

Tessellation of Trimmed NURBS

Surfaces using Multipass Shader

Algorithms on the GPU

BACHELOR THESIS

Mark Geiger

Duale Hochschule Baden-Württemberg

Bachelor Thesis

Tessellation of Trimmed NURBS Surfaces using Multipass
Shader Algorithms on the GPU

by

Mark Geiger

- Martriculation: 3793077 -

- Study course: TINF12ITIN -

Deutsches Zentrum für
Luft- und Raumfahrt e.V.
in der Helmholtz Gemeinschaft

Location: Cologne

Simulations- und Softwaretechnik
Verteilte Systeme und
Komponentensoftware

Supervisor:
Prof. Dr. Harald Kornmayer
Dr. Martin Siggel
Melven Röhrig-Zöllner

Statutory Declaration

I delcare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from used sources.

Mannheim, September 20, 2015

Acknowledgment

I would like to express my deepest gratitude and appreciation for the help and

support to the following persons, who have directly or indirectly helped me and

contributed in making this thesis possible.

My Parents, Ursula and Jürgen Geiger

My Brother, Martin Geiger

Special Thanks goes to my supervisors, who have greatly supported me in making

this thesis possible.

Prof. Dr. Harald Kornmayer

Dr. Martin Siggel

Melven Röhrig-Zöllner

Abstract

In Computer Aided Design (CAD) 3D objects are often represented in form of

trimmed NURBS surfaces. However, the rendering of NURBS surfaces is not

directly supported by common graphics hardware. Special tessellation and trim-

ming algorithms are required to convert the parametric NURBS surfaces into a

polygonized form so that the GPU can properly render the NURBS surfaces.

This thesis describes the implementation and further analysis on a fast and ef-

ficient GPU based rendering algorithm for trimmed NURBS surfaces presented

by Michael Guthe. The algorithm uses texture based trimming methods and is

using the GPU to evaluate NUBRS surfaces. To further optimize the algorithm, a

detailed analysis of the algorithm is shown. The bottlenecks of the algorithm are

illustrated and further improvements to counter the found bottlenecks are presented.

The algorithm is evaluated and reviewed to identify, if it can be used to visualize

high detailed aircraft models that are created by the geometry library TiGL.

Compared to conventional algorithms, the presented tessellation and trimming

algorithm could improve the performance and visual appearance of rendered aircraft

models.

Prologue

Prologue

The presented work has been produced at my workplace at the German Aerospace

Center (Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)) in the depart-

ment for Simulation and Software Technology: Distributed Systems and Component

Software (SC-VSS). The DLR is the national research facility of Germany for the

following research areas: aeronautics, space, energy, transport and security. The

DLR has approximatly 8000 employes spread to over 16 branches in Germany and

4 offices in Paris, Brüssel, Washington D.C. and Tokio. The DLR is also member in

several national and international facilities, like the European Space Agency (ESA).

Within the ESA the DLR is representing the german interests in space technologies

and is responsible for planing and organizing the use of the German space budget.1 2

The department SC-VSS aims to support the research of scientists at the DLR

by providing individual and specialized software. Furthermore, the department

develops, identifies and evaluates new software technologies for the DLR. The main

target is to develop new software in high quality, as individual as needed and on

schedule in an efficient manner. Internally the department is seperated into three

groups, namely: Distributed Systems, Software Engineering and High Performance

Computing. This thesis has been written in the group High Performance Com-

puting under the supervision of Dr. Martin Siggel and Melven Röhrig-Zöllner

from DLR. Furthermore, Prof. Dr. Harald Kornmayer from the Duale Hochschule

Baden-Württemberg (DHWB) has supervised me by creating this thesis.3 4

1[fLuRe] see: DLR at a glance
2[fBuF] vgl. Projektträger im DLR
3[fSuS] vgl. Simulations- und Softwaretechnik: Verteilte Systeme und Komponentensoftware
4[fSuS] vgl. Themen

