–S battery were monitored 

for the discharge and charge process using in situ XRD. The dissolution and reaction 

of sulfur during discharge, as well as its recrystallization during charge were followed. 

In contradiction to the results presented by Nelson et al. [128], it was found that 

lithium sulfide does build up during the first discharge cycle and reacts back in the 
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following charge. In addition, this work is complemented with semi–quantitative 

analysis of the crystalline species, the Rietveld refinement of the spectra, and 2D 

mapping of the cathode. Most of the results presented in this work were published in 

the Journal of Power Sources [6]. 

Sulfur and its allotropes 

Sulfur is the element with the largest number of solid allotropes; around 30 allotropes 

were already identified. In general they consist of cyclic molecules without 

ramifications and with ring sizes of 6 to 20 atoms. In addition, sulfur can be polymeric 

when long S–chain are conformed in random coils or helical conformation [131]. The 

stable form of sulfur at standard conditions for temperature and pressure is the 

orthorhombic –S8 modification (space group 70). The octamers are organized in two 

layers each perpendicular to the crystal c axis forming a so called “crankshaft 

structure”. At around 96 °C –S8 transforms reversibly to monoclinic –S8; this is 

stable up to 120 °C (melting temperature) [132]. The phase diagram of sulfur can be 

seen in additional information (Figure 11.13). 

4.1 Experimental procedures 

4.1.1 Design considerations for in situ X–ray cells   

An in situ or also called  operando analysis of a battery refers to the characterization 

of one or more of its components using a spectroscopic or microscopic technique 

under potential or current control, e.g. during discharge or charge. For in situ XRD 

measurements, an in situ cell is necessary, where the battery is placed and connected 

to a potentiostat for electrochemical measurement. Moreover, the in situ cell has to 

enable XRD analysis without dissembling the cell. Its fabrication approach depends 

on the battery technology to be considered (aqueous vs. non–aqueous batteries), the 

type of X–ray sources (X–ray spectrometer vs. synchrotron sources), and the type of 

collecting modes (reflection vs. transmission modes). For the assembling of the cell 

and selection of the main components, the following aspects have to be considered: 

▪ An X–ray transmission window is necessary; the X–ray must be transmitted 

through a window into the material to be analyzed, then reflected and 

transmitted back to the detector. A suitable material for this purpose must be 

not only mechanical robust but also chemical stable in order to protect the 

sample and avoid undesirable reactions. To avoid peak overlapping, it is 
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preferable that the hkl–peaks of the window´s material are not present in the 

same region of the spectra where peaks of the sample appear. Beryllium is one 

of the most used materials as window for in situ XRD cells. Nevertheless, it 

can be dangerous by studying of highly oxidizing compounds, for example 

with materials operating at potentials greater than 4.2 V vs. Li metal. Be–

windows oxidize and become porous at such high operating voltage. Mylar 

(Polyethylenterephthalat) is an alternative material due to its high stability and 

high transmission of X–rays. Aluminum foil is advantageous for investigation 

of components at low theta–angle, where no peaks of aluminum can interfere 

with the sample peaks.   

▪ Cell has to be hermetic (air–proof). Because of the high reactivity of Li and 

some Li–based components mainly with water and air, measurements must 

carry out in a moisture– and oxygen free environment. Gaskets are normally 

used to prevent electrical contact and ensure a hermetic seal. 

▪ The cell should be friendly to use. The assembly of batteries occurs in the 

glove–box; for this reason it is important that the active materials are easy to 

load in the cell. The in situ cell must be easy to tight, to align on the 

diffractometer´s sample holder, and also to dismantle and clean.  

▪ Electric contact to control the current and potential are necessary for both 

electrodes. Aluminum is used often as cathode collector, when measurements 

on reflection mode are carried out due to the low absorption of X–rays. When 

analysis through all battery components are carried out on transmission mode, 

copper and nickel can be used as anode collector. Nevertheless, they show 

higher absorption. In case lithium is used as anode (low X–ray absorption), this 

can be used at the same time as collector.  

4.1.2 In situ cell 

An in situ cell was specially built up for the continuous collection of diffractograms 

during electrochemical test of the battery. For the design, the fabrication aspects 

described in above were considered. An exploded illustration of the cell components 

is shown in Figure 4.1. The cell consisted of two holed aluminum plates, the cathode 

plate with a thin aluminum window, and the anode plate. A 6 µm thick aluminum foil 

was chosen as X–ray window and fixed onto the cathode plate with a conductive 

epoxy. Although a thicker Al–window is more stable, the X–ray absorbance is too 

high, decreasing the intensity of the Bragg peaks of the active materials. Each plate 
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(component 1 and 9 in Figure 4.1.) acts as electrode collector and is connected 

directly to the potentiometer using banana jacks connectors in the hole located on the 

side of each plate. A tube made of polyether ether ketone (PEEK) was placed in the 

middle (component 3) to insulate electrically the battery from the interior walls of the 

cell. A 0.75 mm thick polymer gasket is positioned between the two plates to seal the 

cell airtight. This avoids also a short circuit between both electrode plates. A metal 

spring inside the cell applies mechanical pressure of the stack (see components 5–8, 

Figure 4.1) against the Al–window. The combination of a thin X–ray window and a 

thin cathode layer (~ 20 µm) allows to obtain information of the entire cathode´s 

volume located between collector and separator.  

 
Figure 4.1: Exploded illustration of the in situ XRD cell. Components: 1) Anode plate, 
2) polymer gasket, 3) insulator plastic tube, 4) spring, 5) stainless steel anode collector, 
6) anode, 7) separator, 8) cathode, 9) cathode plate, 10) Al–window, and 11–12) holes 
for connecting the banana jacks. 

The battery was assembled in the glove box under Argon atmosphere. The 1.5 mm 

thick lithium anode (99.9%, Sigma Aldrich) was placed on a stainless steel disk over 

the spring. The separator, a 25 µm thick polypropylene microporous membrane 

(Celgard 2500), was set on top of the anode and soaked with 14 µL electrolyte, 1 M 

LiPF6 (99.99%, Sigma Aldrich) in TEGDME (99.9%, Sigma Aldrich). The cathode 

was then placed on the separator. The cell–stack was positioned in the in situ cell and 

this was finally closed with plastic screws. The diameter of the lithium foil and 

cathode was 10 mm, while the separator diameter was dimensioned 2 mm larger to 

avoid short circuit.  
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4.1.3 Electrochemical test and configuration of diffractometer 

The cycling performance of the battery was investigated using an electrochemical 

workstation (Zahner IM6) with cycling software (Zahner Thales) [13]. The charge–

discharge procedure was carried out galvanostatic at a current density of 

300 mA gsulfur
–1 between 2.8 V and 1.5 V.  

X–ray diffractograms were recorded with an X–ray diffractometer, D8 Discover 

Bruker GADDS, equipped with a VÅNTEC–2000 area detector (Figure 4.2). 

Exposures were made on reflection mode using a tuned monochromatic and parallel 

X–ray beam (Cu–Kα). The tube collimator aperture was 1 mm. The X–ray source was 

filtered by one Göbel mirror and two pinhole collimators. The accelerating voltage 

was 45 kV and the tube current was 0.650 mA. Each diffraction pattern was measured 

in four frames with a step size of 2Ө = 23°, starting with Ө1 = Ө2 = 12° (Bragg–

Brentano condition). The exposure time for each frame was 180 s. A script was 

written in order to record the diffractograms continuously.  

 
Figure 4.2: Configuration of the in situ XRD experimental set–up. The radiant tube and 
the VÅNTEC detector are shown. The in situ cell is mounted on a motorized 
goniometric head and connected to the potentiostat, in which the electrochemical 
experiment is controlled by the cycling program (Thales). 

The in situ cell was placed on the sample stage as shown in Figure 4.2 and connected 

to the potentiostat. The cell starts to discharge at the same time as the first frame of 

the diffractograms is taken with XRD. Twelve minutes were required to record each 



48 │ Results and discussion 

in situ XRD pattern and the measurements were performed without interruption until 

the end of each cycle. For this reason the XRD pattern represents averaged values of 

the reflected X–ray during the exposure time. 

4.1.4 Rietveld analysis 

Phase analysis 

The refinement of the crystalline phase was made with the software Diffracplus Topas 

4.2 [133]. Before starting the refinement, the instrument contributions were 

discriminated. The instrumental function was calculated based on the measurement of 

a well crystallized specimen, in this case, –Al2O3. Additional convolutions were 

selected to parameterize the profile shape with different Lorentzian and Gaussian 

functions (see Table 1). After, the instrument function was fixed and the refinement of 

the sample could be started. First, the background function was determined. The 

active materials were fitted with structural information obtained from the 

Crystallography Open Data Base (COD) (COD ID: 9011362 [134], COD ID: 9009060 

[135]) whereas the inactive components such as C, PP–separator, and Al–substrate 

were fitted with Pseudo Voigt (PV) functions (peak phase analysis). The following 

parameters were sequentially fitted: scale (intensity), crystalline size, and lattice 

parameters (a,b,c). 

Quantification of amorphous phase 

The quantification of the amorphous phase was determined by combining a 

refinement of the crystalline phase with a single line fitting for the amorphous phase. 

The background is fitted with a 1st order function and the amorphous phase is fitted 

with a single Split–PseudoVoigt function (spv) located at the maximum of the 

amorphous bump. The sequence of refinement was first the large amorphous bump; 

second, the high intensity reflections of crystalline peaks; and final, the smaller 

reflections. 

4.2 Results and discussion 

4.2.1 Diffractograms of cathode components  

XRD patterns of raw powders of sulfur, CB, PVDF, and sulfur are presented in Figure 

4.3 as comparison basis for the diffractograms measured of the cathode. Sulfur pattern 
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corresponds to the pattern of –S8 face centered orthorhombic sulfur (PDF: 00–008–

0247). 

 
Figure 4.3: Diffractograms of the raw materials as powder: carbon black (a), PVDF (b) 
and sulfur (c). 

Carbon black consists of parallel layer groups with 4 or 5 roughly parallel graphite 

layers. According to Warren [136], the distance between parallel layers Lc is in the 

order of 12 Å, while the normal to layer La  20 Å. Carbon black pattern consist of the 

(00l) crystalline reflexions (002) at 2Ө = 26° and (004) at 2Ө = 51°, and the 2 

dimensional (hk) reflexions (10) at 2Ө = 44° and (11) at 2Ө = 74°. While the (00l) 

reflections evidence that several graphite layers are roughly parallel, the two 

dimensional lattice reflections are originated by randomly oriented graphite layers. 
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Two dimensional reflections are characterized by asymmetric shapes of peak that 

sharply increase of intensity like a crystalline peak and then decrease their intensity 

slowly in form of a shoulder. The sharpening of reflections is related with an increase 

of size of the parallel groups. This has been already observed after heat treatment of 

CB [136]. After cathode preparation only a sharp peak at 2Ө = 24° is observed. This 

reflex is correlated with carbon, and assumed to be of the type (00l), meaning that 

graphite layers of CB lie near parallel to one other after cycling.  

 
Figure 4.4: Diffractogram of the cathode before cycling. The aluminum reflexes 
correspond to the aluminum collector. 

The crystalline peaks corresponding to the PVDF powder disappears after cathode 

preparation, because after dissolution with solvent, PVDF form thin amorphous films. 

4.2.2 In situ XRD during the first cycles  

First discharge 

Figure 4.5 shows the X–ray patterns measured during the first discharge at different 

depths of discharge (DOD). On the top of the curve, the discharge profile is displayed; 

each point corresponds to a diffractogram on the main figure. Thereby, only the range 

where the main reflections of the active components appears is shown (2θ = 20° –

 35°) and here the background of the diffractograms was eliminated for better 

visualization. The progression of discharge is plotted from the top to the bottom. The 

complete measured diffractograms can be seen in Figure 4.8. Here the reflections of 

the PP–separator 040 and 130 can be seen at 17° and 18° respectively (PDF: 00–054–

1936 [137]). This is noteworthy because it means that the cathode was radiated 

through its whole thickness. The Bragg peaks of sulfur can be clearly detected in the 

first diffractogram. As expected, the structure of sulfur is orthorhombic face centered, 
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which is the stable modification of sulfur below 96 °C [138] (PDF: 00–008–0247). 

The reflection at 2θ = 24° is related to carbon black.  

 
Figure 4.5: In situ XRD data collected during discharge of Li–S battery at a rate of 300 
A kgs

–1 (0.18 C).  Background was subtracted for clarity, original XRD diffractograms 
can be seen in Figure 4.8. Three different regions are shown: (a) reaction of sulfur to 
high order polysulfides (blue), (b) reactions of high order polysulfides (gray), and (c) 
formation of Li2S (red). The discharge curve is shown on the top. The average discharge 
capacity is 1276 Ah kgS

–1. 

According to these measurements, the corresponding discharge curve in Figure 4.5 

can be divided in three periods: (a) between 0 and 20%, DOD crystalline sulfur is 

detected and its peaks intensities gradually decrease, (b) between 20 and 60%, DOD 

no crystalline phase of the active material is detected, and (c) between 60 and 100%, 

DOD Li2S built up progressively. During stage (a), the upper plateau region; sulfur 

successively dissolves and starts to reduce to high order polysulfides. At the 

beginning of the discharge step, sulfur is mostly in the S8(s) crystalline phase due to its 

low solubility in TEGDME. The dissolution of sulfur in TEGDME can be calculated 

according to equation of Sciamanna et al. [139]: wt.% of sulfur = exp [–10.994(Tm/T) 

+12.584). Thus, the solubility of sulfur at room temperature is 0.19 wt.%. Although, 

the value is low, the weight relation between the sulfur present in the cathode and the 

electrolyte is also low. This means that at the beginning 18.4% of sulfur is dissolved. 

As the discharge proceeds, the dissolved S8(diss) in the electrolyte is consumed by the 

electrochemical reaction 2Li + S8(diss) ⇄ 2Li+ + S8(diss)
2−; the concentration of S8(diss) 

decreases, enhancing further dissolution of crystalline sulfur into the liquid phase 
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[140]. In the interval between 20% and 60% DOD no diffraction peaks of active 

phases are present. The diffraction peaks abruptly disappear at 20% DOD because of 

the dissolution of sulfur and the formation of high order polysulfides. During this 

period it is expected that the concentrations of S8(diss), S8(diss)
2−, S6(diss)

2− and S4(diss)
2− 

decrease and the reduction of the polysulfides down to S(diss)
 2− starts. From 60% DOD 

on, Li2S diffractions peaks are detected for the first time and their intensity increase 

continuously until the end of discharge. Li2S has a cubic face centered structure (PDF 

number: 00–023–0369). The peaks are broad, e. g. 111–peak has a full width at high 

maximum (FWHM) of 0.904 ° ± 0.027 °. Broad peaks signalize clearly the presence 

of nano–sized crystallites. The analysis of Li2S is difficult when the volume fraction is 

low, because the broad peaks are not well distinguishable from the background of the 

diffractogram and the reflections cannot be accurately quantified. Considering this, 

the precipitation of Li2S(s) may start at a lower rate than 60% DOD, even though no 

crystalline phase is observable in the XRD pattern. 

First charge 

The X–ray patterns measured during charge are displayed in Figure 4.5. Right after 

the battery starts to charge, Li2S reacts back to high order polysulfides. The progress 

of the reaction can be followed with the continuous decrease in intensity and area 

under the 111–reflection of Li2S.  

 
Figure 4.6: In situ XRD data collected during charge of Li–S battery at a current 
density of 300 A kgS

–1 (0.18 C).  Three different regions are shown: (d) reaction of Li2S 
(blue), (e) reactions of high order polysulfides (gray), and (f) formation of sulfur (red). 
The charge curve is shown on the top. Charge capacity: 1283 Ah kg–1. 
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Mainly the reverse reactions (2.13)–(2.12) are expected to occur during this period. At 

around 50% depth of charge (DOC), the reflections of Li2S are no longer detectable. 

Between 50 and 95% DOC no crystalline active phases are found. Here, high order 

polysulfides are formed and dissolved in the electrolyte according to reverse reactions 

((2.12)–(2.9)).  

New Bragg peaks related to the formation of crystalline sulfur appear up to 

95% DOC. Nevertheless, the position and relative intensity of the reflections changes 

respect to the spectra before cycling, e.g, the 222–reflection of S8, identified before 

cycling, cannot be detected after the first charge.  

Second discharge and charge 

During the second cycle (Figure 4.7) the crystalline products S8 and Li2S are also 

detected, reacting completely during discharge and charge respectively. Nevertheless, 

the intensity of reflections is lower with respect to the first cycle and the increase of 

the amorphous phase can be clearly seen between 20°–24°.  

 

Figure 4.7: In situ XRD data collected during the second cycle. (a) 2nd discharge and (b) 
2nd charge of Li–S battery at a current density of 300 A kgS

–1 (0.18 C). 

The in situ measurement was carried out in a specific position of the sample with a 

tube collimator aperture of 1 mm. Therefore, an inhomogeneous growth of crystallites 

in the cathode could not be detected under these measurements conditions. For this 

reason, a XRD mapping of the cathode was carried out before cycling and at different 

cycle number to study the distribution of sulfur in the electrode (section 4.2.3). 
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 Figure 4.8: In situ XRD data collected before cycling, after the 1st discharge, after the 
1st charge, after the 2nd discharge, and after the 2nd charge.  
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4.2.3 Structural mapping of cathodes 

A schematic view of the raster grid for the XRD mapping is shown in Figure 4.9. Here 

the beam spots are illustrated as circles, although in reality they are elliptical and their 

size depends on the  incident angle. The cathode was measured in 13 positions and 

during the measurement the sample stage oscillated in 0.5 mm XY to obtain higher 

statistic information of the sample. In Figure 4.10 the integrated area of the sulfur 

reflexes are represented in the 13 positions of the cathode. The distribution of sulfur is 

inhomogeneous and the highest amount is located in the center of the cathode, in the 

side positions almost no crystalline sulfur was measured.  