I

Tessellation of Trimmed

NURBS Surfaces using

Multipass Shader Algorithms

on the GPU

Contents

List of Abbreviations I

List of Figures II

Source Code IV

List of Equations V

1 Introduction 1

1.1 Motivation . 1

2 Fundamentals 4

2.1 NURBS curves and surfaces . 4

2.1.1 Bézier Curves and Bézier Surfaces 9

2.1.2 De Casteljau’s algorithm . 12

2.1.3 Trimming . 14

2.2 Tessellation . 17

2.3 OpenGL rendering pipeline . 17

2.3.1 OpenGL Shading Language 20

2.3.2 Vertex and Fragment Shader 20

3 Tessellation of Trimmed NURBS-Surfaces 23

3.1 The Tessellation Algorithm . 23

3.2 CPU - Part in detail . 25

3.2.1 Bi-cubic Approximation: . 25

3.2.2 LOD selection: . 31

3.3 GPU part in detail . 38

3.3.1 Setup . 38

III

3.3.2 Rendering . 42

3.4 Implementation of the GPU Based Trimming 43

3.4.1 First Shader Pass . 45

3.4.2 Second Shader Pass . 51

4 Results 56

4.1 Test Environment . 57

4.2 Test Data . 58

4.3 Test execution and Results . 59

4.3.1 Vertex Shader . 59

4.3.2 Fragment Shader . 63

4.3.3 Setup time . 64

4.3.4 LOD selection . 68

5 Discussion 69

6 Conclusion and Future Work 71

References 72

Appendix 76

List of Abbreviations

DHWB Duale Hochschule Baden-Württemberg

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.

ESA European Space Agency

SC-VSS Simulations und Softwaretechnik: Verteilte Systeme und

Komponentensoftware

CAD Computer Aided Design

GPU Graphics Processing Unit

NURBS Non-Uniform Rational B-Splines

GLSL OpenGL Shading Language

LOD Level Of Detail

List of Figures

1 Tessellated NURBS surface . 2

2 Trimmed and Tessellated NURBS surface 3

3 example 2D nurbs curve (1) . 7

4 example 2D nurbs curve (2) . 8

5 Tensor product surface . 8

6 Bi-cubic Bézier surface patch . 12

7 De Casteljau’s algorithm: Bézier curve 13

8 Geometric interpretation of De Casteljau’s algorithm 15

9 Trimming of a NURBS surface (1) 16

10 Trimming of a NURBS surface (2) 16

11 Tessellated 3D geometry using a triangle mesh 17

12 Trimmed down OpenGL 2.0 rendering Pipeline 18

13 OpenGL Pipeline Rendering Units 20

14 Main workflow of the GPU based NURBS rendering 23

15 Knot insertion - B-spline curve . 28

16 Elliptic trimmed NURBS surface 33

17 Effect of the trimming parameters 34

18 Input vertices for the generation of a triangle fan 40

19 Generation of the trimming texture 41

20 Rendered aicraft model . 42

21 Untrimmed aircraft model . 43

22 Degenerated Bézier patch . 52

23 Calculating the normals of a Bézier patch 53

24 Cube model with multiple trimming loops on a single Bézier patch . 56

25 Components of the rendering loop 57

26 Rendered aircraft model . 58

II

List of Figures

27 Computing time by increasing number of triangles 60

28 Comparison of different sampling grid sizes 61

29 Computing time by increasing number of Bézier patches 62

30 Rendered turbine model . 63

31 Computing time by increasing flops in fragment shader 65

32 Time consumption of texture creation during setup phase by increas-

ing texture resolution . 66

33 Time consumption of texture creation during setup phase by increas-

ing trim curve quality . 67

34 Level of detail of multiple rendered tori 68

III

Source Code

1 De Casteljau’s algorithm for curves 14

2 De Casteljau’s algorithm for surfaces 14

3 Vertex Shader example . 21

4 Fragment Shader example . 22

5 creating the Bézier surface evaluation grid 44

6 indexing of the Bézier surface evaluation grid 45

7 Generating the trimming texture (1) 46

8 Generating the trimming texture (2) 47

9 Vertex Shader first rendering pass 48

10 Fragment Shader first rendering pass 49

11 OpenGL blending function . 50

12 Calculating the normals of the Bézier surface 53

13 Calculating the trimming texture parameter 54

14 Fragment Shader second rendering pass 55

15 Vertex Shader second rendering pass 76

List of Equations

1 Definition of NURBS curves . 4

2 Rational B-spline basis functions . 5

3 Pre definition: B-spline basis function. 6

4 B-spline basis function: Cox-de Boor recursion formula 6

5 Definition: NURBS surface . 7

6 Definition of Bézier-curve . 9

7 Bernstein polynomial . 9

8 Bernstein polynomial recursive . 10

9 Bernstein polynomial: Partition of unity 10

10 Start and end of Bézier curves . 10

11 Definition: Bézier Surface . 11

12 Knot insertion: previous curve . 26

13 Knot insertion: new curve . 26

14 New control points after knot insertion 27

15 Knot vector size . 27

16 Bézier curve degree elevation (1) . 30

17 Bézier curve degree elevation (2) . 30

18 Bézier curve degree reduction . 31

19 Error of Bézier curve degree reduction 31

20 Calculation of the upper bound for the approximation error 34

21 Calculation of the maximum density . 35

22 Calculating the number of needed samples 35

23 Second derivative of a cubic Bézier curve 35

24 Perspective Projection Matrix . 36

25 Transformation to clip coordinates . 36

26 Calculating screen coordinates of world coordinates 37

V

List of Equations

27 Calculating the sampling grid of surfaces 37

28 First derivative of a cubic Bézier curve 37

29 Upper bound of the first cubic Bézier curve derivative 38

30 Calculating the texture resolution . 38

31 Trimming texture generation input vertices 40

32 Parameter scaling and offset . 47

33 Blending function GL_ONE_MINUS_DST_COLOR,GL_ZERO 50

VI

1 Introduction

1 Introduction

Today, modern Graphics Processing Unit (GPU)s are specially optimized to render

and display triangles. Therefore all three dimensional objects should be represented

by a set of triangles. The number of triangles to render a detailed three dimensional

object can be very huge. In Computer Aided Design (CAD) objects are mostly

represented in form of trimmed Non-Uniform Rational B-Splines (NURBS) sur-

faces. This is why a fast and efficient tessellation of trimmed NURBS surfaces

is very important and mandatory to achieve high performances in graphical 3D

applications. The key aspect of this work was to implement a fast and efficient GPU

based NURBS trimming algorithm by using multiple shader passes. The algorithm

described in this thesis is based on the work from Michael Guthe published in

[Gut05]. Figure 1 shows a tessellated NURBS surface.5 6

1.1 Motivation

Trimmed NURBS surfaces can describe 3D geometries with basic algebra. By

combining many NURBS surfaces very complex geometries can be created and

described in a mathematical, parametric and easily customizable manner. NURBS

surfaces are essential basic elements to describe 3D geometries in CAD applications.

But still even modern graphics hardware does not support direct rendering of

trimmed NURBS surfaces. To efficiently visualize trimmed NURBS surfaces they

have to be approximated by triangles (or another polygonal representation).7 The

algorithm implemented in regard to this thesis describes a GPU based approach of

5[KM95] see pages 1 -3
6[AMR04] see page 1
7[KM95] see pages 1 -3

1

1 Introduction

Figure 1: Tessellated NURBS surface. NURBS surface approximated (tessellated)
with 288 triangles.

trimming NURBS surfaces and of tessellating them as well. In future it is planned

to integrate the algorithm in an already existing geometry library called TiGL (see

[LSOK11]). The library can generate 3D geometries out of parametrized aircraft

datasets and visualize them. The generated aircraft geometries consist of many

trimmed NURBS surfaces which can be visualized with the algorithm described in

this work.

Figure 2 shows the same NURBS surface as in figure 1. However, the NURBS

surface in figure 2 is trimmed by a conventional meshing algorithm.

2

1 Introduction

Figure 2: Trimmed and Tessellated NURBS surface. The NURBS surface has been
trimmed using a conventional meshing algorithm.9

9Several mixed screen shots of some previous work [Gei14]

3

2 Fundamentals

2 Fundamentals

This chapter describes some of the most important aspects of CAD, which are

needed to fully understand the work written down in this thesis.

The following sections about the theoretical background of trimmed NURBS

surfaces contain excerpts of former work from the author Mark Geiger from the

works [Gei14] and [Gei15].

2.1 NURBS curves and surfaces

This section will describe and explain the math behind trimmed NURBS surfaces

and NURBS curves. Furthermore, the trimming and the evaluation of NURBS

surfaces will be explained in detail.

Trimmed NURBS (Non-uniform rational B-splines) are used widely in the CAD -

area. NURBS are derived from non uniform rational B-spline basis functions. So

NURBS are basically a generalization of B-splines.

A NURBS is defined as follows:10

C(u) =
n∑
i=0

Ri,k,τ (u)Pi (1)

10[MH02] see page 1 section 2: The Definition of Trimmed NURBS surface

4

2 Fundamentals

A NURBS curve is defined through the sum over the rational B-spline basis func-

tions Ri,k,τ and its control points Pi. The B-spline basis functions are special

cases of NURBS basis functions. And since B-spline curves are piecewise Bézier

curves, NURBS are basically also a generalization of Bézier curves. The difference

between B-spline curves and Bézier curves is that B-splines can have several Bézier

segments and Bézier curves only have one segment. The degree of a Bézier curve

raises with each control point, while the degree of a B-spline curve / surface stays

constant. Furthermore, B-splines have a knot vector. The conclusion of this is that

all Bézier curves are also NURBS curves but not all NURBS curves are Bézier curves.

As mentioned above the NURBS basis functions, which define the NURBS curve

together with its control points, are directly related to the B-spline basis functions.

The rational B-spline basis functions looks as follows:

Ri,k,τ (u) = Ni,k,τ (u)wi
n∑
j=0

Nj,k,τ (u)wj
(2)

Where Nj,k(u) are the B-spline basis functions with the knots τ and the degree k.

The knot vector has to be a monotonically increasing vector. The knots basically

define where a polynomial function that defines the curves path will start and stop.