 
Figure 4.9: Schematic raster grid for analyzing 10 mm diameter cathodes. 13 target 
positions were selected. 

Before cycling, the cathode shows a homogenous dispersion of sulfur, this is 

illustrated in Figure 4.11 for the raster position 1, 3, 7, 11, and 13. This implies that 

through the selected mixing procedure the cathode components are well mixed and 

that the coating procedure generates cathode with uniform thickness. In contrast, 

cathode after cycling show an inhomogeneous distribution of sulfur which is reflected 

by changes in the intensity of the reflections. Moreover, variation in the position of 

the peaks reveals changes of the orientation of the sulfur crystallites in different 

location of the cathode.  

The inhomogeneous distribution of sulfur in the cathode has been also confirmed by 

microscopic pictures of the electrode after charge (see Figure 11.7 and Figure 11.8 ). 
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Figure 4.10: Spatial distribution of the sulfur crystalline phase after charge (1st cycle). 

 

 

Figure 4.11: Diffraction data of the cathode before cycling, after the 1st, 25th, and 100th 
cycle for the positions 1, 3, 7, 11 and 13.  

4.2.4 Rietveld refinement of diffractograms  

Rietveld analysis was used to gain more information about the structural properties of 

the active components. Figure 4.12 illustrates the in situ measured and calculated 

diffractograms before cycling (a), after the first charge (b), and after the first 

discharge (c). Only diffractograms of the active phases (sulfur and Li2S) are shown. 

The reflexes of the other cathode components were fitted as a peak phase (i.e Al at 2 

= 40° and 47°). According to the changes in the position and intensity of the 

reflections, only some planes of sulfur can be seen in the diffractograms after cycling. 
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This is related to a preferred orientation of the particles in the cathode during charge. 

Calculated structure parameters are summarized in Table 4. 

 
Figure 4.12: Measured and refined diffractogram for cathode before cycling (a), after 
1st charge (b), and after 1st discharge. The subtracted curve between measured and 
calculated diffractogram is the grey curve in the bottom).  

The orientation of sulfur crystallites was also observed by ex situ SEM measurements 

of the cathode and separator surface after charge (Figure 4.13). Here, two different 

sections of the separator surface are displayed from the cathode side after cycling and 

cell dissembling. Figure 4.13 (a) shows sulfur agglomerates over the separator 

(cathode side). These agglomerates consist of needle shaped particles not larger than 

2 µm (Figure 4.13 (b)), which seems to be aligned perpendicular to the separator 

surface (Figure 4.13 (c)). In some areas sulfur needles are disordered and the form of 

the particle can be clearly identified (Figure 4.13 (b)). Additionally, some amorphous 

material can be seen in the right side of (Figure 4.13 (b)). The small sized crystallites 
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allow them to growth up throughout the separator as it can be clearly seen in Figure 

4.13 (d). Some sulfur crystallites were found to be arranged in large agglomerates 

over the cathode surface (Figure 4.13 (e)).  

Table 4: Structure parameters refined with Rietveld–method for diffractograms before 
and after cycling: crystallite size, cell volume, and lattice parameter a, b, c, for the 
orthorhombic structure of sulfur (phase group: Fddd) and Li2S (phase group: Fm-3m). 

Parameters 
Sulfur before 
cycling  

Sulfur after cell 
charge 

Li2S after 
discharge 

Phase group Fddd                   Fddd Fm–3m 

Crystallite size (nm) – 142 (27)  6.07 (30) 

Cell Volume (Å‒3) 3295.7 (13) 3360.9 (30) 189.99 (23) 

  a (Å)                         10.4715 (11) 10.4695 (20) 5.7488 (23) 

  b (Å)                         12.8665 (25) 12.7150 (11) – 

  c (Å)                         24.4610 (83) 25.2474 (49) – 
 

 
Figure 4.13: SEM micrographs of a separator section viewed from the cathode side (a–
d) and of cathode after charge (e).  

The particle size observable in the SEM pictures is similar to the one obtained by the 

Rietveld analysis. After cycling, the unit cell of sulfur is larger mostly due to an 

increase of the lattice parameter c (24.46  25.24 Å), while the other lattice 

parameters remain approximately constant. The broad Li2S reflexes evidence the 

formation of nano–sized crystallites, which was calculated to be around 6 nm. The 
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orientation of sulfur particles is probably due to epitaxial growth of sulfur crystallites 

on the carbon substructure. The carbon particles may act as nucleation centers and the 

deposited layer show preferential crystallographic orientations.  

4.2.5 Semi–quantification of crystalline and amorphous phase 

The integrated intensity of the Bragg reflections, area under peaks, is directly 

proportional to the crystallite volume. Therefore, the crystalline phase of the cathode 

can be semi–quantified considering the maximum integrated intensity as 100% of 

crystalline volume. For sulfur, the 222–reflection was chosen for peak integration 

during discharge and the 311–reflection at 2  26.5° during recrystallization for the 

first and second charge, because the 222–reflection does not appear any longer after 

the first charge. This change in the structural phase limits the quantification of sulfur 

before and after cycling. Figure 4.14 (a, c, e, g) shows the integrated intensity of the 

main reflections of sulfur (222 before cycling, 311 after cycling) and lithium sulfide 

(111) at different DOD and DOC. Moreover, the amorphous area was also evaluated, 

Figure 4.14 (b, d, f, h). The dissolution and reaction of sulfur is only observed in the 

first 20% DOD of the discharge cycle (Figure 4.14). The formation of lithium sulfide 

and can be detected in the last 60% DOD of the discharge time. During charge, the 

reaction of Li2S is slower compared with the recrystallization rate of sulfur. By the 

second discharge, almost 50% less crystalline Li2S is formed compared with the first 

discharge. At the end of the second charge, the peaks of sulfur appear at the same 

positions, indicating a similar orientation of particles as the one after the first charge. 

It is interesting to observe the evolution of the amorphous area during cycling. Before 

cycling almost no amorphous phase is present in the cathode, while during discharge, 

this increases and almost triplicates it value at around 70% DOD. Next, when the 

formation of crystalline Li2S increases, the amorphous phase reduces back but only to 

the double of its initial values. During the initial period of the first charge, the 

amorphous phase remains constant and starts to increase at around 30% DOC, when 

almost 50% of the crystalline Li2S already reacted to polysulfides. The highest 

amorphous area is measured between 50–80% DOC and then slightly decreases with 

the formation of crystalline sulfur. From this evidence, it is expected that the 

formation of crystalline sulfur follows similar transition processes than the slow 

solidification of melted sulfur (polymeric(amorphous)  monoclinic  orthorhombic). 

This would means that first the sulfur chain molecule is build up according to the 

reaction of Li2S8 (xLi2S8  2xLi + S8x(chain, amorphous)) and after the formation of 
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crystalline sulfur occurs (S8(chain, amorphous)  S8(cycle 1st
 

monoclinic, 2nd orthorhombic)). This 

process seems not to be completely reversible, and only the crystalline phase reacts 

back in the next discharge process. In the second cycle, the amorphous phase remains 

almost constant along the cycle. The presence of the amorphous phase is also 

observed after 100 cycles (see Figure 4.11). 

 

Figure 4.14: Semi–quantitative X–ray analysis for the first two discharges (a) and 
charge cycles (b) of a Li–S battery. 
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It is well known that polymeric of amorphous sulfur does not dissolve in organic 

solvents like crystalline sulfur does. For this reason, it is expected that the loss of 

capacity is caused by amorphous sulfur that build up an isolating film over the 

conductive CB particles. Moreover, it is important to notice that after discharge the 

amorphous phase increases by 100% (from around 500 to 1000 a.u of amorphous 

area) and after this cycle it does not decrease any further. This means that the isolating 

layer formed during discharge does not disappear after charge; but rather it increases 

by 25% due to the contribution of amorphous sulfur.  

4.2.6 Discussion and comparison with further investigations 

Previously work of Nelson and colleagues [128] carried out in situ XRD 

measurements on Li–S batteries at similar current density. Similar to this work, they 

found crystalline sulfur at the beginning of the discharge cycle (until ~ 23% DOD). 

They observed some changes in the position of sulfur Bragg Peaks, which was 

interpreted as an anisotropic orientation of S8 particles. Contrary to the present results, 

no Li2S was detected at the end of discharge. Considering the low discharge capacity 

(~750 Ah kgS
–1) of the tested battery, the formation of Li2S may not have been 

detected due to incomplete reduction of polysulfide.  

Preceding publication confirmed the results shown in this chapter. Waluś and 

coworkes [141] used synchrotron–based in situ XRD to monitor the electrodes and 

complete cell during the first two cycles at C/20. During the initial stages of discharge 

the intensities of sulfur peaks gradually decrease until their complete disappearance at 

the end of the first plateau. Contrary to the results presented in this work, the Li2S 

signal appears exactly at the beginning of the second discharge plateau, this is 

explained by the higher resolution of the synchrotron XRD and the lower discharge 

rate. Moreover, they reported, besides the presence of –sulfur after charge, the 

appearance of monoclinic –sulfur. They postulated this after matching the measured 

diffractograms of the recrystallized sulfur with the pattern of monoclinic –sulfur 

(PDF: 01–071–0137). However, no structural refinement was performed in these 

diffractograms and considering the high number of S–reflexes in the reference 

patterns of sulfur, the confirmation of the –sulfur just by simple matching of the 

measured diffractogram with a reference pattern is not trustful. Moreover, it is known 

that –sulfur is stable above 95 °C, and although its formation maybe possible during 

crystallization in the electrochemical cell, this would be expected by high C–rate 
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where the transformation –S  –S cannot be completed. This would be analog to 

the formation of monoclinic sulfur by quenching melted sulfur with cold water. 

4.3 Conclusions 

In this chapter, a suitable cell for in situ XRD analysis was designed to study the 

structural modifications on the cathode of Li–S batteries during electrochemical 

cycling. As a result, the formation and reaction of sulfur Li2S were monitored 

operando during charge and discharge. It was demonstrated that at a low discharge 

rate sulfur reduces consecutively during the first discharge to Li2S. The formation of 

Li2S was observed for the first time at a depth of discharge of 60% in the second 

discharge plateau at 1.8 V. During the first charge cycle, crystalline Li2S reacts 

entirely and sulfur recrystallizes with a different oriented structure and smaller 

particle size. The reaction of Li2S is slower as the recrystallization rate of sulfur and 

after the second discharge, almost 50% less crystalline Li2S is formed compared with 

the first discharge. At the end of the second charge, the peaks of sulfur appear at the 

same positions, indicating a similar orientation of the particles as the one after the first 

charge. However, an amorphous phase appears during first discharge and does not 

disappear completely in the further cycles. The non–homogenous distribution of 

active material in the cathode observed after cycling, the diminution of crystalline 

phase between cycle, the increase of isolating amorphous phase in the electrode 

contributes to the reduction of cell capacity, by the non–completely utilization of the 

active material.  

 



5 Electrochemical impedance 
spectroscopy 

EIS is a powerful technique to investigate the physical and electrochemical processes 

occurring in batteries during cycling. This method is used in the characterization of 

Li–S batteries to study, amongst other topics, the influence of electrode protective 

layers [61,142,143], cathode materials [28,29,144–147] and electrolyte compositions 

[44,112,115,148,149] on the impedance of the cell.  

Few studies have applied EIS at different depths of charge or discharge [31,150–152]. 

In these studies, such measurements were performed using potentiostatic mode with 

an amplitude signal of 5 mV at different frequency ranges (100 kHz–100 mHz [150], 

1 MHz–10 mHz [151], 65 kHz–1 Hz [152], 200 kHz–1 mHz [31]). The processes 

described by the proposed equivalent circuits (ECs) in [150] are electrolyte resistance 

(Re), the formation of the conductive agent/electrolyte interface (Rct||CPE1), Li2S film 

formation (Rg||CPE2) and polysulfide diffusion (Warburg–Element, W0). The element 

R||CPE is defined as a resistance (R) connected in parallel to a constant phase element 

(CPE). Similar ECs were applied for the fitting of the impedance spectra in [152]. The 

processes analyzed here were electrolyte resistance (Rel), surface layer formation on 

lithium and sulfur electrodes (R1||CPE1), the electrochemical reaction of sulfur 

(Rr||CPEr) and polysulfide diffusion (W). C. Barchasz and coworkers [31] did not 

analyzed the spectra at high frequencies, and therefore, no electrolyte resistance was 

considered. The boundary electrode/electrolyte was also described by a Rct||CPEdl 

element, new phase formation was represented by a Rct||CPEf element, and the liquid–

state diffusion of soluble polysulfides was defined by a CPE1 rather than a Warburg 

Element.   

The models described above can fit impedance spectra either at high or low frequency 

regions, but none of these have been applied over a wide frequency range. In this 

chapter, changes in the impedance of Li–S batteries were studied by means of EIS at 

different depths of discharge/charge over a wide frequency range. A simple but 

consistent EC is proposed to quantify the impedance contributions related to each 

physical or electrochemical process occurring in the battery. Moreover, the impedance 

spectra of Li–S batteries were evaluated in discharge and charge states for up to 50 
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cycles. Most of the results presented in this work were published in Electrochimica 

acta [7]. 

5.1 Experimental procedures 

The battery was built up in the Swagelok cell as described in Figure 3.4. The cycling 

performance of the battery was investigated using an electrochemical workstation 

(Zahner® IM6) with proprietary battery evaluation software (Zahner®). The charge–

discharge procedure was performed galvanostatically at a current density of 

300 mA gsulfur
–1 in a voltage range of 2.8–1.5 V. After reaching the final charge  

voltage of 2.8 V, a potentiostatic period occurred for 15 min before the next cycle 

began. 

EIS measurements were performed at the same electrochemical workstation during 

cycling in equidistant charge intervals of 50 mC. Each spectrum was measured in the 

frequency range of 1 MHz to 60 mHz and with an excitation voltage of 5 mV. The 

experimental data were fitted with an EC created with Thales software.   

5.2 Results and discussion 

5.2.1 EIS during cycling 

Figure 5.1 (a) and Figure 5.2 (a) show the first discharge and charge curves of the Li–

S battery respectively. Each point in the curve represents a recorded EIS spectrum. 

For clarity, a selection of spectra is presented. The frequency–dependent impedance 

of the cell represents the response of several parallel processes occurring in the 

battery. During cycling, these processes are revealed in the form of two or three 

depressed semicircles in the impedance plots. It can be seen that not only the diameter 

of the semicircles, the charge transfer resistance respectively, but also the number of 

semicircles that appear in the spectra changes with the state of charge or discharge. 

Moreover, a distinct additional process is observed at low frequencies, which is shown 

by a bended slope line. At high frequencies, no inductance is observed in the EIS 

spectra up to 1MHz. 



5 Electrochemical impedance spectroscopy │65 

 
Figure 5.1: Discharge curve of a Li–S battery; each point represents an EIS 
measurement (a). Selected Nyquist plots in the frequency range of 60 mHz–1 MHz at 
different depths of discharge, DOD (b). Experimental and fitting results at 27% (c), 
52% (d), and 90% DOD (e). The high frequency regions of the spectra are amplified on 
the right. 
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Figure 5.2: Charge curve of a Li–S battery; each point represents an EIS measurement 
(a). Selected Nyquist plots in the frequency range of 60 mHz–1 MHz at different depths 
of charge, DOC (b). Experimental and fitting results at 100% DOD (c), 22% DOC (d), 
and 65% DOC (e). The high frequency regions of the spectra are amplified on the right. 
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During discharge, a semicircle with a relatively small diameter (low resistance) can be 

observed at high frequencies. This process named here P1 is present in all EIS 

measurements and can be seen, for example, in the magnified images in Figure 5.1(c–

d). In the middle frequency range, a larger depressed semicircle (P2) is observed 

during cycling. This larger semicircle is accompanied by a short bended line at low 

frequencies (P4). From a 16% DOD, a new semicircle (P3) appears between P2 and P4. 

P3 vanishes after 27% of DOD (Figure 5.1 (c)) and reappears at approximately 50% 

DOD, growing continuously, like it can be seen in Figure 5.1 (d–e), until the end of 

discharge. At higher states of discharge, P3 becomes more significant, whereas P4 (at 

low frequencies) is suppressed (see Figure 5.1 (e)). The processes P1–P4 are observed 

at specific cutoff frequencies in the MHz–, kHz–, Hz– and mHz– domains, 

respectively. 

During charge, the processes P1–4 can also be discerned. P1 is present during charge in 

the high frequency range and semicircle P2 decreases with increasing DOC. The 

semicircle corresponding to P3 diminishes continuously with an increasing depth of 

charge (DOC) (compare loop P3 in Figure 5.2 (d) and (e)). At the end of charge, a 

small increase is observed (see modeling results). Finally, the process P4 behaves 

concurrently with P3.  

5.2.2 Equivalent circuit (EC) for Li–S batteries 

To simulate the results of the EIS spectra, an equivalent electrical circuit was 

designed. First, the spectrum was expanded in the lower frequency range down to 

1 mHz (Figure 5.3) in order to identify the form of the short bended line that appears 

at high frequency. This was necessary to correlate this last slow process with a proper 

element of an EC. As it can be seen in Figure 5.3, this measurement reveals that the 

process (P4) in the low frequency region take the form of a semicircle. This cannot be 

described by neither a Warburg element nor a capacitive element, contrary to 

proposed by [150–152]. 