This means that the knot vector determines where in the parameter range of the

curve the different polynomials are defined. The only important part of the knot

vector is the ratio between the single knots. Therefore, the magnitude of the knots

does not matter. The parameters wi and wj are the weights of the curve:11

11[oCSa] see B-spline Basis Functions: Definition

5

2 Fundamentals

Ni,0,τ (u) =


1, if u ∈ [τi, τi+1[

0, else

(3)

Nj,k,τ (u) = u− τi
τi+k − τi

Ni,k−1,τ (u)− τi+k+1 − u
τi+k+1 − τi+1

Ni+1,k−1,τ (u) , for k > 0 (4)

With the adjustment of the weights wi the curve can move closer to or farther away

from the control points Pi. This is one of the reason why NURBS curves are so

widely spread in the CAD. While they are more complicated to use than B-splines,

the usage of the weights allows exact modeling of circular shapes like spheres or

cones. The curve can be adjusted by differing the weights or the control points.

Figure 3 shows some example NURBS curves with given knot vectors, weights

and control points (yellow circles). Figure 3 shows a NURBS curve with the same

control points as the curve on the left side of figure 4, but with a different degree

and a different knot vector.

6

2 Fundamentals

Figure 3: example 2D NURBS curve (1). The yellow control points define the shape
of the curve in the object space. The curve can pass through the control points
or just move closely towards the points. The grade and knot vector determine
whether the curve passes through a control point or if the curve is just moving
near the control point. The order (order = 1 + degree) of a curve determines the
form of the polynomial equations that define the curve.

NURBS surfaces are defined by creating a tensor product. The basic idea of the

tensor product is to create a surface by moving or deforming a curve. Assuming

that the degree of a moving curve does not change, the surface is basically created

by a moving set of control points through the space. The movement of this curve

can be described in form of a NURBS curve itself, which means that the NURBS

surface can be described as two nested NURBS curves. The resulting formula looks

as follows:12 13

S(u, v) =

n∑
i=0

m∑
j=0

wi,jPi,jNi,p(u)Nj,q(v)
n∑
i=0

m∑
j=0

wi,jNi,p(u)Nj,q(v)
(5)

12[FHK02] see pages 130 - 132
13[PR95] see page 16

7

2 Fundamentals

Figure 4: example 2D NURBS curve (2)

Figure 5 shows how a tensor product surface is created by a moving and deforming

curve.

Figure 5: Tensor product surface. The surface is created by a moving curve in
space. 15

8

2 Fundamentals

2.1.1 Bézier Curves and Bézier Surfaces

Since the implementation of the algorithm described in this thesis depends heavily

on the evaluation of Bézier curves and Bézier surfaces a more detailed look on

Bézier curves and surfaces will be given. As mentioned above Bézier curves are

basically a specialization of NURBS curves.

Bézier curves are a far spread mathematical construct and they are mostly used

for visualization and computer graphics. But since they can be handled very easily

they are used in many other aspects as well.

A Bézier curve is defined as follows:

C(t) =
n∑
i=0

Bn
i (t) ∗ Pi (6)

Hereby Bn
i (t) is the ith Bernstein polynomial of the degree n and the control points

Pi. The Bernstein polynomials are defined as follows:16

Bn
i (t) =

(
n

i

)
ti(1− t)n−1 (7)

(
n
i

)
is hereby the Binomial coefficient.

The Bernstein polynomials have some interesting characteristics. Through the

property B0
0(t) = 1, Bi

n(t) = 0 if i < 0 ∧ i > n and B0
n(0) = Bn

n(1) = 1 the

sequence can also be defined in a recursive way:

15Figure taken from: [Far02, page 251, Figure 14.6]
16[Rog00] see formula 2.1, page 19, definition of Bézier Curves

9

2 Fundamentals

Bn
i (t) = (1− t) ∗Bn−1

i (t) + t ∗Bn−1
i−1 (t) (8)

Furthermore, the sum of all Bernstein polynomials Bn
i (t) is exactly one. This

property is called a partition of unity.17

n∑
i=0

Bn
i (t) = 1 if t ∈ [0, 1] (9)

From the partition of unity another important property of Bézier curves gets

revealed. The curve always lies within the convex hull defined by the curves control

points. Furthermore, the curve always interpolates the first control point P0 and

the last control point Pn:18

C(0) = P0 and C(1) = Pn (10)

Another important property is the affine invariance of the Bézier curve. Affine

transformations (translation, scaling, rotation, shearing) can easily be applied

to the control points Pi of the curve. The resulting curve is the same as if the

transformation would be applied to the curve itself.

Each control point of the Bézier curve has a global effect on the curve’s path.

Meaning that if one point gets changed the whole curve will look differently. The

17[Gut05] see Page. 22 Trimmed NURBS Surfaces
18[Aug] see page. 52-53 Definition und grundlegende Eigenschaften

10

2 Fundamentals

maximum of a Bernstein polynomial Bn
i (t) is exactly at t = i

n
. This means that

changing the control point Pj would change the curve mainly at the point t = j
n
,

but it would still effect the whole curve.