An equivalent electrical circuit consisting of an ohmic resistance R0 in series with four 

R||CPE Elements (R and CPE connected in parallel) was chosen to model the EIS 

results (Figure 5.4). A CPE was selected instead of a capacitor because of the non–

ideal behavior of the system, reflected as depressed semicircles in the Nyquist plots. 

As described in chapter 2.3.2, CPE is similar to an ideal capacitive element, but has an 

absolute phase angle of less than 90°. The CPE impedance is defined by the Thales 

program as Z = 1/(ωfT(jω/ωf)
α, where ω is the angular frequency, ωf is a normalization 
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factor, and T and α are constants. The variable α is dimensionless (α ≤ 1) and defines 

the grade of compression of the CPE semicircle. The limit value of α = 1 represents 

ideal capacitive behavior. In these measurements, α varies between 0.48 and 1.  

 
Figure 5.3: Nyquist plot of a Li–S Battery, frequency range: 1 mHz–1 MHz (a) with 
magnification in the frequency range: 72 mHz–1 MHz (b). 

 
Figure 5.4: Equivalent electrical circuit of a Li–S battery used to fit the experimental 
data.  

Depressed semicircles such as P3 could be the result of the superposition of many 

semicircles, as several parallel reactions occur in the battery. Nevertheless, these 

depressed semicircles cannot be identified separately and the EC must be simplified in 

one depressed semicircle. Non–ideal behavior can also be explained by 

heterogeneities of the electrode material, roughness and gradient concentrations.  

In Figure 5.5, an example of an EIS spectrum at 81% DOD and its fitting to the EC 

are shown. The blue semicircles in the image are only guides to the eye. As shown, 

the experimental points fitted with the equivalent circuit with a fitting error of 1.19% 

(calculated as average error of all elements). The different processes described 

previously (P1–4) are now described by the corresponding R||CPE elements of the EC. 

Depending on the depth of charge or discharge, R3||CPE3 and/or R4||CPE3 may not be 

present or may be indistinguishable in the frequency range of measurement. 
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Figure 5.5: Nyquist plot of the impedance response of the battery at 81% DOD. The 
blue semicircles are schematics to clarify the domain of each EC element. The high 
frequency region of the spectrum is magnified at the top. 

5.2.3 Assignment of processes to the EC–elements 

Each element of the EC should describe a physical, chemical or electrochemical 

process occurring in this battery. The assignment of a process to each element is 

probably one of the most difficult and controversial part in the EIS. This results of the 

combination of previous knowledge about the system, the observation of the changes 

in the EIS spectra, and the comparison with the results obtained using other 

characterization techniques, like the used in this work: XRD, AFM and UV–vis 

spectroscopy. These results support the following assignment of the elements in the 

EC, which are summarized in Table 5.  

Table 5: Assignment of processes to the elements of the EC. 

Element  of the EC Chemical and physical cause 

R0 Ohmic resistance, electrolyte resistance 

R1||CPE1 Anode charge transfer  

R2||CPE2 Cathode process: charge transfer of sulfur intermediates 

R3||CPE3 Cathode process: reaction and formation of S8  and Li2S 
l

R4||CPE4 Nernst–diffusion 
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The first loop at high frequency, R1||CPE1, is associated with the charge transfer 

occurring at the anode surface. This interpretation is based on analysis of the 

simulation results that will be presented in the following chapter. First, the clear, 

concurrent behavior of R0 and R1 as a function of DOD or DOC is observed. This 

implies that P1 is also affected by the concentration of polysulfides that can be 

reduced at the anode, which leads to charge transfer inhibition. Second, the resistance 

values of P1 are much lower than those of P2 (related to the charge transfer resistance 

of the cathode, see explanation below). This is attributed to the faster reaction kinetics 

occurring in the anode (Li Li+ + e‒).  

The R2||CPE2 element is attributable to the charge transfer of sulfur intermediates, and 

R3||CPE3 is attributable to the formation and dissolution of S8 and Li2S. The 

correlation of these EC–elements with specific chemical processes occurring in the 

battery was conceived after analysis of the simulation results. Note that R2 is highest 

at 0% discharge where the concentration of sulfur intermediate is minimized. On the 

contrary, R3 obtains its highest value at full discharge where accessible S8 is 

unavailable and obtains its lowest values after sulfur dissolution. R3 is visible when 

the formation of Li2S starts. Both the electrochemical reactions and the resistance of 

each EC–element exhibit a distinct DOD/DOC dependence. Finally, diffusion of 

species in the electrolyte is detected at low frequencies. In the EC, this process is 

simulated using the element R4||CPE4. This could be replaced by using the “General 

Warburg Impedance” described in section 11.2.1. 

5.2.4 Simulation of EIS during the first cycle 

The circuit elements (ohmic resistance, charge transfer resistances, and associated 

double layer capacitance) were calculated by fitting the experimental data points with 

the EC. A complete overview of the simulation results are presented in the 

supplemental information (Table 13, Table 14, and Table 15). The resistance 

contributions as functions of DOD and DOC for the first cycle are illustrated in Figure 

5.6. The electrolyte resistance (R0) changes during discharge and is influenced by the 

concentration of soluble polysulfides (Figure 5.6 (a)). High resistances are observed 

from 34–52% DOD, indicating states with high concentration of polysulfides 

corresponding to the end of the first plateau in the discharge curve. When the 

reduction of polysulfides to lithium sulfide is complete, R0 reduces back to 

approximately its original values.  
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Figure 5.6: Changes of charge transfer resistances during first discharge (a–c) and first 
charge (d–f) of the Li–S battery. 

The charge transfer resistance in the anode (R1) shows a trajectory similar to R0 but 

more pronounced, with a maximum at around 34% DOD. These both show similar 

behavior, because a high concentration of dissolved polysulfides in the electrolyte not 

only increased the viscosity (R0) but it also hinders the charge transfer of lithium ions 

(R1) due to the presence of polysulfides, which diffuse through the separator to the 

anode surface. The charge transfer resistance on the cathode side, described by R2, 
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decreases during discharge (Figure 5.6 (b)). The drastic diminution of resistance R2 

during the first stages of discharge may be caused by the changes in composition and 

morphology occurring in the cathode during this period. As a consequence of the 

dissolution and reaction of sulfur, the content of solid sulfur in the cathode 

diminishes; a more porous structure remains, with a higher surface area and greater 

conductivity. The charge transfer of polysulfide ions is enhanced as a result of these 

factors. In the interval between 16% and 34% DOD, the resistance remains constant. 

At this stage, process P3 can be recognized at 16% and 27% DOD (see fitting curve 

Figure 5.1 (c)). The reason for the appearance of process P3 may be the slowing of an 

electrochemical step, which is seen as a new CPE element in the spectrum. The 

presence of this element at the first stages of discharge is related to the dissolution of 

the remaining sulfur in the cathode. 

The dissolution and progressive reaction of sulfur was already monitored during the 

first stage of discharge by means of in situ XRD in chapter 4.2.2. At 0% DOD, a small 

loop associated with P3 can be observed between P2 and P4. Nevertheless, the small 

quantity of measured points results in an imprecise quantification. For this reason the 

spectrum of the completely charged battery (0% DOD) was simulated with three 

R||CPEs. After sulfur dissolves and reacts, P3 cannot be observed until 52% DOD is 

reached. The reappearance of this process at this discharge state is then now 

attributable to the formation of Li2S. The resistance of this element increases 

continuously until the end of discharge, due to the gradual formation of this solid and 

low electrically conductive end product of the Li–S discharge reaction (Figure 5.2 

(c)). Moreover, R2 stabilizes at the final stages of discharge with the progressive 

reduction of polysulfides. 

R4, which is attributed to diffusion, could not always be determined as a result of an 

insufficient number of measured points at low frequencies. However, it is observed 

that R4 follows the tendency of P3 (Fig. 6 (c)). The dissolution or formation of solid 

isolating materials can influence the diffusion of species, negatively in the case of 

solid products formation. Diffusion is suppressed by the dominant process P3 at values 

higher than 81% DOD, and it is displaced out of the measured frequency range. This 

can be clearly observed in Figure 5.2 (e), at 90% DOD, where the large P3 semi–circle 

is present in the low frequency range. 

During the charge step (Figure 5.6 (d–f)), an overall decrease in the absolute values of 

the resistance elements is observed in comparison with the discharge step. The 

maximum values of R0 and R1 occur at approximately 60% DOC. In contrast to the 
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discharge process, the maximum concentration of polysulfides in the electrolyte 

occurs in the second half of the charging process, at the end of the first plateau. At this 

point, lithium sulfide has been completely reacted to high order polysulfides 

according with the results of the in situ XRD Figure 4.6. The resistance related to the 

charge transfer in the cathode, R2, decreases and stabilizes after approximately 40% 

DOC. The most important changes in the cathode morphology may occur during the 

first discharge, when the sulfur particles dissolve and leave the CB structure. 

Afterwards, the formation of solid products may occur primarily at the surface of the 

cathode, and not in the bulk. For this reason the charge transfer of the cathode during 

the first charge does not induce such pronounced changes as it does during the first 

discharge. Moreover, using XRD it has been observed that less crystalline sulfur is 

formed at the end of charge (Figure 4.14), a general reduction of the isolating solid 

species reduce the resistance on the cathode, and therefore the charge transfer on the 

cathode is enhanced.  

The reaction of Li2S in the first stages, and thus the reduction of the isolating phase in 

the cathode, can be followed by the diminution of R3. The most drastic changes in R3 

occur in the range between 100% DOD and 22% DOC (Figure 5.6 (f)). This can be 

observed in Figure 5.2 (c–d). At the end of the charging cycle, an increase in R3 is 

observed due the formation of solid S8. The resistance related to diffusion (R4) can be 

clearly linked to the dissolution of Li2S and the formation of sulfur, with both 

following the same trajectory. 

5.2.5 Degradation during cycling 

EIS spectra were taken over 50 cycles to investigate the degradation of the battery. As 

in can be seen in Figure 5.7, the specific discharge capacity of the cell is high at the 

beginning of the cycling (approximately 1200 mAh g–1) and decreases continuously 

with the number of cycles. The degradation of the cell is greater than the one observed 

in the cycling tests of the same battery before (Figure 3.6). This may be caused by an 

aging of the cell due to extra time necessary for the EIS measurements.  

The simulated resistances of the EC elements up to 50 cycles are presented in Figure 

5.8. In the high frequency region, the low ohmic resistance R0 and charge transfer 

resistance R1 do not change appreciably with an increased number of cycles (Figure 

5.8 (a,b)). Contrariwise, the resistance associated with the charge transfer of the 

cathode (R2) decreases drastically in the first few cycles, 50% between the 1st and 10th 

cycles (Figure 5.8 (c)). Although the charge transfer resistance in the cathode reduces, 
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the degradation of the cell increases, resulting in lower discharge capacities. The rate 

of loss of resistance is similar to the rate of the fading of capacity (49%). The battery 

loses 83% of its specific discharge capacity in 50 cycles, while the major decrease 

occurs in the first 10 cycles (49%). From the 10th to the 20th cycle, a more gradual 

diminution is observed. In conclusion, the loss of discharge capacity behaves 

concurrently with the diminution of charge transfer resistance in the cathode; the high 

reduction of R2 is most likely associated with the better accessibility of active material 

by electronic conduction; related to the less formation of non–conductive Li2S upon 

cycling. 

 
Figure 5.7: Cycle performance of a Li–S battery at room temperature for up to 50 
cycles. 

The resistance R3 cannot be precisely fitted in the same manner as the other circuit 

elements (Figure 5.8 (e)). Evaluation of this element shows larger errors due to the 

fewer available measurement points at low frequencies. The formation of Li2S, which 

is linked to this element, decreases during cycling. This diminution is reflected by the 

reduction of the resistance at the beginning of the cycle. Nevertheless, the resistance 

increases gradually after 10 cycles. This may be a result of a gradual degradation of 

the cathode due to the growth of an isolated film at the boundary between cathode and 

separator, composed of solid reaction products. On the contrary, the bulk of the 

cathode may consist, at the end of the 50th cycle, essentially of carbon black and some 

isolated particles of active material. 

The concentration of non–conductive reaction products may increase in the direction 

of the surface of the cathode. This can be explained by the reduction of charge transfer 

resistance related to the reaction of soluble polysulfides, R2, and the high resistance R3 

due to the formation of a non–conductive layer on the surface. 

0 10 20 30 40 50
0

250

500

750

1000

1250

1500

D
is

ch
a

rg
e

 c
a

p
a

ci
ty

 /
 A

h
 k

g
-1 S

Cycle / #



5 Electrochemical impedance spectroscopy │75 

 
Figure 5.8: Charge transfer resistances calculated by modeling of the impedance 
spectra up to 50 cycles (a–c) and Nyquist plots of the corresponding frequency regions 
(d–f). 
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only R0, R1 and R2 are considered in Figure 5.9. Major contribution of resistance is 

associated to charge transfer resistance in the cathode ( 80–95%). This reduces 

considerably until the 20th cycle and then remains almost constant.  

 
Figure 5.9: Relative values of the charge transfer resistance related to the electrolyte 
(R0), anode charge transfer resistance (R1), and cathode charge transfer resistance (R2).  

5.3 Conclusions 

In this chapter, the Li–S battery was investigated measuring EIS spectra during 

cycling of the battery. The use of EIS allows operando investigations of Li–S batteries 
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charge transfer resistance in the cathode is reduced by 71% after 50 cycles. This 

diminution is related to the rate capacity loss of the battery as a result of the lessened 

formation of non–conductive solid products in the cathode bulk. The battery loses 

83% of its specific discharge capacity in 50 cycles, while the major decrease (49%) 

occurs in the first 10 cycles. Finally, the formation of S8 and Li2S represents the 

greatest contribution to the resistance of the cell, thus it is also the determining factor 

in the degradation of this battery. 





6 UV–vis spectroscopy 

The formation, dissolution, and reaction of the solid products (S8 and Li2S) were 

analyzed operando using XRD (chapter 2.2). However, the polysulfides could not be 

detected due to their high solubility in the electrolyte, which was reflected in the 

increase of the electrolyte resistance and anode charge transfer resistance measured 

using EIS (Chapter 2.3). In the present chapter, the use of ultraviolet–visible (UV–vis) 

spectroscopy is chosen to analyze the polysulfide species and to bring new insights into 

understanding the reduction process of sulfur in the Li–S battery.  

UV–vis spectroscopy has been frequently used for analyzing polysulfides in aqueous 

and non–aqueous media [153–161]. Nevertheless, only few studies focused on the 

polysulfides at different state of charge in lithium sulfur batteries [160,162,163]. 

Furthermore, the quantification of these components was not included in these 

investigations and the number of polysulfides involved in the reaction of Li–S batteries 

is still unclear. To my knowledge, the first in situ UV–vis analysis on Li–S batteries 

carried out using UV–vis spectroscopy in transmission mode was presented by D. 

Mamorstein [164]. This work shows a profound analysis of the polysulfides in a Li–S 

battery with ionic liquid electrolyte. Recent work shows in situ experiments 

measurements in reflection mode [163]. The main disadvantage of this configuration is 

that the area of the cathode analyzed was free of an opposite lithium anode, so the 

electrochemical activity is reduced and limited almost to the diffusion of polysulfides 

from active area to the radiated area. The authors observed changes of the peak 

wavelength in the range between 479–572 nm for polysulfides Li2Sx with x = 8–2). The 

investigation of polysulfides by means of ex situ techniques is difficult due to the high 

reactivity of these components when in contact with air. For this reason measurements 

have to be conducted in an inert atmosphere to obtain accurate and trustful results.  

This chapter presents an experimental setup for the investigation of polysulfides under 

argon atmosphere and proposes a new approach for their identification and 

quantification during cycling of Li–S batteries. It comprises the analysis of UV–vis 

absorption polysulfide intermediates and end products as well as the study of the 

spectra at different depths of discharge in Li–S batteries. 
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It is reproduced with permission from [8] with copyright [2014] owned by the 

American Chemical Society.  

6.1 Experimental procedures 

6.1.1 Set up of UV–vis absorption measurements 

A miniature spectrometer Maya2000Pro (Ocean Optics) was used to measure the 

optical absorbance of the samples. The light source (DH–2000bal, Ocean Optics) 

combines the continuous spectrum of a deuterium and a halogen lamp with wavelength 

ranges of 215–400 nm and 360–2000 nm, respectively. A schematic configuration of 

the setup is shown in Figure 6.1. The solutions were measured in quartz cuvettes 

(Hellma) with a path width of 1 cm. The light source and the detector were placed 

outside the glove box, while the cuvette holder was inside the glove box. Light was 

transmitted between these components using fiber optics, which were connected to the 

glove box using a vacuum feed through. The fiber optics and the focusing lenses of the 

cuvette holder transmit light of wavelengths between 200–2000 nm and the optimal 

range of the detector for this configuration is 200–800 nm. The experimental setup has 

two main advantages: first, it enables measurements under argon atmosphere, avoiding 

undesirable reactions with air and water; second, a wide wavelength range can be 

analyzed in short integration times (6 ms). 

 
Figure 6.1: Set–up for UV–vis spectroscopic measurements.  
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6.1.2 Preparation of reference solutions 

Preliminary spectroscopic experiments of reference solutions were necessary to identify 

the absorption maxima (λmax) of the polysulfides. Based on the results, the spectra at 

different DOD can be interpreted. Therefore, a set of different polysulfide reference 

solutions was prepared under argon atmosphere. First, the end products of the reaction 

were measured in TEGDME as a solvent. The absorbance spectrum of TEGDME was 

subtracted from the sample measurements (Figure 11.15). In contrast to the 

intermediate reaction products, S8 and Li2S can be acquired as pure crystalline powder. 

Each powder was mixed in a glove box with TEGDME for at least 48 hours using a 

magnetic stir bar to obtain 50 mM solutions.  