The global effect of the control points to the Bézier curve is the main reason

why multiple small Bézier curves are often combined to one single curve. Fur-

thermore, the usage of other curve types could be considered, like B-splines or

NURBS-curves.19

Bézier surfaces can be defined as a parametric surface as well. Similar to the

NURBS surface the Bézier surface can be created by two nested Bézier curves. The

following formula shows the definition of Bézier surfaces:

S(u, v) =
n∑
i=0

m∑
j=0

Bn
i (u)Bm

j (v)Pi,j (11)

Since Bézier curves and NURBS curves (and surfaces) are very similar they share

most of their properties with each other (like the convex hull property). The most

important difference can be noticed in the property of locality. If a control point of

a Bézier curve is changed, the change will effect the whole curve. But changing a

control point of a NURBS curve will only effect the curve locally. However, the

higher the degree of the curve is, the bigger this effect will be. But the effect will

always be local, not global. For example, in case of a degree 4 B-spline the changing

of one control point will change a whole segment defined by five control points.

19[Gei14] see page 5 - 8 Grundlagen: Kurven und Flächen in der Computergrafik

11

2 Fundamentals

Figure 6 shows a bi-cubic Bézier surface patch with corresponding control point

net and the surface itself.

Figure 6: Bi-cubic Bézier surface patch20

2.1.2 De Casteljau’s algorithm

The De Casteljau’s algorithm is used to efficiently evaluate Bézier curves by using a

polygonal approximation. The De-Casteljau-Algorithm works recursively and it is

known for its good numeric stability. The algorithm explained in this thesis depends

on the evaluation of cubic Bézier curves and on the evaluation of bi-cubic Bézier

surfaces. The De Casteljau’s algorithm needs 12 assembly operations to evaluate

a cubic Bézier curve, while the direct evaluation needs 13 assembly operations.

Although the algorithm needs more operations to evaluate a bi-cubic Bézier surface

than the direct evaluation, the algorithm is still used because of its good numerical

20Figure taken from: [Far02, page 250, Figure 14.4]

12

2 Fundamentals

stability. 21

Figure 7 shows a geometric interpretation of the De Casteljau’s algorithm on a cubic

Bézier curve. The red circles are the actual control points of the curve, the blue

circles the remaining control points after the first iteration of the De Casteljau’s

algorithm. The green circle shows the final evaluated point of the Bézier function

with the given parameter t.

Figure 7: De Casteljau’s algorithm: Bézier curve

The algorithm calculates a linear interpolation between the control points Pi and

Pi+1 with the parameter t for every control point. This generates i− 1 new control

points. The process will be redone with the newly generated control points until

only one point remains. The last remaining point is the result of the evaluation.
22

The following source code listing 1 shows a psuedo code implementation of the De

Casteljau’s algorithm:

21[Gut05] see section: Trimming on the GPU, page 55
22[FHK02] see pages 5 - 6 and pages 130 - 132

13

2 Fundamentals

Source Code 1: De Casteljau’s algorithm for curves
1 for k := 1 to n do

2 for i := 0 to n − k do

3 P [i] := (1−u) ∗ P [i] + u ∗ P [i+1]

4 return P [0]

The same algorithm can be used to evaluated Bézier surfaces. The source code

listing 2 shows a pseudo code implementation of the algorithm to evaluate Bézier

surfaces:23

Source Code 2: De Casteljau’s algorithm for surfaces
1 for i := 0 to m do

2 begin

3 Apply de Casteljau ' s algorithm to the i−th row of control points with v ;

4 Let the point obtained be qi (v) ;

5 end

6 Apply de Casteljau ' s algorithm to q0 (v) , q1 (v) , . . . , qm (v) with u ;

7 The point obtained is p (u , v) ;

Figure 8 shows a geometric interpretation of the algorithm De Casteljau’s algorithm.

Which each recursion pass the degree of the Bézier patch is reduced until only a

single point remains.

2.1.3 Trimming

By using NURBS surfaces theoretically any 3D geometry can be approximated with

a given error ε. Each NURBS surface has a quadratic parameter space, therefore it

is not trivial to construct objects with round borders. Furthermore, the construc-

tion of geometries with holes inside is only possible by putting together several

23[oCSb] see section: Bézier Surfaces de Casteljau’s Algorithm
24Figure taken from: [Far02, page 248, Figure 14.3]

14

2 Fundamentals

Figure 8: Geometric interpretation of De Casteljau’s algorithm24

NURBS surfaces. Even the approximation of quite simple surfaces (e.g. surface with

hole inside) needs a rather large amount of NURBS surfaces to obtain a small error ε.