The study of the intermediate polysulfides is complicated by the fact that no polysulfide 

standards exist and disproportion reactions occur rapidly [165]. Additionally, the 

absorbance peaks change with the use of different solvents (Table 6). Polysulfide 

solutions can be prepared in non–aqueous solvents in different ways: first, by direct 

reaction of S8 with lithium metal: Li + x/8 S8  Li2Sx; second, by reacting with lithium 

sulfide (Li2S): Li2S+(x+1) SLi2Sx; and third, electrochemically by reducing S8 at a 

constant potential. According to Rauh et al. [158], the direct reaction of S8 with Li2S is 

faster and more easily controllable and is therefore chosen to obtain references of each 

polysulfide Li2Sx with x = 3 – 8; to this, Li2S and S8 were mixed in stoichiometric 

proportions in TEGDME. While this technique does not necessarily yield a pure 

solution of the desired polysulfide, it will result in a mixture of polysulfides in 

equilibrium with the desired stoichiometric polysulfide. 

6.2 Results and discussion 

6.2.1 Sulfur and lithium sulfide 

The absorption spectra of the colorless S8 solution show an absorbance peak in the low 

wavelength range between 200 and 350 nm (Figure 6.2 (a)). No peaks in the visible 

region are observed. The overlapping sub–bands hidden in the non–symmetrical, broad 

peak can be determined by calculating the 2nd derivative of the absorbance curve. In the 

2nd derivative spectrum, three sharp bands can be recognized at 245, 265 and 289 nm 

(Figure 6.2 (b)). The characteristic absorption maximum (max) of S8 is assigned to the 

265 nm band. The linear dependency of the absorbance with the concentration is shown 

in Figure 6.2 (c). 
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Figure 6.2: (a) Absorption spectra of S8 dissolved in TEGDME, (b) the 2nd derivative 
spectra, and (c) changes in absorbance at max with concentration 

The spectral bands of dissolved S8 in TEGDME are similar to the ones found for S 

vapor below 250 °C (210, 265, 285 nm) [166]. These absorbance bands are related to 

electronic transitions of cyclo–S8, whereas the acyclic species S2, S3 and S4 mainly 

absorb in the visible region. Given these facts, it can be concluded that the first step in 

the discharge mechanism of Li–S batteries is the dissolution of S from cyclo–S8(s) to 

cyclo–S8(diss) and that the opening of the S8 ring only occurs during the redox reaction 

with lithium. However, the amount of S8 dissolution as well as the predominant sulfur 

species may change with the use of different solvents or for heat pre–treated sulfur 

cathodes.  

Contrary to S8, Li2S has a low solubility in TEGDME. However, spectra of this 

compound were obtained for highly dilute samples (Figure 6.3 (a)).  

 
Figure 6.3: (a) Absorption spectra of Li2S dissolved in TEGDME, (b) the 2nd derivative of 
the absorbance, and (c) changes in absorbance at max with concentration. 

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r = 0.996
A= 0.668 * C

Experimental
 Fit

 

 

A
bs

or
ba

nc
e 

/ a
.u

.

Concentration / 10-3 M
250 300 350 400

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

cb

2.
 D

er
iv

at
iv

e 
ab

so
rb

an
ce

 / 
a.

u.

Wavelength /nm

a

a: 243 nm
b: 265 nm
c: 289 nm

200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 S
8
 

A
bs

or
ba

nc
e 

/ a
.u

.

Wavelength / nm

  0.6
  1.2
  1.8

Conc. (10-3M)


max

= 265 nm

(a) (b) (c)

(a) (b) (c)

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r = 0.997

 Experimental
 Fit

A
bs

or
ba

nc
e 

/ a
.u

.

Concentration / 10-3 M

A= 0.092 * C

250 300 350 400
-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006
a: 245 nm
b: 255 nm
c: 282 nm

2.
 D

er
iv

at
iv

e 
ab

so
rb

an
ce

 / 
a.

u.

Wavelength / nm

c

ba

200 400 600 800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conc. (10-3M)

Li
2
S 

 2.6
 3.1
 3.6
 4.1
 4.6
 5.1
 5.5

 0.3
 0.6
 0.9
 1.2
 1.5
 1.7
 2.0

A
bs

or
ba

nc
e 

/ a
.u

.

Wavelength / nm


max

= 255 nm



6 UV–vis spectroscopy │83 

Li2S exhibits a sharper absorbance peak at max = 255 nm with a small shoulder 

between 300– 370 nm. In the second derivative, bands at 245, 255 and 282 nm are 

identified. In the second derivative, bands at 245, 255 and 282 nm are identified (Figure 

6.3 b). Figure 6.3 (c) shows the absorbance as a function of concentration and the 

results of the linear regression calculation. 

6.2.2 Polysulfide reference solutions 

During the electrochemical reduction of cyclo–octasulfur (S8c) several polysulfides are 

formed. Various reduction mechanisms of sulfur have been proposed based on 

electrochemical and/or spectroscopic studies [153–155,158–160,167,168]. The stable 

form of the reduced polysulfides (Sx
2−) depends on the number of sulfur atoms in the 

molecule [169]. Polysulfides with x = 3–4 are stable in the chain form. When x is six or 

seven, the polysulfides can be either present as a chain or as a cyclic molecule. For x  

7, they are stable in the cyclic form [169].  

Polysulfides dissolved in different solvents were already analyzed using UV–vis 

spectroscopy [153–161]. However, different absorption maxima are assigned to each 

polysulfide by different authors. Table 6 summarizes the absorption maxima assigned 

to sulfur species and the solvents used in past studies.  

Table 6: Summary of absorption maxima estimated in the literature for polysulfides and 
radicals. 

Ref. Solvent 
Polysulfides anions Polysulfides 

radicals 

S8
2− S7

2− S6
2− S5

2− S4
2− S3

2− S2
2− S2− S4

·− S3
·− S2

·− 

[153] DMSO 492 
 

475 
 

420 618 
     

[159] DMF 490l,

355c 
470 340,

450 
435 420 334 280 250 ~700 600  

[161] DMF 500         617  

[160] [C4mim] [DCA]   350,

460 
 440 620    620  

[157] DMSO         512  395 

[12] DMSO 490  340, 

450 
 310 260   770 610  

c: cyclic; l: linear. 
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The spectra of the polysulfide references recorded in this study at different 

concentrations are shown in Figure 6.4. Small insets show the different colors of the 

polysulfide solutions. High order polysulfides (Li2Sx with x  4) show an intensive red 

or orange color, while Li2S4 and Li2S3 are yellow–green. 

 
Figure 6.4: Absorption spectra of polysulfide solutions at different concentration Small 
insets show the visible color of the concentrated polysulfide solutions. 

At low concentrations, a broad band is observed at around 265 nm. With increasing 

concentration, additional absorbance bands appear at higher wavelengths. This may be 

caused by a lower absorbance coefficient of compounds absorbing at this wavelength 

region. Another explanation may be related to the type of transitions occurring in these 

components: Polysulfides absorb light due to the excitation of valence electrons in their 

single bonds (σ), double bonds (π) and non–bonding (n) orbitals. In fact, it was already 

proposed that polysulfides have different resonance forms due to the presence of double 

bonds in the molecule [170]. In the wavelength region that it was measured, the 

transitions to be expected for polysulfides are:ππ* and nπ*. The maximum 

absorbance was measured at a low wavelength range, usually associated with the 
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transition ππ*, which typically occurs in the UV–region. With increasing 

concentration, more absorption bands are observed at higher wavelengths. They may be 

related to weaker n π* transitions (less light absorbed) of the non–bonding electron 

pairs of the polysulfides. Because of the saturation of the detector at around 1.3 a.u. in 

the low wavelength region (200–300 nm), it is important to measure a wide 

concentration range in order to detect all absorbance bands. Each wavelength region is 

analyzed at a specific concentration, which is chosen to be as high as possible without 

showing saturation. 

The spectra in Figure 6.4 (a–g) are difficult to analyze without quantifying the 

absorbance and measuring the exact wavelength of absorption. Values of max were 

obtained by fitting the curves with Gaussian functions (see examples in Figure 6.5). 

Furthermore, Figure 6.6 (a) compares the spectra at the lowest concentration in the 

region between 225–325 nm. λmax shifts progressively from 257.4 nm for Li2S3 to 

269.4 nm for Li2S8. This shift is explained by the effect of the non–bonding electrons of 

sulfur atoms. With increasing chain length, the number of non–bonding electrons of 

sulfur and thus the resonance of the π–system increases. This moves the primary 

absorption band towards a longer wavelength. At higher concentration, absorption 

bands are observed in the Vis–region. The main absorbance bands appear at 425 and 

615 nm for all solutions. An additional band is observed for Li2S4 and Li2S3 at around 

330 nm. For the analysis, the absorbance at 615 nm and 425 nm was evaluated relative 

to the absorbance at λmax in the UV–region (~265 nm) (see Figure 6.6 (b)). For 

λmax = 615 nm the absorbance rises linearly with the decrease of polysulfide order for 

Li2S8 to Li2S4, while a significantly lower absorption was measured for Li2S3. The 

maximum value of absorbance for λmax=425 nm is reached for the Li2S4 polysulfide 

reference solution. At 615 nm the absorbance follows a similar tendency. The band at 

425 nm is clearly related to S4
2−, in accordance with previous studies [153,159]. The 

band close to 615 nm is assigned to the anion radical S3
− by many authors [12,159–

161] but also to S3
2− by others [153,160]. Here, this band is observed for all the 

solutions, but it has its maximum value (in relation to the band at 425 nm) for Li2S3 

solution. 

In order to study the effect of dissolution on the samples, the changes in the absorbance 

ratio between the bands at 615 nm (A615) and 425 nm (A425) were analyzed in the 

concentration range of 0.45 ̶ 1.47 mM (Figure 6.6 (c)). The ratio A615/A425 increases 

with decrease order of polysulfide. Considering that extinction coefficient of the bands 

should be constant at this concentration range, changes in the ratio A615/A425 would 
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mean a variation in the equilibrium of the disproportion reaction of polysulfides. The 

error bars in Figure 6.6 (c) shows no significant changes in the relation of the 

absorbance between these bands, meaning that the equilibrium of the disproportion 

reactions is not significantly affected in this concentration range.  

 
Figure 6.5: Example of fitted spectra at different wavelength regions with Gaussian 
functions to estimate the absorption maxima. 

 
Figure 6.6: (a) Spectra of polysulfide solutions at the lowest concentration. The grey 
arrow indicates the changes in max. (b) Changes in absorbance of polysulfide solutions at 
425 nm and 615 nm for the different polysulfide solutions relative to maximum 
absorbance at 265 nm; and (c) changes in the absorbance ratio between the bands at 615 
nm and 425 nm in the concentration range of 0.45 – 1.47 mM. 

The use of high diluted samples cannot be avoided by applying UV–vis spectroscopy in 

transmission mode. Although this may affect the equilibrium of the disproportion 

reactions of polysulfides, all samples were studied systematically in a wide range of 

concentrations, which allow observing relative changes between the samples accurately.      
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To summarize, polysulfide solutions prepared by mixing stoichiometric amounts of 

Li2S and S8 in TEGDME have rather similar UV–vis spectra, with the main absorption 

bands at 265 nm (observable at low concentration), as well as 332, 425 and 615 nm (at 

higher concentration). Unfortunately, the assignment of one characteristic spectrum to 

each polysulfide solution is not possible, because of the coexistence of different 

polysulfides, continuously created by disproportionation reactions. Nevertheless, the 

shift of the absorption band at low concentration and also the changes in the absorbance 

of the bands at 615 and 425 nm clearly show the variation of the polysulfide 

composition. The characteristic absorbance bands identified in this study for S8, Li2S 

and Li2Sx are summarized in Table 7. 

Table 7: Absorbance bands assigned to S8, Li2S and various polysulfides in TEGDME. 

Wavelength / nm Species  (in TEGDME) 

245, 255, 282 S−  (Li2S) 

243, 265, 289 cyclo S8 

332 S6
2− 

425 S4
2− 

615 S3
•− 

6.2.3 Discharge process: changes in the absorption spectra 

UV–vis spectra at different depths of discharge (DOD) are shown in Figure 6.7. At the 

initial stages of discharge (12.5% DOD), only absorption in the UV–region of the 

sample occurs (Figure 6.7 (a)). New absorbance bands appear in the Vis–region with 

increasing DOD at higher concentrations (Figure 6.7 (b–h)). The absorption at 425 nm 

and 615 nm rises between 25 ̶ 37.5% DOD (Figure 6.7 (b,c)). At 50% DOD, the 

absorption band at 330 nm appears (Figure 6.7 (c)). This band reaches it maximum by 

62.5% DOD and drops again after 75% DOD. Contrary, the band at 425 nm diminishes 

continuously until the end of discharge and a slight growth of the band at 615 nm is 

observed (Figure 6.7 (h)).  

The discharge profiles of the batteries tested until a specific depth of discharge are 

shown in Figure 6.8. The electrochemical tests show a good reproducibility of the 

discharge profile, which is especially significant when measuring under ex situ 

conditions. The second plateau starts when reaching 2.0 V near to 37% DOD, 

considering (100% DOD = 1200 Ah kgS
–1). 
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Figure 6.7: UV–vis spectra of cathode samples at different depths of discharge.  

The UV–region of the samples was analyzed at low concentration and the Vis–region at 

higher concentrations. The absorbance bands identified in the spectra are: 

257−267 nm (at low concentration, UV–region) and 332, 425 and 615 nm (at high 

concentrations, Vis–region). For the analysis, the area under the curve and also the 

change in max are determined for the spectra at the lowest concentration for each DOD 

(Figure 6.9). At this range, the detector is not saturated and the total absorbance can be 

measured from 200 to 800 nm. The area of absorbance is proportional to the quantity of 

species in the solvent that absorb light. It is important to mention that this does not only 

include the soluble polysulfides but also the absorbance caused by S8 (and Li2S) in 

solution.  
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Figure 6.8: Discharge profiles of batteries used for the ex situ measurements.  

It was already demonstrated by means of in situ XRD that only sulfur and lithium 

sulfide are crystalline during discharge and the polysulfides are dissolved in the 

electrolyte during cycling. The dissolution of sulfur in TEGDME can be calculated 

according to equation of Sciamanna et al. [139]: wt.% sulfur = exp [–10.994 (Tm/T) 

+ 12.584). Thus, the solubility of sulfur at room temperature is 0.19 wt.%. Although, 

the value is low, the weight relation between the sulfur present in the cathode and the 

electrolyte is also low. This means that at the beginning 18.4 wt.% of sulfur is dissolved 

and the rest is solid in the cell. Nevertheless, when the cathode and separator is 

immersed in a greater volume of TEGDME (300 µL), sulfur should be completely 

dissolved. This explains the highest absorbance at the beginning of the discharge 

(17.5% DOD) caused by the presence of dissolved S8 (Figure 6.9, left y–axis). 

However, the presence of polysulfides can be identified separately from the sulfur 

because they present additional peaks at higher wavelengths (Vis–region). Between 

25% and 87.5% DOD, it remains almost constant. At the last stage of discharge, the 

absorbance falls rapidly. Due to the very low solubility of Li2S and the low 

concentration of polysulfides, the absorbance value is extremely low at the end of 

discharge. 

Changes in λmax are also shown in Figure 6.9 (right y–axis). The reference polysulfide 

solutions already showed that λmax decreases with reduced polysulfide order. For the 

samples analyzed at different DOD, the same behavior was found in the range of 25–

75% DOD. During the first discharge plateau (12.5% DOD), λmax is 265.7 nm. At 

higher concentrations, spectra show no significant absorbance at high wavelengths, 

which is related to low order polysulfides. Thus, it is expected that the major 
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contribution to the absorbance is due to soluble S8 (max = 265 nm). When the cell is 

fully discharged, the concentration of dissolved components is lowest and the 

identification of λmax is no longer possible. 

 
Figure 6.9: Changes of absorbance area (left axis) and maximal wavelength max (right 
axis) during discharge at lowest concentration (0.67 mmolinitialSL–1). 

In Figure 6.10 the absorbance changes at 425 and 615 nm are shown during discharge. 

At 37.5% DOD, the highest absorbance is obtained for the bands at 425 and 615 nm 

and the maximum concentration of polysulfides is detected. At this point, the maximum 

concentration of polysulfides is reached. The band at 425 nm was already observed in 

the spectra of all polysulfide reference solutions and the maximum value was detected 

with the solution of Li2S4.The absorbance of this band can be considered to be 

representative of the middle order polysulfides. The maximum concentration is located 

around the end of the first plateau, where the formation Li2S is expected. After this, the 

concentration decreases until the end of discharge.  

The absorbance related to S3
•− is detected for the first time at 25% DOD. After the 

maximum at 37.5% DOD, it remains almost constant until just before the end of 

discharge, where a slight increase in absorbance is observed. The formation of S3
•− can 

be associated with the disproportionation reactions of polysulfide (6.1), proposed by 
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The disproportionation of middle and low order polysulfides occurs in parallel to the 

reduction reactions of S8 to Li2S. For this reason S3
•− is observed almost during the 

whole discharge process. 

 
Figure 6.10: Absorbance changes in the bands at 425 and 615 nm at the highest 
concentration (9.12 mmolinitialS8L

–1). 

6.3 Conclusions 

An approach to investigate the formation of polysulfides in the liquid electrolyte of a 

lithium–sulfur battery during discharge has been demonstrated using UV–vis 

spectroscopy under argon atmosphere. Absorbance maxima of dissolved sulfur and 

polysulfide species were determined at various concentrations. It was found that sulfur 

and lithium sulfide dissolved in TEGDME absorb light at 265 nm and 255 nm, 

respectively. The bands at 425 and 615 nm were identified in the spectra of the 

reference polysulfide solutions and for the samples at different depths of discharge. 

These bands are suggested to be the characteristic bands for S4
2− and S3

−. Using these 

as a reference, the evolution of several species could be followed during discharge. λmax 

of the band at the UV–region diminishes linearly with increasing DOD in the range 

between 25–75% DOD. This confirms the decrease of polysulfide chain length during 

discharge. Moreover, the highest concentration of polysulfides was found at around 

37% DOD, around 450 Ah kgS
−1. This experiment shows the possibility to not only 

detect the polysulfide intermediates but also to quantify them using UV–vis 

spectroscopy, at least semi–quantitatively. Nevertheless, it also demonstrates the 

limitation of this method to verify the existence of individual polysulfide species. For 

this reason these results will be compared with the output of a physicochemical model 
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as well as experimental data obtained from XRD and EIS in chapter 8 to gain more 

information about the electrochemical reactions of polysulfides.  



7 Morphological changes and 
degradation 

This chapter focuses on changes in the morphology and stability of the cathode caused 

by degradation during cycling. First, changes on the cathode surface caused during 

cycling are analyzed using SEM at several states of charge and discharge. Second, the 

electrical conductivity and topography of the electrode surface are examined using 

AFM. Finally, the stability of the layer is studied after several cycles using TG/DSC 

and evolved gas analysis with a mass spectrometer. Part of the work presented in this 

chapter was already published in [6,7].  

7.1 Experimental procedures 

7.1.1 Scanning electron microscopy (SEM) 

Analysis of the morphological changes on the cathode surface was carried out at 

different states of discharge/charge (DOD/DOC). For this, a scanning electron 

microscope (Zeiss ULTRA plus with charge compensation) was used. After cycling 

the battery until the desired DOD/DOC, the cathodes were demounted from the 

Swagelok cell, dried, cut, and fixed properly with conductive tape on the sample 

holder. High resolution images were taken using an accelerating voltage of 1 kV, and 

both secondary electron and backscattered electron (SE and BSE) detectors were 

applied. 

7.1.2 Atomic force microscopy (AFM) 

The topography and electrical conductivity of the cathode surface were studied using 

AFM. Cathodes were demounted from the Swagelok cell, dried, and fixed with 

conductive silver paste onto a conductive sample holder of an atomic force 

microscope (Multimode 8, Bruker Corp.). The sample was not cleaned after cycling to 

avoid chemical or physical elimination of active materials from the surface. Cathodes 

showed no significant differences when measured with or without cleaning (to remove 

LiPF6 salt). The current over the surface was measured with a Pt–coated conductive 

tip working in tapping mode at frequency of 1 KHz and a scan rate of 0.5 Hz. A 
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voltage of 100 mV was applied between the tip and the sample holder, and the 

average steady state current was measured at each tip–surface contact. Each tip–

sample interaction was analyzed with Peak Force–TUNA™ mode, which averages the 

non–continuous current measured with the intermittent contacts in tapping mode 

[171,172]. 

7.1.3 Thermal analysis and mass spectroscopy  

The samples were further characterized with TG–DTA/DSC–Apparatus STA–476 

(NETZSCH) connected with a mass spectrometer MS–403C (NETZSCH). With the 

DSC configuration (Chapter 2, Figure 2.7), the mass and enthalpy changes of the 

single components of the cathode were measured. Two Pt crucibles protected with an 

Al2O3 layer, for sample and  reference, were used to avoid reaction of the sample with 

Pt. Cathodes before and after cycling were analyzed on a plate crucible made of Al2O3 

(Tmax=1700 °C) with a diameter of 17 mm (Figure 2.7, TG–set up). The cathode 

diameter was 16 mm in order to analyze a greater content of active material; thus, 

batteries were built in Swagelok® cells with a larger internal diameter than the ones 

employed in the other characterization methods (XRD, EIS, UV–vis spectroscopy). 

For this, the sample carrier was placed in a furnace under controlled atmosphere and 

heated from room temperature until 1000 °C at 5 K min–1. 

7.2 Results and discussion 

7.2.1 Morphological changes on the surface (SEM) 

Figure 7.1 illustrates the changes on the morphology of the cathode surface during 

first cycle. A non–tested cathode was immersed in electrolyte, removed, and dried to 

observe the influence of the electrolyte. Before cycling the micro–sized sulfur 

particles are covered with carbon black nano–particles; however, some of them show 

partial dissolution of sulfur. After 20% DOD, the particles of sulfur are not identified 

any longer and instead of that some cavities are present due to dissolution and reaction 

of sulfur. This is in agreement with the results of the operando XRD: no peaks of 

crystalline sulfur are detected after 20% DOD. However, this does not exclude that 

some small quantity of sulfur is still present in the bulk of the electrode.  
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Figure 7.1: Ex–situ SEM micrographs of the cathode surface at different stages of 
discharge and charge (first cycle). Picture magnifications: 300x (top) and 3000x 
(bottom).The average discharge and charge capacity is 1276 and 1283 mAh gsulfur

–1 

respectively [6]. 

After the first half of the second discharge plateau, the cathode is partially covered by 

a solid layer. Small crystallites homogeneously are distributed on the surface layer can 

be also seen in the non–covered area of the cathode. These are probably related with 

the formation of Li2S, as they have been already identified after the end of the first 



96 │ Results and discussion 

plateau (Figure 4.5). In addition, it is important to emphasize all the samples were 

measured ex situ, due to that, this layer or crystallites may be built up as a result of the 

decomposition of polysulfides and electrolyte compounds in air after dissembling the 

cell. It has been proven that Li2S hydrolysis easily in air to form LiOH by the 

reaction: Li2S + 2 H2O → 2 LiOH + H2S (see Figure 11.14 ). The images of fully 

discharged electrode exhibit a completely covered surface caused by the formation of 

the isolating reaction products. In addition, the observation of the deposition of solid 

isolating products on the surface can be correlated with the EIS results. In chapter 

5.2.1, the process at middle frequencies (R3||CPE3) was associated with the formation 

and reaction of solid products. The resistance of this element increases dramatically at 

the end of discharge (Figure 5.6 (c)), and the SEM pictures confirm these results 

showing the formation of an isolating layer. 

After 40% DOC, the cathode surface reveals some cavities, but the surface is still 

partially covered by the layer observed after discharge. At the beginning of the second 

charge plateau (80% DOC), the surface layer seems to disappear, and more cavities 

are present due to the complete reaction of solid Li2S to soluble polysulfides. At this 

late state of charge, no peaks of crystalline sulfur are seen in the XRD spectra (Figure 

4.6), but first after 90% DOD. Finally, once the battery is completely charged, the 

cavities on the cathode surface are filled with sulfur and the cathode is covered 

partially with a layer as well as with isolated sulfur particles. According to the results 

of XRD, the layer and the isolated particles of sulfur formed during charge disappear 

completely in the next discharge cycle. However, the deposited Li2S reacts slower and 

has a lower dissolution in electrolyte (Figure 4.14). 

It is worth mentioning that solid products remain not only over the cathode, but also 

some deposition of sulfur over the separator in the cathode and anode side is observed 

after dissembling the cell (Figure 11.6). The study of morphological changes under ex 

situ conditions, in contact with air, reveals the main transformations occurring in the 

electrode surface. However, to study the real formation and distribution of Li2S, in 

situ measurements under argon atmosphere are needed. 

7.2.2 Formation of isolating layers (AFM) 

The electrical conductivity of the cathode was evaluated on the surface of the cathode 

before cycling, after the 1st discharge and the 1st charge. The samples were analyzed in 

three different positions and scanned over an area of 3 x 3 µm on the cathode surface. 

AFM images of the topography and the current distribution of the cathode can be seen 
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in Figure 7.2 (a–f). The current measured between cathode surface and sample holder 

is directly proportional to the electrical conductivity of the path between them. This is 

influenced amongst others by the composition of the sample (percentage of non–

conductive material), homogeneity of the sample, distribution of non–conductive 

particles in the bulk material, and formation of non–conductive surface layers. If an 

isolating surface layer is present, no current can be measured, and the percentage of 

non–conductive area can be quantified. The percentage of non–conductive area at 

different stages of the cell is displayed in (Figure 7.3). 

 
Figure 7.2: AFM topography images (b–d) and AFM current images (e–g) of the 
cathode surface before cycling (I), after first discharge (II) and after first charge (III) 
[7].  

Topography images of the samples show smoother surfaces of the cathode after 

cycling (Figure 7.2 (a–c)). This is explained by the dissolution of micro–sized sulfur 

particles during discharge and the formation of a thinner layer instead. Before cycling, 

the cathode has a homogeneous surface covered mainly with carbon black (Figure 

7.2 (d)). The non–conductive surface area rises to 28% (Figure 7.3). After the first 

discharge, the sample is covered with an isolating film, which reduces the conductive 

area to less than 1%. The film is accumulated during the last period of discharge and 

consists mainly of non–conductive Li2S. As already mentioned before, LiOH is 

present instead of Li2S, which is also non–conductive but stable under ex situ 
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conditions. Thus, instead of the insulating Li2S layer, the insulating LiOH layer is 

detected using AFM. The isolating property of this layer reconfirms the pronounced 

increase of charge resistance R3 observed by the EIS measurements. After charge, the 

cathode has a high percentage of non–conductive area (93%) and an inhomogeneous 

surface caused by the formation of sulfur. Similar tendencies toward conductivity 

changes on cathode surfaces were also reported by Elazari and coworkers using AFM 

measurements under Ar atmosphere [122].  

 
Figure 7.3: Non–conductive surface area (%) at different position of the sample before 
cycling (I), after first discharge (II) and after first charge (III).  

7.2.3 Stability of the binding between particles (DSC–MS) 

Characteristic temperatures and enthalpies of cathode components 

The thermal behavior was analyzed for each component of the cathode separately to 

determine the characteristic temperatures of transformation or oxidation (Figure 7.4, 

Figure 7.5, Table 8). The samples were measured using DSC under air and argon 

atmosphere. 

At standard conditions sulfur is commonly found in the orthorhombic form as cyclo–

octa–S molecule, also called α–sulfur. While increasing the temperature until 95 °C, 

this phase converts into monoclinic β–sulfur which melts at 119.6 °C. The DSC 

curves of sulfur under both atmospheres show peak I at 109 °C and peak II at 122 °C, 

which correspond to the melting points of –S and –S respectively (Figure 7.4); 

therefore no changes in the TG curves are observed at these temperatures. Under air 

atmosphere, sulfur starts loosing mass at 140 °C due to an exothermic process. The 

well–defined peak IIIa may be associated with the oxidation of one phase of sulfur, 

because some mass loss occurs at the same temperature range. After this, the 
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oxidation seems to be retarded by a transformation process, probably the endothermic 

process of vaporization. Subsequently, by 275 °C the oxidation rate increases and 

several sharp exothermic peaks appear. The sum of these (IV) by 275–325 °C is 

related to the oxidation of different sulfur phases. Sulfur polymerization may not 

occur under air atmosphere due to the earlier oxidation process. The theoretical 

temperature for sulfur polymerization is 169.5 °C [165].  

 

Figure 7.4: TG and DSC curves for sulfur under air (a) and under argon (b) 
atmosphere. 

 

Figure 7.5: TG and DSC curves for PVDF (a) and CB (b) under air atmosphere. 

Under argon atmosphere (Figure 7.4 (b)), the polymerization of sulfur can be 

observed by peak IIIb at 165.86, where no change of mass occurs. The non–

symmetrical form of the peak is caused by the overlapping of vaporization process 

starting at around 165 °C. The vaporization occurs at a middle temperature of 300 °C, 
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and the energy absorbed by the system is only slightly higher than the theoretical 

melting energy. Between 200–1000 °C vapor sulfur is composed of molecules with 

2 – 10 atoms [173]. The energy curve keeps decreasing until 325 °C creating an 

asymmetrical peak (IV). This may be attributed to a partial oxidation of sulfur caused 

by a non–totally hermetical sealing of the furnace. 

Table 8: Characteristic temperatures and enthalpies of S, PVDF, and CB. Exothermic 
process (positive sign) and endothermic process (negative sign). The values between 
parenthesis are from literature [165]. 

Material Atmosphere Characteristic T (°C) Enthalpy (J g–1) Process 

Sulfur Ar /Air 109 (109.85) –11 Melting of –S 

Ar/ Air 122 (119.75) –38 Melting of –S 

Ar 300 (444.67) –150 Evaporation 

  Air 325 7868 Oxidation 

PVDF Air 156 –2 Melting 

  Air 498 11312 Oxidation 

CB Air 696 14341 Oxidation 
 

PVDF starts to melt at 156 °C (theoretical 168 °C), initiates decomposition at 380 °C, 

and oxidizes at a middle temperature of 498 °C (Figure 7.5 (a)). This last process 

leads to formation of several gaseous products like H2O, CO2, CO, responsible for the 

high value of energy released. The DSC diagram of CB shows an exothermic process 

related the oxidation to CO2 at a middle temperature of 696 °C. 

Cathode before cycling 

TG curves of the cathode before cycling are shown in Figure 7.6. The measurements 

were carried out under air atmosphere to detect CB and PVDF up to 800 °C, and 

repeated for three samples. The first mass loss at 150 °C is related to sulfur oxidation, 

the slight decrease at around 400 °C to PDVF degradation, and at around 650 °C the 

oxidation of the carbon black particles occurs. The oxidation temperature of 

transformation is in all cases lower than the characteristic temperature obtained for the 

components measured separately as a powder. This is explained by the fact that 

reactions occur at a slower rate in the cathode due to the binding between particles. 
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Figure 7.6: Typical TG curve of a cathode before cycling. 

Table 9 summarizes the mass loss averages and corresponding standard deviations 

calculated for three cathodes measured before cycling. This confirms that the cathodes 

fabricated have a homogenous thickness (weight) and uniform distribution of the 

sulfur particles in the layer. Furthermore, it is important to mention that TG analysis is 

a trustful method to quantify the active material in the cathode, which is necessary for 

an exact calculation of specific capacity of battery during testing. Problems in the 

reproducibility of the electrochemical testing are often caused by a wrong 

quantification of the active material of the cell. 

Table 9: Composition of cathode estimated using TGA. The average and standard 
deviation were calculated for three samples. 

Mass  Sulfur PVDF CB Total 

mg 0.91 ± 0.03 0.21 ±  0.04 0.71 ±  0.02 1.83 ± 0.07 

wt.% 49.73 ±  0.45 11.48 ± 1.66 38.8 ± 1.57  

Changes after cycling 

TG curves for cathodes after 1, 10, 50, and 100 cycles are illustrated in Figure 7.7. As 

a complementary analysis to TG, the gas evolved during heating of sample was 

investigated with MS (Figure 7.7). The evolution of the mass number 64 (SO2), 44 

(CO2), and 19 (F) is displayed below the TG curves. 

After cycling, the mass loss of sulfur occurs at lower temperature, SO2 forms between 

100–150 °C instead of 250–300 °C (before cycling). The shift of the oxidation of 

sulfur from 219 °C before cycling to ca. 120 °C after cycling is explained by the 

reduction of the crystallite size and structure after cycling, already revealed in chapter 
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2.2.2, which increased the surface area of reaction. Furthermore, the crystallization of 

sulfur on the surface of the cathode and not in the bulk material may facilitate the 

reaction of sulfur with oxygen. 

 
Figure 7.7: TG before cycling and after 1, 10, 50 and 100 cycles with the evolved gas 
analysis of SO2, fluorine, and CO2. 

The increase in mass after cycling is related not only to the mass of sulfur, but also to 

reaction products of electrolyte in air. This was proved by measuring a cathode after 

drying with electrolyte (Figure 11.16). For this reason the sulfur content after cycling 

cannot be precisely determined using the TG analysis. However, the results of the 
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mass spectroscopy show the decrease of the peak area of SO2 which correlates with 

the content of sulfur in the cathode. The loss of active material is caused by the 

incomplete reaction of polysulfides to sulfur during charge, as well by the loss of 

sulfur which deposits in the separator surface.  

The TG peak of PVDF is not distinguishable anymore after cycling. Moreover, the 

results of the MS reveal that the fluorine signal detected at around 400 °C for the 

cathode before cycling can no longer be detected after cycling. This may be a result of 

the decomposition of the binder by reaction with polysulfides during cycling.  

For the cathode before cycling, CB particles oxidizes first slowly (small shoulder at 

600 °C) and then rapidly (sharp peak) at the temperature range of 600–700 °C. 

Contrary, for the cathodes after cycling, oxidation reaction occurs at lower 

temperature: 660 °C for cathodes before cycling and 469 °C for cathodes after cycling 

(Table 10). These results suggest that the structure of CB is affected by the 

electrochemical cycling of the cathode; the binding of the CB particles in the structure 

may be partially destroyed, and this facilitates the oxidation process. In addition, the 

oxidation process after cycling occurs in some cases in several steps: see double peaks 

i.e. cycle 1 and 50 (Figure 7.7 (c)). Nevertheless, the appearance of one or several 

peaks could not be attributed to a specific cycle of the battery´s life.  

Table 10: Changes in oxidation temperature of cathode components.  

Material 
Oxidation temperature (°C) Oxidation range (°C) 

Before cycling After cycling Before cycling After cycling 

Sulfur 
219 130 146 97  

(SO2) 

PVDF 378 – 126  – 

CB 660 469 170  98 

(CO2) 660 469 170  98 

7.3 Conclusions 

The dissolution and reaction of solid products during the first cycle affects drastically 

the morphology of the cathode. The formation of isolating layers at the end of the 

charge and discharge is inevitable using the present cathode and cell configuration. 