Thus trimming curves are used to reduce the overall needed number of NURBS

surfaces to approximate a given geometry. The trimming is done by placing 2D

curves (Bézier, NURBS, ...) in the UV-parameter space of the NURBS surface.

The trimming curves can form loops inside the domain (holes) or they can create

round and more complex boundaries.25

On Figure 9 the same NURBS surface is shown on both sides. At the left side the

surface is untrimmed and on the right side the surface is trimmed with two cubic

Bézier curves.
25[SFL+08] see section Background, pages 1 - 2

15

2 Fundamentals

Figure 9: Trimming of a NURBS surface (1). On the left side the untrimmed
surface is shown. On the right side the surface is trimmed with 2 cubic Bézier
curves.

Figure 10 shows a trimmed parameter domain in the UV-space on the left side and

on the right side the trimmed surface in 3D-space is shown.

Figure 10: Trimming of a NURBS surface (2). On the left side the parameter space
of the NURBS surface is shown. The parameter space got shortened by 2 cubic
Bézier curves that form a loop inside the NURBS surface. On the right side the
trimmed NURBS in world space is shown.

16

2 Fundamentals

2.2 Tessellation

The process of tessellation is used to render objects with complex geometries. Since

hardware is designed to display graphic primitives, complex geometries have to be

divided into sets of graphic primitives. The process reads geometries and outputs

new geometries (all of the same primitive type) to approximate the input geometry.

Most of the time the primitives will be triangles because most computer hardwares

are specially designed to render triangles very fast.26 27

Figure 11 shows a complex geometry approximated by triangles. The algorithm

explained in this thesis tessellates NURBS surfaces using triangle primitives as

well.

Figure 11: Tessellated 3D geometry using a triangle mesh28

2.3 OpenGL rendering pipeline

The OpenGL rendering pipeline has changed a lot in the last years, the version

used in this work is the version 2.0, which was released at 22 October, 2004.

The OpenGL rendering pipeline is a sequence of specific processes that are needed
26[SAFJL10] see section 2.12 Tessellation, pages 94 - 96
27[KM95] see pages 1 - 2
28 source: [LJKC09]

17

2 Fundamentals

to convert the vertices of a graphic primitive to a rendered object. Vertices are

points in space that describe the geometry of a primitive, for example the three

corner points of a triangle. Each call to draw a graphics primitive (triangle, quad,

...) will stream data into the OpenGL rendering pipeline. As mentioned in the

introduction, drawing triangles is the most efficient way of using the rendering

pipeline. Figure 12 shows a trimmed down overview of the OpenGL (version 2.0)

rendering Pipeline.29 30

Figure 12: Trimmed down OpenGL 2.0 rendering Pipeline

29[fHPG] see sections Pipeline and Vertex Processing
30[SAFJL04] see pages 71 - 85, 198 - 206

18

2 Fundamentals

First the vertex data will stream into the vertex shader, the vertex shader is one of

the programmable stages in the rendering pipeline. The vertex shader takes an

incoming vertex and outputs a transformed vertex. This means that the vertex

shader does an one-to-one mapping of input vertices to transformed output vertices.

A vertex can be two, three or four dimensional, note that an input vertex can be

two dimensional and the output three dimensional.

The next steps are the triangle assembly and the Rasterizer. In the triangle

assembly (primitive assembly) the incoming stream of vertices will be put together

into packages (e.g. three vertices) to create the primitive. The Rasterizer will then

create a sequence of fragments out of the newly created primitives by the primitive

assembly unit. A fragment is similar to a pixel inside the created primitive, one

triangle can have many fragments. Furthermore, one visible pixel on the screen

can have multiple fragments (e.g. when multiple triangles are on top of each

other). After the Rasterizer has created the fragments, they will be used in the

fragment shader. The fragment shader is the second programmable unit of the

render pipeline (in OpenGL Version 2.0). The fragment shader takes the incoming

fragments and outputs a four dimensional color (red, green, blue, alpha) for each

processed fragment.31 32

Figure 13 visualizes what the different steps and rendering units do. As mentioned

above the vertex shader and the fragment shader are the programmable units in

the rendering pipeline.

31[fHPG] see sections Primitive assembly, Rasterization and Fragment Processing
32[SK09] see page 8: Overview of OpenGL ES Shading
33 idea from: https://glumply.github.io/modern-gl.html (author: Nicolas P. Rougier) visited

01.09.2015

19

2 Fundamentals

Figure 13: OpenGL Pipeline Rendering Units33

2.3.1 OpenGL Shading Language

The OpenGL Shading Language (GLSL) is a programming language designed

to program the programmable units inside the OpenGL rendering pipeline. For

OpenGL version 2.0, these are the vertex shader and the fragment shader. The

language is very similar to the c programming language and has some basic math

functions and data types integrated into the core packages. GLSL allows direct

usage of matrices, vectors and the common mathematical functions that are needed

to work with matrices.34

In OpenGL 2.0 the vertex shader and the fragment shader can be programmed

using GLSL. Since the programmable vertex and fragment shader are essential for

the results in this thesis, they will be explained in more detail in the next section.

2.3.2 Vertex and Fragment Shader

On the basis of a simple vertex and fragment shader example the workings of the

OpenGL shaders and the shader programming will be explained in this section.

The source code 3 shows a very simple example of a vertex shader.

34[SK09] see pages 8 - 18

20

2 Fundamentals

Source Code 3: Vertex Shader example
1 #v e r s i o n 120

2 uniform vec4 offset ;

3 vary ing vec2 parameter ;

4

5 void main (void)

6 {

7 parameter = normal ize (gl_Vertex . xy) ;

8 g l_Pos i t i on = gl_ModelViewProjectionMatrix ∗ (gl_Vertex + offset) ;

9 }

At line 1 the used GLSL version is defined. Version 120 is one of the older versions

and it is linked to the OpenGL version 2.1. The current OpenGL Version is 4.5

and the current GLSL version is 450. In this work the version 120 is used for the

shader programming to keep the algorithm compatible to mobile graphics hardware.

At the lines 2 and 3, some variables get declared a vec4, which is basically a

four dimensional float and a vec2. The keywords uniform and varying define what

kind of type the variable has. A uniform is a constant variable which gets its value

from outside the shader code. The varying values are used in the fragment shader

but they have to be declared in the vertex shader. Furthermore the vertex shader

has to assign a value to the varying variable. As mentioned above, the vertex

shader code gets executed for every vertex entering the rendering pipeline. The

incoming vertex is stored in the global defined variable called g_Vertex (see line 7

in source code 3). In line 8 the two global variables are used gl_Position, which

is the transformed output vertex and gl_ModelViewProjectionMatrix, which is a

matrix which will convert the global vertex position to a relative position to the

camera’s position. As previously mentioned the variable offset is filled in from

the CPU context. So this vertex shader basically converts each incoming vertex

with the ModelViewProjectionMatrix and adds an additional offset. Furthermore,

21

2 Fundamentals

the varying variable is defined which will be used in the fragment shader. The

ModelViewProjectionMatrix transforms the 3D coordinates (x,y,z) to 2D screen

coordinates (x,y).

Source code 4 shows a simple example of a fragment shader.

Source Code 4: Fragment Shader example
1 #v e r s i o n 120

2 uniform vec4 color ;

3 vary ing vec2 parameter ;

4

5 void main ()

6 {

7 gl_FragColor = color + vec4 (parameter . xy , 0 . 0 , 0 . 0) ;

8 }

The example fragment shader also uses the version 120. Furthermore, the same

uniform and varying variables are defined. The fragment shader is called for each

incoming fragment in the rendering pipeline. The varying variable that has been

calculated for every vertex coming through the vertex shader will be interpolated

for every fragment automatically by the fixed functions from the OpenGL rendering

pipeline. The fragment shader will be called for every fragment passing the rendering

pipeline and the varying variables get interpolated by the relative fragment position

to the transformed vertex positions that belong to the fragments graphics primitive.

This is possible because the vertices coming through the rendering pipeline have

been put together to primitives by the primitive assembly unit. In line 7 the

example fragment shader sets the value for the variable gl_FragColor which is the

output color of the fragment shader.

22

3 Tessellation of Trimmed NURBS-Surfaces

3 Tessellation of Trimmed NURBS-Surfaces

First of all a theoretical overview of the algorithm will be given. The algorithm

can be separated in two major parts, the CPU-part and the GPU part. Since this

thesis is focused on the implementation of the GPU part, only the theory behind

the CPU-part will be explained, not the implementation.

3.1 The Tessellation Algorithm

As mentioned before, the algorithm has two major parts. In this section both parts

will be explained theoretically. Figure 14 shows the primary workflow of the whole

algorithm. The rendering is done with two passes through the rendering pipeline.

The passes use different vertex and fragment shaders.

Figure 14: Main workflow of the GPU based NURBS rendering.35

23

3 Tessellation of Trimmed NURBS-Surfaces

On the left side of the figure the steps that are done by the CPU are shown and

on the right side the steps of the GPU are shown. First the trimming curves have

to be sampled in sufficient quality. Then they get rendered into a texture which

will be used for the second rendering pass. The texture defines which points on

the surface lie within the trimming area or outside the trimming area. Therefore a

8 bit texture is used. A 1 bit texture would be sufficient, but 1 bit textures are

not directly provided by OpenGL. The texture has to have a specific resolution

to guarantee a minimal space error on the trimming borders. Then the surfaces

will get evaluated using a regular grid of sufficient size as well. Grids of different

sizes are calculated previously (only once) and stored in the GPU’s memory. The

CPU only calculates, which pre calculated grid should be used for the evaluation

of the surface. After that the previously generated texture of the trimming curves

gets applied on the newly generated evaluated surface. The algorithm discards all

pixels that lie within the trimming area.