The low retention of active material in the bulk of the electrode was confirmed by the 
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formation of sulfur deposition over the cathode and separator surfaces. The change in 

structure of sulfur already shown using XRD, it is confirmed in the TG curves: the 

formation of smalls crystallite or deposition of active material on the surface shift the 

oxidation process from 219 to 130 °C. In addition, the degradation of the PVDF 

binder, which was not detected in the TG curves after cycling, is one of the causes that 

affect the binding between the CB and S particles during cycling. An extreme 

reduction of the oxidation temperature of CB from 660 to 469 °C reveals that the 

conductive material is also affected by the electrochemical cycling. This reduction 

may well be explained by the destruction of the CB structure, which is important for 

the electron transport in the cell.  



8 Simulations  

Advances in new materials and concepts will potentially improve the performance of 

Li–S batteries in the next decades. However, the fundamental understanding of the 

physico-chemical processes is still the basis for its optimal design. As already shown 

in the last chapters, by the use of in situ and ex situ characterization methods more 

information can be gained about the system. However, to maximize the optimization 

of the battery, this information should be incorporated into models, which can reveal 

additional understanding and predict the behavior over a full range of battery 

operation under different conditions. 

The first mathematical model for a complete Li–S battery was presented by 

Kumaresan and colleagues [140]. The model comprises electrochemical and chemical 

reactions, transport of species in the electrolyte, and charge transfer within and 

between solid and liquid phases. They simulated the two–staged discharge profile, 

analyzed the average concentration of polysulfides, and explained the physical 

reasons for the typical discharge profile obtained for lithium–sulfur cell. In this 

chapter, a more extended physicochemical model for Li–S batteries, developed by D. 

Fronczek et al. [174], is presented. The model allows simulating not only discharge 

profiles but also charge profiles at different C–rates, as well as electrochemical 

impedance spectra. Simulations were carried out for the Li–S cell configuration used 

in the experimental work and the output was compared with the experimental findings 

obtained from the electrochemical characterization, XRD, EIS and UV–vis 

spectroscopy described in the preceding chapters. Some of the results presented in this 

chapter were published in [8]. 

8.1 Description of the model 

The model uses a continuum scale, physicochemical modeling framework called 

DENIS [175,176]. With this, differential equations can be solved, which describe 

transport in the liquid electrolyte, electrochemical kinetics, electrical properties of the 

cell, and the evolution of solid phases and their surfaces on a 1D–grid. In this model 

eight reactions among ten species are considered. They include dissolved polysulfides 

as well as solid products of discharge and charge, Li2S and S8, respectively. Figure 8.1 
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shows the assumed cell layout and reaction mechanism. Here, the domain of the 

model is illustrated and described by three layers: the lithium metal, a porous 

membrane filled with electrolyte and a cathode. Each of these layers comprises a 

number of bulk phases with one or more chemical species each. The following 

assumptions are considered: a) the cell is homogenous and infinite in parallel direction 

to the separator, b) the electrolyte is in contact with all of the solid components, c) the 

oxidation of lithium is not restricted, d) the overpotential in the negative electrode is 

insignificant, e) no other reaction occurs in the anode, f) all reactions occur at 

interfaces, and temperature and pressure are constant (T = 298 K, p = 101.325 Pa). 

 
Figure 8.1: Geometry, reaction mechanism and initial cathode composition of the 
simulated cell. 

The model is described by equations related to the mass and charge transport in the 

liquid electrolyte, the cell voltage and current, as well as the electrochemistry and 

multi–phase management in the cathode. This system of equations was evaluated on a 

1D–grid with 45 equally sized and spaced control volumes. The meaning and units of 

the symbols used in the subsequent equations are provided in Table 16. The mass and 

charge transport of the species in the liquid electrolyte is described by dilute solution 

theory. The Nernst–Plank equation defines the continuity of the species i in the 

electrolyte according to: 
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Here m,is  is the chemical production rate of species i in reaction m and V
mA  the 

volume–specific surface area. The flux of the species Ji is dependent on the effective 
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transport coefficient Di,eff, the gradient of concentration ci, and the gradient of the 

electrical potential elyt. 
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 (8.2)

It is assumed that electroneutrality holds for all control volumes, i.e. there is no charge 

separation at the length scale of the discretization (8.3). The total current density i 

(8.4) results from the current produced by charge transfer reactions (Faradaic 

reactions) if (8.5) and charge/discharge processes of an electrochemical double layer 

idl located at the surface of the electrodes (8.6). The potential between the components 

of the batteries are described by (8.7) and (8.8). 
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		ൌ		electrode		–		electrolyte	 (8.7)

E		ൌ		ca		–			an	 (8.8)

An elementary kinetic approach is used in this model for the surface reactions. The 

chemical production rate of species i in a reaction m is described by the mass action 

kinetics [177]. The Arrhenius rate law describes the forward reaction (8.10) while the 

reverse rate constant can be calculated by the law of mass action (8.11). Activation 

energies are assumed zero, and temperature constant; since no temperature–dependent 

kinetic coefficients are available. 
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A multi–phase management is necessary for modeling the evolution of the bulk 

volume fractions in time and space. Changes in volume fraction are caused by the 

formation or reaction of a phase or a phase transition. The set of equations for the 

multi–phase management is described by the continuity equation for the bulk phases 

(8.12), in which the mass conservation is defined in terms of the mass density (ερ); 

and the dependence of diffusion coefficients on bulk (8.13). All equations are solved 

numerically using time–dependent boundary conditions which correspond to the 

experimental protocol. 
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8.1.1 Model parameters 

Mechanisms of reaction 

Several mechanisms of reaction have been proposed in the last years for the Li–S 

system [12–17]. This was summarized in additional information (section 11.4.1). The 

reactions proposed in this model are presented below. Contrary to Kumaresan [140], 

no precipitation was considered for the polysulfides S8
2−, S6

2−, S4
2−, and S2

2−. Only the 

end products of charge S8(s) and discharge Li2S(s) precipitates in the electrode, as 

already confirmed experimentally using XRD [6] (chapter 4). 

S8(s) ⇄ S8(diss)  (8.14)

1⁄2 S8(diss) + e− ⇄ 1⁄2 S8
2− (8.15)
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S6
2− + e− ⇄ 3⁄2 S4

2− (8.16)

1⁄2 S4
2− + e− ⇄ S2

2− (8.17)

1⁄2 S2
2− + e− ⇄ S2− (8.18)

2 Li+ + S2− ⇄ Li2S(s) (8.19)

Initial concentration values of species are presented in Table 17. Prior to the actual 

transient simulation the initial concentrations of dissolved species are determined as 

follows: first, concentrations are set to arbitrary, but consistent (e.g. electroneutral) 

values. Then a simulation is run, where the electrical current is assumed to be zero 

and the volumes of all phases constant. Over time, the system will minimize its free 

energy by equilibrating species concentrations. Once a stable equilibrium is reached, 

these concentrations will be used as the initial values for the real transient simulation. 

Low rate constants were considered for the reactions that involve solid products. The 

low dissolution of sulfur in the electrolyte is a limiting step for the following 

reduction reactions, once dissolved, the reactions to S8
2− and to lower order 

polysulfides are considered to be faster. The crystallization of Li2S(s) is a determining 

process during discharge: as already observed in the XRD analysis, Li2S(s) reacts 

slowly during discharge and is responsible for the extension of the second plateau at 

around 2.1 V. A very low concentration of Li2S(s) is assumed to be present in the 

cathode at the beginning of the discharge to obtain better numerical stability. A 

nucleation process is considered in the model to describe the transition from virtually 

no solid Li2S (i.e. bulk activity equals zero) to a situation where there are solid Li2S 

particles throughout the cathode (i.e. bulk activity equals one). 

Further considerations and parameters 

The model parameters are obtained from literature, assumed a priori or known from 

experiments. They are summarized in Table 11 and Table 17. Only the parameters in 

equations (8.20)–(8.22) were fitted in this study to match the experimental results. 

The parameters g1–g6 are geometrical fit parameters. ε´Li2S and ε´S8 are the maximum 

volume fraction of Li2S and S8 respectively. These empirical expressions describe the 

dependence of the surface areas of bulk phases (carbon black, sulfur and Li2S) on the 

bulk volume fraction ε. For S8 and Li2S a nucleation term of the form 1/(1 + e−ε) is 

included in the equations to describe the transition from the completely dissolved state 

to the solid bulk (equations (8.20) and (8.21)). Additionally, the S8 phase contains a 
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term of the form ε3/2, which expresses the relation of surface area to volume for 

spherical bulk particles. A reduction of the electrochemically active carbon surface 

area is modeled to describe the deposition of Li2S on this surface (8.22). Even though 

there is no direct experimental proof for either of these mechanisms, they allow 

describing both the formation of solid phases and the overpotential reasonably well 

without adding a complex 3D–resolved microstructure representation to the model. 

The specific surface area of the cathode was experimentally determined with Krypton 

adsorption measurements (BET) (see section 11.1.3). 
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where,	g3=3,	g4 = 5 

(8.21)
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where,	g5=0.5,	g6 = 256 

(8.22)

Table 11: Further parameters used for the model. Values are given for T = 298 K and p 
= 101325 Pa. Parameters are either known from experiments (†), known from literature 
(*) or assumed (°). 

Cathode 

Thickness: 15 µm† Control volumes: 15 

Bulk phases Volume fraction (ε) 

Sulfur 0.0259† (= 50 wt. % of solids) 

Carbon 0.0259† (= 40 wt. % of solids) 

Binder (PVDF) 0.0071† (= 10 wt. % of solids) 

Electrolyte 0.8355† (= 84 % porosity) 

Lithium sulfide 2.0·10−4° 

Void space 0.1000° 

Interfaces Specific area° (A0
V) / m2 m–3 

Sulfur–Electrolyte 1.0·105  

Carbon–Electrolyte 1.1·107  
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Li2S–Electrolyte 1.0·105  

Separator 

Thickness 25 µm† Control volumes 25 

Bulk phases Volume fraction (ε) 

Electrolyte 0.41* 

Separator 0.59* 

Anode 

Thickness 5 µm† (reactive top layer) Control volumes 5 

Bulk phases Volume fraction (ε) 

Lithium 0.63° 

Electrolyte 0.37° 

Interfaces Specific area° (A0) / m
2 m–3 

Lithium–Electrolyte 1.0·106  

Reactions 

Chemical equation Forward rate / kmol·m−2·s−1 Molar Gibbs free energy/J·mol−1 

 S8(s) ⇄ S8(diss) 1.0·10−5° 16.5° 

 1⁄2 S8(diss) + e− ⇄ 1⁄2 S8
2− 9.0·109° −226.8° 

 3⁄2 S8
2− + e− ⇄ 2 S6

2− 1.0·1011° −188.3° 

 S6
2− + e− ⇄ 3⁄2 S4

2− 1.0·108° −179.6° 

 1⁄2 S4
2− + e− ⇄ S2

2− 4.0·1011° −132.3° 

 1⁄2 S2
2− + e− ⇄ S2− 4.0·1011° −116.5° 

 2 Li+ + S2− ⇄ Li2S(s) 1.0·1016° −149.1° 

 Li ⇄ Li+ + e− 1.0·10−5°   

8.2 Simulations and correlation with experimental results 

In this section, the results obtained using UV–vis spectroscopy, XRD and EIS during 

cycling of the cell are interpreted with respect to the simulated output of the model.  

8.2.1 Discharge profile 

First, the experimental discharge profile is compared to the simulation in Figure 8.2. 

The first cycle of the Li–S cell (Cathode II) shows a discharge specific capacity of 

~1200 Ah kg−1 which corresponds to 72% of the theoretical value. This deviation 

from ideal behavior may be explained by two different effects: Either 28% of S8 

remains completely inactive during discharge or some S8 is not entirely reduced to 

Li2S. In the XRD experiments no crystalline sulfur was observed at the end of 
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discharge. However, this does not exclude the possibility that sulfur is present as 

cyclic molecule dissolved in the electrolyte or that it reacts completely to polysulfides 

which do not react totally to Li2S. In the simulation, virtually all sulfur is dissolved 

during the first stage of the discharge. The end of the discharge is triggered by an 

increasing overpotential at the cathode side due to Li2S deposition on the 

electrochemically active surface. At the discharge cutoff voltage only 62% of the total 

sulfur is precipitated as Li2S; the remainder is dissolved in the electrolyte either as 

neutral S8 or as partly reduced charged polysulfides Sx
2−. 

 
Figure 8.2: Experimental and simulated discharge profile at the first discharge. 

While the experimental and simulated discharge profiles in Figure 8.2 look 

qualitatively similar, there are differences between the two datasets which can be 

attributed to the following effects: First, no explicit 3D–resolved model of the 

electrodes microstructure is included. While effective parameters, e.g. porosities, are 

chosen to be representative of the assumed microstructure, no extensive validation or 

fitting has been performed due to the lack of experimental evidence. Therefore, some 

important effects, e.g. nucleation and growth of solid particles can only be treated in a 

simplified fashion. Second, there are effects known to be present in the Li/S cell, 

which were excluded from the model, e.g. the polysulfide shuttle [18,178], 

disproportion reaction of polysulfides, and SEI formation [179,180]. While it is 

considered that these are important effects, they are not relevant to this study, which 

focuses on the reaction products and intermediates during discharge. Still there might 

be a visible impact on the discharge profiles. 
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8.2.2 Formation, dissolution and reaction of end products 

In Figure 8.3, the volume fractions of solid S8 and Li2S in the porous cathode are 

plotted and compared to the results obtained by in situ XRD [6]. The relative 

integrated intensity of the Braggs peaks is directly proportional to the volume of the 

crystalline species in the sample. It is evident that, when starting from a fully charged 

cell, the two solid phases do not coexist during a discharge at a slow rate. This 

changes, however, if the rate of discharge is increased (Figure 8.4). The main 

difference is that significant amounts of both solid S8 and Li2S coexist during the 

intermediate discharge phase, which in turn affects the concentration of dissolved 

species. As a result, the dissolved polysulfides are either in equilibrium with the solid 

S8 or Li2S phase, but never both.  

 
Figure 8.3: Relative volume of S8 and Li2S (simulated) compared with relative 
integrated intensity of the Bragg peaks S8 (222) and Li2S (111) obtained by in situ XRD 
[6] during the first discharge. 

The belated onset of Li2S formation as well as the discrepancy between the simulated 

and experimental results can be explained as follows: At the beginning of the 

discharge there is virtually no solid Li2S in the cell, therefore no nuclei for 

crystallization are available. Only once the electrolyte becomes supersaturated with 

S2−, crystallization is set off and solid Li2S particles start to form. However, in the 

beginning these particles are nano–sized and the concentration is too low in order to 

be detected by XRD. Once the particles grow and fill more volume, they can be 

detected by XRD more readily. 
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Figure 8.4: Simulated discharge of the cell at 2C and ⅓C rate. 100% (DOD) is defined 
as the maximal specific capacity reached in the simulation (not the theoretical specific 
capacity). In this case 100% DOD is 1130 Ah·kgS

−1 for 2C and 1175 Ah·kgS
−1 for 1/3C. 

Assuming that Li2S is built up homogenously on the surface of the CB particles, the 

film thickness of Li2S (l) can be calculated using the simulated volume fraction of 

Li2S (VLi2S) with respect to the volume of carbon black (VCB), and assuming spherical 

CB particles of 50 nm radius (r). Thus, l can be calculated as it follows:  
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where R= radius of the CB particle including the Li2S layer 

The growth of the Li2S film thickness during discharge is displayed in Figure 8.5 (a). 

Up around 20% DOD the formation of Li2S starts. However, it was already shown 

that the crystalline Li2S is detected first up to 60% DOD using XRD while an 

amorphous phase is identified before. The reaction of polysulfides to Li2S is limited 

by the formation of this isolating layer, thus when a 17 nm thick film of Li2S is 

formed over the CB particles, electrons cannot be transferred anymore from the CB 

surface to the polysulfides located on the Li2S. Thus, the potential reduces, and the 

battery cannot discharge further. In addition, the formation of this layer is observed 

also by the EIS results of represented by the R3 element.  
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Figure 8.5: Concentration of polysulfides during discharge. 

As it can be seen in the left axis of Figure 8.5 (a), this increases exponential during 

discharge. The empirical equation R3=l exp [c1 (l–c2)], was presented by Albertus and 

coworkers [181] to describe the dependence of the resistance with the layer thickness 

(l), where c1 and c2 are constants. In this work, this was used to fit the experimental 

(R3) and simulated (l) results. In Figure 8.5 (b) the dependence of R3 with the 

calculated film thickness is displayed and the fitted curve is shown as dotted line. The 

value of the constants c1 and c2 were estimated to be 2.34 and 16.48 respectively, 

where R is in kOhm and l in nm.  

 

Figure 8.6: Concentration profile across the cell of volume fraction of S8 and Li2S 
(simulated). 
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In this model the formation of solid species and crystallite growth occur only in the 

bulk of the cathode and the volume fraction is stable through the whole volume when 

the rate of discharge is low as it can be seen in Figure 8.6. 

8.2.3 Formation and reaction of intermediate products 

Figure 8.7 compares the results of UV–vis spectroscopy with EIS [7] and the outcome 

of the simulation. The anode charge resistance as determined by EIS increases rapidly 

during discharge, reaching a maximum at around 35% DOD, after which it decreases 

continuously until the end of discharge.  

 
Figure 8.7: Total concentration of Sx

2− species (simulated) compared with the 
absorbance at 425 nm (UV–vis spectroscopy), and the anode charge transfer resistance 
(EIS) (d). Selected spectra to show the behavior of the absorbance bands (a–c). 

The charge resistance at the anode side is directly proportional to the concentration of 

polysulfides. This has previously been confirmed by evaluating the electrolyte 
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resistance, which has a similar behavior during cycling [7]. Comparing these results 

with the absorbance at 425 nm, a clear correlation can be seen, which confirms the 

maximum concentration of polysulfides right at the beginning of the second plateau 

(37% DOD). Unlike with experiments, all internal states of the battery are directly 

accessible in the simulated results. Therefore, the concentrations of polysulfide can be 

studied at all times during the simulated discharge (Figure 8.8). Indeed the results 

qualitatively confirm that the polysulfide concentration is highest early during 

discharge; right after all sulfur has been dissolved. Also, it can be seen that the total 

concentration of dissolved polysulfides varies to a great extent during the discharge. 

As discussed above, a significant portion of polysulfides is still dissolved in the 

electrolyte at the end of discharge; this is reflected in the simulation results as well as 

in the UV–vis spectra (Figure 8.7 (c)). 

In Figure 8.8 the variation on concentration of the polysulfide species is represented 

during discharge. S8
2‒ starts forming right at the beginning of the cycle, reaching a 

maximum at approx. 20% DOD. Then the concentration reduces, when the S6
2‒ and 

S4
2‒ begin to build up. The concentration of the species decreases continuously upon 

discharge, and at around 90% DOD a slight increase of concentration is observed for 

species S6
2‒ and S4

2‒. This behavior at the end of discharge was observed 

experimentally for anion radical S3
−, which increases the absorbance at the end of 

discharge (Figure 8.7 (c). This species is not considered in the model, because no 

dissociation reactions were included, but it is known as dissociation product of S6
2‒ 

[13] and S4
2‒ [12]. 

 
Figure 8.8: Concentration of polysulfides during discharge. 
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Figure 8.9 displays the concentration of the species Li+, S8
2‒, S6

2‒ and S4
2‒ for all 

control volumes at different DODs. These profiles are highly dependent on the 

discharge rate as well as on the diffusion/reaction equilibrium, which changes 

considerably with the current.  

 
Figure 8.9: Concentration profile across the cell of Li+, S8

2‒, S6
2‒ and S4

2‒ during 
discharge (simulated). 
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volume due to the low rate of discharge. However, concentration gradients are 

presented through the separator/electrolyte volume. The amount of Li+ and S8
2‒ 

species increases in direction to the anode surface during the discharge process. For 
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2‒ the highest concentration is located in the cathode side at the beginning of 
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discharge (20% DOD), while at higher DOD the concentration increases in direction 

to the anode side. At 20% DOD, the maximum concentration of S4
2‒ is on the cathode 

side. Afterward, the concentration is almost constant through the separator, and at the 

end of discharge the profile in the cathode increases in direction to the anode surface. 

Although the reduction of sulfur species occur in the cathode by the acceptance of 

electrons, Sx
2‒ dissolves in the electrolyte and diffuses to the anode side due to the 

gradient of concentration. The model does not take in account reactions between 

polysulfides and the Li–anode, therefore, the different profiles obtained for the 

polysulfides are dependent on the time of formation of each polysulfide and also on 

the different diffusion constants. The electrolyte immersed in the separator acts as a 

buffer for the chemical environment in the cathode, reducing the immediate effect of 

current changes (or voltage spikes) on the cell voltage. 

8.3 Conclusions 

A numerical simulation of the discharge process was performed for the Li–S battery 

using the model developed by D. Fronczek [174]. The simulation output was validated 

with and compared to the results obtained experimentally using XRD, EIS, and UV–

vis spectroscopy. Besides confirming the experimental findings, the model allows for 

the study of properties not easily accessible to experiments like concentrations of 

polysulfides. The model affirms that the polysulfide concentration is highest during 

discharge when all sulfur has been dissolved. Also, it can be concluded that a 

significant portion of polysulfides is still dissolved at the end of discharge. This seems 

to be of significant importance for improving the discharge capacity and cycling 

stability of lithium sulfur cells. 

 





9 Summary and conclusions  

Challenges facing the application of lithium–sulfur batteries were revealed throughout 

this work. New insights into the reaction and degradation mechanisms can contribute 

to the improvement of the capacity and stability of the battery at high discharge rate 

and prolonged cycle life. In this work, the use of several characterization techniques 

allowed the identification of several processes and confirmation of statements by 

comparing results from different sources. The following techniques were successfully 

applied on the study of Li–S batteries:  

- operando X–ray diffraction (XRD) for detection and quantification of crystalline 

products Li2S and S8,  

- electrochemical impedance (EIS) for analysis of electrolyte resistance, charge 

transfer resistance in the electrodes, and reaction and dissolution Li2S and S8, 

- UV–vis spectroscopy for detection and quantification of dissolved species (mainly 

polysulfides),  

- Atomic force microscopy (AFM) for surface analysis and formation of isolating 

layers,  

- Scanning electron microscopy (SEM) for analyzing distribution of sulfur particles 

and CB and morphological changes during cycling,  and  

- Thermal analysis combined with mass spectroscopy (TG/DSC–MS) to study the 

degradation of components and morphological changes on the cathode. 

In a sulfur composite cathode, micro–sized sulfur particles are surrounded by CB 

nanoparticles, this allows the electron transfer from the active material to the cathode 

collector into the electrical circuit. When the discharge starts, some of the sulfur is 

already dissolved in the electrolyte, the rest is continuously dissolved and reduced to 

S8
2‒. This process occurs in the first 20‒30% DOD, which is represented in the first 

plateau of the discharge profile. The dissolution and reaction of sulfur reduces in 42% 

the charge transfer resistance in the cathode, enhancing in this way the further 

reduction of polysulfides in the surface of the carbon matrix. The cathode surface 

presents at this stage micro–cavities where the sulfur particles were located before. On 

the other side, the electrolyte resistance as well as the anode transfer resistance 
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increases due to an increment of polysulfides dissolved in the electrolyte; polysulfides 

increase the viscosity of the electrolyte and can diffuse to the anode side. Mainly high 

order polysulfide (S8
2‒, S6

2‒, S4
2‒) and the product of its dissociation S3

‒ are presented 

in this stage. The reduction of polysulfides proceeds and a maximum is identified at 

the beginning of the second plateau in the discharge profile at around 40% DOD. At 

this stage, maximum values are obtained for the electrolyte resistance (EIS) and the 

absorbance of the electrolyte (UV–Vis). Moreover, no detectable crystalline phase is 

present, but probably amorphous Li2S starts to build up. At 60% DOD nano 

crystalline Li2S is formed in the cathode and increases until the end of discharge. A 

capacity of ca. 1200 Ah kgS
−1 is reached for the first discharge, which corresponds to 

72% of the theoretical capacity. This 28% of missing capacity is not related to the low 

utilization of sulfur, which actually completely reacts to polysulfides, rather it is 

associated to the incomplete reaction of polysulfides to Li2S. This is evidence by 

changes in the anode charge transfer resistance, before cycling: 2 Ohm and at 

100% DOD: 19.1 Ohm (22% of the maximum value at 40% DOD). The electrolyte 

resistance increases also in 15% after discharge due to remaining dissolved 

polysulfides and the absorbance band of the radical S3
‒ is still identified at the end of 

discharge. Thus, at the end of discharge, the cell consisted of amorphous Li2S and 

nano–crystalline Li2S in the cathode as well as the remaining soluble polysulfide in 

the electrolyte. The surface of the cathode is no longer conductive due to the 

formation of the isolating Li2S film (1% of conductive area).  

Although a non–conductive film is build up after discharge, this does not inhibit the 

reaction of crystalline Li2S to soluble polysulfide in the first charge and the further 

oxidation to solid sulfur. However, the amorphous phase remains inactive in the 

cathode during the further cycles, which is the main cause for the diminution of 

capacity in the first cycle. The formation of sulfur in the first charge is detected just at 

the end of discharge. Part of the sulfur crystallizes in oriented nano sized crystallites 

which arranges in large agglomerates in the cathode surface and over the separator. 

These crystallites can growth through the separator pores blocking probably the 

transfer of lithium ions between electrodes. The rest of the sulfur remains as 

amorphous phase.  

The formation and reaction of sulfur and Li2S during cycling affects extremely the 

morphology of the cathode. The formation of isolating layers at the end of the charge 

and discharge is inevitable using the present cathode and cell configuration. Low 

retention of active material in the bulk of the electrode was confirmed by sulfur 
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depositions over the cathode and separator surfaces. Further degradation processes 

take place in the cell and they are related to the selected binder (PVDF) and the CB 

structure. The degradation of the PVDF binder, which was not detected in the TG 

curves after cycling, is one of the causes that affect the binding between the CB and S 

particles during cycling. An extreme reduction of the oxidation temperature of CB 

from 660 °C (before cycling) to 469 °C (after cycling) reveals that the conductive 

material is also affected by the electrochemical cycling. This reduction may well be 

explained by the destruction or modification of the CB structure, which is important 

for the electron transport in the cell.  

Cathode with well–dispersed and small sulfur particles in the carbon matrix improves 

the sulfur utilization during the first cycles, which resulted in an increased of capacity 

from 275 to 528 Ah kgS
–1 after 50 cycles. However, the capacity fading of the battery 

was still high (47%) and could be improved by the utilization of LiNO3 as co–salt in 

the electrolyte. With this cell configuration, discharge capacities of 800 Ah kgS
–1 were 

achieved (50 cycles, 0.18 C–rate). Nevertheless, the capacity fading of the battery is 

still high (35% between the 1st and 50th cycle). This simple but industrially viable cell 

configuration may be further improved by the utilization of Li ion conductive layers 

which can be located over the cathode to enhance retention of the active material in 

the bulk of the electrode.  

This work emphasizes the importance of in situ studies to understand the structural 

modifications of Li–S batteries and the influence in the degradation behavior during 

cycling. 

 

 





10 Outlook 

The characterization techniques and the corresponding experimental set up presented 

in this work can be further used to evaluate and confirm improvement of materials or 

fabrication steps in Li–S battery, as well as in other electrochemical systems. 

Unfortunately, most of the publications related with improvements in Li–S batteries 

show less information regarding the state of the cell after cycling, which is important 

for confirming promising results in capacity and stability.  

It has been shown that the formation of solid products S8 and Li2S originates 

undesirable changes in morphology, which increases the degradation of the battery. 

XRD analyses revealed that sulfur phase changes after the first cycle, with a 

reorientation of its particles and amorphization. This means that the preferred state of 

sulfur in the electrochemical cell sulfur is not the one expected under 

standard ambient temperature and pressure. Taking this into consideration, 

improvements on the cell capacity and stability maybe expected by introducing sulfur 

in amorphous state or as oriented particles in a conductive matrix, preventing in this 

way the formation of large particle or agglomerates of sulfur and Li2S.  

Further research into the identification and quantification of polysulfide in different 

solvents are needed for a better understanding of the reaction mechanisms in the cell. 

This may include the application of characterization techniques that complement the 

information obtained with UV–vis spectroscopy, like Raman spectroscopy and X–

absorption spectroscopy.  

The development of Li–S batteries is expected to continue in the next decades, 

probably in a rush way. In the last two years, important improvements on the sulfur 

cathode have been achieved. However, in the future, the battery safety and the impact 

of its components on the environment should not be compromised by battery 

performance. Approaches focused on replacing lithium anode by a safer material, like 

Si or Mg, should be fostered for the use of sulfur cathodes in mobile applications. By 

replacing the Li–anode, new challenges related with the cathode design and selection 

of electrolyte will come along. Moreover, developments of practical battery systems 

that can be fabricated in large–scale and at low cost are still important challenges in 

the development of cost–effective Li–S cells.  
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11.1 Battery fabrication and electrochemical 
characterization 

11.1.1 Swagelok® cells for electrochemical testing of Li–batteries 

During this work, the materials and dimensions of the Swagelok® cells were 

modified. First, stainless steel fittings were used (Figure 11.1 (a)). In this case, an 

additional foil must be added in the internal wall of the cell to avoid short circuit. 

Although a metal cell is beneficial due to the high mechanical stability, the use of an 

additional foil increases the assembling time of the cell. Moreover, occasionally short 

circuits occurred due to displacement of the foil during assembling. Second, the cell 

body was replaced by Polytetrafluoroethylene (PTFE) fitting (Figure 11.1 (b)). 

Although here short circuits were avoided, this material degraded with the time when 

contact with Li, creating black deposition in the internal walls. Moreover, PTFE cells 

deformed after several uses and lost the hermetic sealing.  

 
Figure 11.1: Swagelok type cell and fittings for cell construction.   
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Finally, PEEK® was selected as material of the body (Figure 11.1 (c, d, e)). This 

material is stable chemically and mechanically, and it show good reproducibility of 

the cycling tests. Cells with the same material were made with larger size to test a 

larger electrode area (like the one used for TG/DSC measurements). Although, 

Swagelok® cells are well establish as testing cells in the battery labs. The use of coin 

cells is recommended for future work to test the performance of the cell in similar 

conditions as in the large scale fabrication.  

11.1.2 Images of cathodes and substrate 

 
Figure 11.2: Showa Denko® substrate. (a) Microscopic picture. (b–d) SEM pictures.  

 
Figure 11.3: Non–dissolved PVDF particles on the surface of Cathode I. 
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Figure 11.4: Microscopic pictures of cross section of the cathode layer over the 
aluminum collector.  

 
Figure 11.5: Cracks over the cathode surface cause by fast drying (Cathode I). 

 
Figure 11.6: Microscopic pictures of cathode (a, b) and separator of a battery after its 
1st charge (Cathode II, Electrolyte 1 M LiPF6, 0.75 M LiNO3 in TEGDME, Separator: 
Celgard 2500, anode: Lithium).  End charge capacity 1287 Ah kgS

–1. 
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Figure 11.7: Microscopic pictures of cathode (a, b) and separator of a battery after its 
5th charge (Cathode II, Electrolyte 1 M LiPF6, 0.75 M LiNO3 in TEGDME, Separator: 
Celgard 2500, anode: Lithium).  End charge capacity 1114 Ah kgS

–1. 

 

 

Figure 11.8: Microscopic pictures of cathode (a, b) and separator of a battery after its 
11th charge (Cathode II, Electrolyte 1 M LiPF6 in TEGDME, Separator: Celgard 2500, 
anode: Lithium).  End charge capacity 1211 Ah kgS

–1. 
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Figure 11.9: Microscopic pictures of cathode (a, b) and separator of a battery after its 
64th charge (Cathode II, Electrolyte 1 M LiPF6 in TEGDME, Separator: Celgard 2500, 
anode: Lithium). End discharge capacity 500 Ah kgS

–1. End charge capacity approx. 
1155 Ah kgS

–1. 

11.1.3 Krypton adsorption measurements 

The specific surface area of CB and the cathode was measured using Krypton 

adsorption analysis (Figure 11.10, Figure 11.11). Krypton was used instead of 

nitrogen, because a low quantity of a thin cathode was measured. Since the total pore 

volumes and surface areas can be extremely small for such thin porous films, the 

pressure changes due to adsorption cannot be assessed with sufficient precision. Since 

the total pore volumes and surface areas can be extremely small for such thin porous 

films, the pressure changes due to adsorption cannot be assessed with sufficient 

precision and accuracy under said conventional conditions. When pore volume is 

reduced such as in thin films, gases with low sublimation capacity are needed to 

obtain more accuracy. The cathode samples consisted of the cathode layer (CB, PVDF 

and S) and the aluminum substrate. The specific area of carbon black is 60 m2 g–1, 

while the specific area of the cathode was obtained subtracting the weight of the 

substrate and the specific area related to the substrate was considered negligible 

compared with the nano/micro–structured cathode layer. The specific area of the 

cathode layer measured is 10.45 ± 0.91 m2 g–1. 
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Figure 11.10: Krypton Adsorption analysis of Carbon black. (a) Adsorption/desorption 
(Ads/Des) isotherms and (b) BET plots.  

 
Figure 11.11: Krypton Adsorption analysis of cathode before cycling. (a) 
Adsorption/desorption (Ads/Des) isotherms and (b) BET plots.  

11.1.4 Influence of the temperature on the discharge capacity 

Variation of the capacity (C) during prolonged cycling of the battery was observed as 

a small bump in the capacity curve vs time/cycle. Comparing the variation of 

temperature (T) with the capacity Figure 11.12 (a), a linear dependency was observed 

between C and T (Figure 11.12 (b)), where C= measured capacity (blue curve, 

Figure 11.12 (a)) expected capacity by linear interpolation (grey curve, Figure 11.12 

(a)). Thus, the capacity increases in ca.12 Ah kgS
–1 per +1°C. 
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Figure 11.12: Influence of temperature on the capacity.  

11.1.5 Sulfur structure and Li2S reactivity 

 
Figure 11.13: Phase diagram of sulfur [182]. 

Table 12: Structure parameters of –S8 at about 300 K (standard deviation in 
parenthesis). There are 16(4) molecules per unit primitive cell [134].   

Crystal space group FDDD–D2h (70)

Lattice constants  

a (Å)                          10.4646 (1) 

b (Å)                          12.8660 (1) 

c (Å)                          24.4860 (3) 
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Figure 11.14: X–ray pattern of the Li2S sample before  (t = t1) and after  approximately 
25 min in contact with air (t = t1 + 25 min). 

11.2 Electrochemical impedance spectroscopy 

11.2.1 Finite diffusion 

The Nernstian diffusion impedance (ZN), also called “General Warburg Impedance” 

describes a finite diffusion when the concentration at a certain distance to the 

electrode remains constant. ZN consists of two terms: the Warburg parameter W (in Ω 

s–1/2) and a diffusion time constant (kN) defined by the constant of diffusion (Dk) and 

diffusion layer thickness (dN) [183]. The Nernst impedance is calculated by 

ZNൌ
W

ඥj·
· tanඨ

j·
kN
	 (11.1)

kNൌ
Dk
dN

2	 (11.2)

The high frequency part of the impedance spectra exhibits the same shape like the 

Warburg impedance (Special Warburg Impedance) whereas the low frequency part is 

similar to an R–C element. The Nernstian diffusion impedance can be also 

approximated by a R||CPE element. 

When the diffusion length is finite due to a phase boundary located at a certain 

distance from the electrode, the diffusion is described by the “Finite diffusion 

impedance (ZS)” with the transfer function given by  

Zୗ ൌ
W

ඥj ∙ 
∙ cothඨ

j ∙ 
kୗ

(11.3)
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kୗ ൌ
Dୗ
dୗ

ଶ	 (11.4)

The high frequency part of the impedance spectra exhibits the same shape like the 

Warburg impedance (Special Warburg Impedance) whereas the low frequency part is 

similar to a capacity [183]. 

11.2.2 EIS simulation results  

Table 13, Table 14, and Table 15 show the simulation results for the EC elements of 

the EIS measured during the 1st discharge, during the 1st charge, and up to 50 cycles, 

respectively.  

Table 13: Simulation results of the impedance spectra measured at different DOD for 
Li–S battery during the first cycle.  

 

 

  

DOD / % α α
0 11.70 ± 0.42 2.25 ± 0.27 144.50 ± 20.8 0.49 1770.0 ± 20.35 0.85 ± 0.03 0.79
7 12.94 ± 0.11 31.0 ± 1.3 1854.0 ± 179.8 0.48 1143.0 ± 72.1 1.66 ± 0.06 0.79

16 17.79 ± 0.17 52.0 ± 3.6 662.4 ± 45.8 0.67 975.0 ± 6.0 1.70 ± 0.06 0.76
27 20.88 ± 0.16 64.6 ± 2.4 612.8 ± 40.2 0.66 952.8 ± 9.0 1.69 ± 0.02 0.75
34 22.90 ± 0.30 87.4 ± 3.8 551.2 ± 31.5 0.65 959.3 ± 14.1 1.61 ± 0.04 0.82
43 24.27 ± 0.49 74.3 ± 1.6 492.0 ± 31.4 0.67 695.0 ± 31.4 1.36 ± 0.01 0.79
52 22.47 ± 0.38 53.8 ± 1.4 544.2 ± 35.6 0.68 503.3 ± 8.2 1.41 ± 0.02 0.72
62 19.45 ± 0.19 37.9 ± 1.2 568.3 ± 30.3 0.70 462.2 ± 11.0 1.45 ± 0.02 0.70
71 17.60 ± 0.17 37.7 ± 0.7 526.8 ± 12.6 0.70 457.3 ± 3.5 1.27 ± 0.01 0.79
81 15.15 ± 0.18 32.40 ± 0.50 546.20 ± 5.90 0.69 436.90 ± 4.19 1.23 ± 0.00 0.77
90 13.94 ± 0.21 29.4 ± 0.8 533.4 ± 14.2 0.69 400.6 ± 3.8 1.19 ± 0.02 0.78
99 13.42 ± 0.24 21.8 ± 0.5 484.9 ± 19.9 0.72 450.7 ± 8.3 1.07 ± 0.02 0.73
100 13.50 ± 0.26 19.1 ± 0.7 435.9 ± 25.6 0.76 470.9 ± 8.5 0.99 ± 0.02 0.72

R0 / Ohm R1 / Ohm CPE1 / nF R2 / Ohm CPE2 / µF

DOD / % α α
0
7

16 220 ± 4 18.1 ± 3.0 1.00
27 174 ± 11 19.5 ± 4.8 1.00 242 ± 83 98.4 ± 0.5 0.60
34
43
52 73 ± 7 12.0 ± 0.3 1.00
62 77 ± 8 8.6 ± 0.4 1.00 1021.0 ± 450.0 79.1 ± 4.0 0.6
71 187 ± 8 101.9 ± 11.0 0.79 783.6 ± 269.2 571.7 ± 0.8 0.8
81 392.20 ± 8.35 102.00 ± 6.42 0.82 1048.0 ± 359.8 407.7 ± 0.8 0.8
90 2737 ± 369 38.5 ± 1.6 0.73
99 38640 ± 3284 79.1 ± 0.9 0.86
100 55770 ± 3597 79.1 ± 1.0 0.86

CPE4 / µFR4 / OhmCPE3 / µFR3 / Ohm
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Table 14: Simulation results of the impedance spectra measured at different depth of 
charge for Li–S battery during the first charge. 

 

 

Table 15: Simulation results of the impedance spectra measured during cycling. The 
EIS were measured in discharge state until the 50th cycle. 

 

DOC / % α α
0 14.65 ± 2.35 8.0 ± 0.7 335.1 ± 91.5 0.99 383.4 ± 10.7 913 ± 18 0.73

11 13.87 ± 2.21 9.8 ± 0.9 446.0 ± 102.0 0.97 280.3 ± 1.6 985 ± 28 0.77
23 14.73 ± 2.88 10.8 ± 1.3 380.0 ± 91.8 1.00 197.7 ± 0.8 1039 ± 41 0.79
34 15.81 ± 1.69 12.9 ± 1.0 332.3 ± 64.7 1.00 175.1 ± 1.0 1067 ± 43 0.79
45 16.98 ± 1.72 13.7 ± 1.0 309.8 ± 57.7 1.00 155.5 ± 1.1 1049 ± 45 0.79
56 18.16 ± 1.59 14.9 ± 1.1 297.5 ± 51.1 0.99 135.4 ± 1.4 1020 ± 46 0.80
66 17.16 ± 1.73 14.6 ± 1.1 318.2 ± 59.3 0.99 146.9 ± 2.0 1146 ± 56 0.79
76 14.64 ± 2.28 12.1 ± 1.1 385.6 ± 80.6 0.99 149.8 ± 1.0 1205 ± 57 0.77
86 11.98 ± 2.54 7.2 ± 0.8 497.7 ± 158.6 1.00 127.2 ± 1.8 1167 ± 55 0.76
96 10.54 ± 0.91 6.8 ± 1.1 820.4 ± 288.8 1.00 96.5 ± 1.4 1065 ± 59 0.84
100 9.99 ± 1.81 6.2 ± 1.2 1853.0 ± 658.7 1.00 122.2 ± 3.9 768 ± 5 0.77

R0 / Ohm R1 / Ohm CPE1 / nF R2 / Ohm CPE2 / µF

DOC / % α α
0 39350 ± 10798 78.9 ± 2.2 0.83

11 671 ± 25 52.3 ± 2.0 0.76 1002 ± 530 4.5 ± 0.5 0.91
23 340 ± 1 51.2 ± 1.3 0.74 362 ± 96 16.6 ± 0.6 1.00
34 229 ± 3 53.7 ± 1.0 0.76 278 ± 33 13.9 ± 0.5 1.00
45 184 ± 3 51.6 ± 1.7 0.75 217 ± 27 17.0 ± 0.9 0.99
56 177 ± 4 49.6 ± 2.5 0.74 204 ± 86 22.8 ± 1.2 1.00
66 106 ± 5 38.6 ± 5.5 0.67 144 ± 25 36.4 ± 3.2 1.00
76 63 ± 17 191.7 ± 50.9 0.43 77 ± 29 41.9 ± 2.5 0.96
86 63 ± 13 199.1 ± 31.8 0.46 65 ± 35 41.1 ± 2.3 0.94
96 69 ± 2 393.7 ± 4.8 0.70 394 ± 147 1.2 ± 0.1 0.78
100

CPE3 / µF R4 / Ohm CPE4 / µFR3 / Ohm

Cycle α α
1 12.69 ± 0.80 10.0 ± 0.6 162.3 ± 9.5 0.91 399.1 ± 11.2 665 3 20 0.69
2 12.10 ± 0.23 13.0 ± 0.6 199.8 ± 6.6 0.95 338.6 ± 10.4 681 3 22 0.68
3 11.74 ± 0.29 10.4 ± 0.3 198.6 ± 8.7 1.00 318.1 ± 12.3 688 4 26 0.66
4 11.46 ± 0.39 8.0 ± 0.5 220.5 ± 14.8 1.00 306.6 ± 13.3 712 3 19 0.63
5 9.75 ± 0.49 6.6 ± 0.5 281.4 ± 24.9 1.00 255.1 ± 11.0 691 4 30 0.64

10 9.95 ± 0.51 7.7 ± 0.6 320.6 ± 46.8 1.00 200.3 ± 7.7 712 1 10 0.62
15 10.13 ± 0.47 9.1 ± 0.4 277.4 ± 44.1 1.00 172.7 ± 5.8 713 1 10 0.62
20 10.10 ± 0.50 9.3 ± 0.2 282.9 ± 27.1 1.00 145.6 ± 4.6 754 1 6 0.64
25 10.21 ± 0.55 9.5 ± 0.2 296.2 ± 46.7 1.00 137.3 ± 4.3 765 1 4 0.64
30 10.29 ± 0.48 9.4 ± 0.2 252.0 ± 27.9 1.00 131.3 ± 3.2 755 1 10 0.65
35 10.15 ± 0.48 9.2 ± 0.3 248.9 ± 28.8 1.00 127.8 ± 3.1 751 2 12 0.65
40 10.19 ± 0.47 10.4 ± 0.2 268.9 ± 25.1 1.00 126.8 ± 3.3 768 1 11 0.66
45 9.53 ± 0.44 9.7 ± 0.2 263.4 ± 25.0 1.00 119.3 ± 2.2 734 2 13 0.68
50 10.35 ± 0.49 10.7 ± 0.1 280.8 ± 33.6 1.00 114.6 ± 2.7 752 2 13 0.66

R0 / Ohm R1 / Ohm CPE1 / nF R2 / Ohm CPE2 / µF
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11.3 Additional absorbance spectrum and TG analysis 

The absorption spectrum of TEGDME is shown in Figure 11.15. This spectrum was 

used as reference and subtracted from the measured spectra of the electrolyte and 

polysulfide samples.  

 
Figure 11.15: Absorption spectrum of TEGDME (UV–vis spectroscopy). 

The cathode was immersed in the electrolyte, dried, and analyzed with TG. Figure 

11.16 evidence that the electrolyte does not influence the degradation of PVDF and 

that the larger mass in detected in the region between 200 and 300 °C is caused by the 

reaction products of electrolyte.   

Cycle α
1 31520 ± 24422 74.1 ± 1.3 0.83
2 23300 ± 3747 76.5 ± 1.9 0.83
3 20730 ± 3599 75.0 ± 2.4 0.82
4 20480 ± 3971 71.9 ± 1.6 0.82
5 19340 ± 5170 71.2 ± 2.2 0.81

10 17920 ± 5007 72.4 ± 1.9 0.81
15 19220 ± 6345 67.6 ± 2.0 0.80
20 21560 ± 9827 63.0 ± 2.3 0.78
25 22400 ± 10409 62.5 ± 1.9 0.78
30 25550 ± 10971 53.3 ± 2.2 0.75
35 24550 ± 12152 52.0 ± 2.0 0.75
40 24750 ± 12405 52.7 ± 1.8 0.75
45 26270 ± 11393 50.7 ± 1.5 0.73
50 25500 ± 10126 49.6 ± 0.5 0.70
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Figure 11.16: TG measurements of cathode, after drying the electrode immersed in 
electrolyte. 

11.4 Reduction mechanisms of Li–S batteries and 
simulations 

11.4.1 Review of sulfur reduction mechanisms for Li–S batteries 

Mechanism proposed by Paris and Plinchon (1981) [13]: 

S8	൅	2e−	→	 S82−	

S82−	⇄	2S3•−	൅	1⁄4 S8	

S82−൅	2e−		⇄	2S42−	

S42−	൅	1⁄4 S8	⇄		S3•−	

S32−	൅	3⁄4 S8	⇄	2S3•−	

Mechanism proposed by Kim and Park (1993) [12]: 

S8	൅	2e−	→	 S82−	

S82−	⇄	S62−	൅	1⁄4 S8	

S82−	⇄	S42−	൅	1⁄2 S8	

S62−	൅	S82−	⇄	3⁄2 S32−	൅	S8	

S62−	⇄	S3•−	

S82−൅	2e−		⇄	S84−	

S3•−൅	e−	⇄	S32−	

S62−	൅	2e−			⇄	 2S32−	
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S84−		⇄	2S42−	

S32−		⇄	S3•−൅	e−	

S62−	൅	S32−→	S3•−൅	2e−	

S42−൅	⇄	S4•−൅	e−	

Mechanism proposed by Levillain et al. (1997) [14]: 

S8c	൅	e−	→	 S8c−	

S8c−	⇄	 S8l−	

S8l−൅	e−		⇄	S8l2−	

S8l−൅	S8c−	⇄		S8l2−	

2S32−		⇄	S22−	൅	S42−

2S62−		⇄	S42−	൅	S82−

2S6•−	⇄	S4•−	൅	S8l−	

S3•−	൅	S42−⇄	S4•−	൅	S32−	

S8c	൅	S62−		⇄		S6•−	൅	S8c2−	

S8l−	൅	S62−		⇄		S6•−	൅	S8c2−	

Where subscript c: cyclic molecule, and l: linear chain 

Mechanism proposed by Tobischima et al. (1997) [15]: 

1⁄4 S8	൅	S42−		→	 S62−

S42−	⇄	 S2•−	

S62−	⇄	 S3•−	

S8l−൅	S8c−	⇄		S8l2−	

Sx2−	⇄	Sx2−	ሺx	൏	8ሻ		

Mechanism proposed by Barchasz et al. (2012) [16]: 

During	first	discharge	plateau	

S8	൅	2e−൅	2Li൅		→	 Li2S8	

S82−	→	 S62−	൅	1⁄4 S8

S62−	→	 S3•−	

2S62−	⇄		S52−൅	S72−	



140 │ Reduction mechanisms of Li–S batteries and simulations 

“middle”	plateau	

2Li2S6	൅	2e−൅	2Li൅		→  3Li2S4	

S3•−	→	S62− 	

2S62−	⇄		S52−൅	S72−	

During	second	discharge	plateau	

2Li2S4	൅	2e−൅	2Li൅		→  4Li2S3	

2Li2S3	൅	2e−൅	2Li൅		→  3Li2S2	

Li2S2	൅	2e−൅	2Li൅		→	 2Li2S	

Mechanism proposed by Yi–Chun Lu et al. (2014) [17]: 

S8	൅	2e−	→	S82−	

S82−൅	2e−		→	S84−	

S84−		→	S42−	

S82−	→	 S62−൅	1⁄4 S8		

S62−	⇄	 S3•−	

2S42−	⇄	S82−	൅	8⁄7 	S2−	

11.4.2 Parameters used in the simulation. 

Table 16: Description of symbols and their units (chapter 8). 

Symbol Unit Description 

V
mA  m2 m–3 

Volume–specific surface area (surface at which reaction m 
happens) 

Adl m2 m–3 Total volume specific area of an electrode 
ci mol m–3 Concentration of species i 
Cdl F m–2 Area–specific double layer capacitance 
Di, Di,eff m2 s–1 (Effective) transport coefficient of species i 
E V Cell voltage 

act
fE  J mol–1 Activation energy of forward and reverse reactions phases 

F As mol–1 Faraday’s constant: 96485 As mol–1 
gi J mol–1 Molar Gibbs free enthalpy of species i 
ΔG J mol–1 Molar Gibbs reaction enthalpy 
i  Index of species and phases 
itot, idl, iF A m–3 Volume–specific cell current density (indices: total current, 
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double layer current, Faradaic current) 

iJ


 mol m–2 s–1 Flux of species i 

kf, kr  Forward and backward rate constants 
k0  Pre–exponential factor in Arrhenius equation 
m  Index of chemical reactions 
Mi kg mol–1 Mean molar mass of phase i 
R J mol–1 K–1 Ideal gas constant: 8.3145 J mol–1 K–1 

mis ,  mol m–2 s–1 Chemical production rate of species i in reaction m 

t s Time 
T K Absolute temperature 
y m Spatial position  
z  Number of electrons transferred in charge–transfer step 

α  
Symmetry factor of charge transfer reactions. 
For all reactions in this work α = 0.5 

i  Volume fraction of phase i 

i 
 

 
Maximum volume fraction of phase i (S atoms present in form 
i) 

ϕ V Electric potential 
Δϕ V Electric potential difference between electrode and electrolyte 
νi  Stoichiometric coefficient of species i 
ρi kg 3 Density of phase i 
τi  Tortuosity of a porous phase i 
 

The initial concentration assumed for the simulated cell as well as the diffusion 

coefficients are presented in Table 17. The dissolution of sulfur in TEGDME was 

calculated according to equation of Sciamanna et al.: wt.% sulfur =exp[–10.994(Tm/T) 

+12.584) [139]. 
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Table 17: List of parameters used in the simulation. Values are known from calculation 
(†), literature (*), and assumed (°). 

Species Density / Initial Diffusion coefficient  /  
S8(s) 2.07·103 kg·m–3* – 
C 2.26·103 kg·m–3* – 
(C2H2F2)n 1.78·103 kg·m–3* – 
C10H22O5 1.00·103 kg·m–3* – 
Li+ 9.86·102 mol·m–3† 2.0·10−11° 
PF6

− 9.85·102 mol·m–3† 8.0·10−11° 
S2− 6.16·10−20 mol·m–3° 2.0·10−11° 
S2

2− 3.63·10−14 mol·m–3° 2.0·10−11° 
S4

2− 2.11·10−2 mol·m–3° 2.0·10−11° 
S6

2− 7.12·10−4 mol·m–3° 1.2·10−10° 
S8

2− 2.90·10−1 mol·m–3° 1.2·10−10° 
S8(diss) 9.33·102 mol·m–3* 2.0·10−10° 
Li2S(s) 1.64·103 kg·m–3* – 
Ar – – 
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