The biggest advantage of this algorithm over traditional tessellation algorithms

is, that the tessellation is done with predefined grid sizes completely on the GPU.

The CPU only produces the 2D grids. This means that a change in the rendering

accuracy (the sampling grid size) will not effect the rendering performance. Of

course the GPU has to do more calculations with a bigger grid, but the process

of changing the grid size does not need any special calculations. This is because

the CPU does not have to stream new vertex data to the GPU on a change in the

sampling grid size, as the evaluation of the Bézier surfaces is done in the vertex

shader of the GPU and not on the CPU.

The complete tessellation is done on the GPU. This is why the surfaces can

35source: Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models [Gut05]

24

3 Tessellation of Trimmed NURBS-Surfaces

even be modified in real time by changing the control points of the Bézier surfaces.

This is something that cannot be done as easily when the tessellation is done on

the CPU. The tessellation is a complex step and when the surface changes its

appearance the tessellation has to be redone. But since the tessellation in this

algorithm is done on every frame on the GPU the modification of a surface in real

time is easily possible.

The following two chapters will explain the theoretical working of the algorithm in

detail. Afterwards the actual implementation of the GPU part will be shown.

3.2 CPU - Part in detail

Since the GPU side of the algorithm presented here, is only able of trimming and

tessellating NURBS consisting of cubic Bézier surfaces and cubic Bézier trimming

curves, its one of the main tasks of the CPU part to convert the incoming NURBS

data to a suitable form. Meaning that the CPU side has to transform all incoming

NURBS surfaces to bi-cubic Bézier surfaces. Furthermore, the desired Level Of

Detail (LOD) for each NURBS surface has to be determined by the CPU. The

bi-cubic approximation has to be done because the OpenGL version used for this

work does not support dynamic sizes of uniform input for the GPU. The older

OpenGL version is used to maintain support for mobile devices.

3.2.1 Bi-cubic Approximation:

Since the GPU side of the algorithm can only handle bi-cubic Bézier surfaces the

CPU side has to convert the NURBS surfaces into bi-cubic Bézier surfaces. Also

the trimming curves have to be represented in form of cubic Bézier curves. The

conversion from a NURBS surface to bi-cubic Bézier patches is done in several

25

3 Tessellation of Trimmed NURBS-Surfaces

steps: First additional knots have to be inserted into the NURBS surface. After

that the control points of the NURBS surface can be used to create (multiple)

Bézier surfaces. Last the degree of the Bézier surfaces has to be raised or lowered so

that the single surfaces are represented in bi-cubic form (degree 3 in both directions).

Knot insertion: The knot insertion is done with an algorithm known as Boehm’s

algorithm, Wolfgang Böhm described the algorithm in [BFK84]. Another well

known algorithm is the Oslo algorithm that was developed by Cohen et al [CLR80],

it is a more general approach, but also more complex.

A knot can be inserted into a B-spline curve without changing the original geometry

of the curve. The resulting curve will be identical to the previous curve, but it will

have a different basis. The previous curve can be represented as followed:

n∑
i=0

Ni,k,τ (t) ∗ Pi

with knots τ = [t0, t1, ..., tl, tl+1, ...]
(12)

Equation 13 shows the definition of the curve after the insertion of a single additional

knot.

n+1∑
i=0

N i,k,τ (t) ∗ P i

with knots τ = [t0, t1, ..., tl, t, tl+1, ...]
(13)

26

3 Tessellation of Trimmed NURBS-Surfaces

The new knot t gets inserted between tl and tl+1. Note that also the number

of control points got raised by one. Now the new control points P i have to be

calculated. This can be done using the following equation:

P i = (1− αi) ∗ Pi−1 + αi ∗ Pi

with

ai =



1 if i ≤ l − k + 1

0 if i ≥ l + 1

t−ti
ti+k−1−ti

if l − k + 2 ≤ i ≤ l

(14)

Figure 15 shows an example of the knot insertion algorithm. On top of the figure

there is a B-spline with the knot vector τ = {0, 0, 0, 0.3, 0.7, 1, 1, 1}, the degree

d = 2 and the control points P0...n−1 shown in the figure (red circles). Assuming

that n is the number of control points and m the size of the knot vector, the knot

vector must always have following size:

m = n+ d+ 1 (15)

Thus the spline function has limited support. Due to this, the spline does not

suffer from numerical instabilities.36 As previously mentioned the knot insertion

algorithm described by [BFK84, W. Böhm] will also generate new control points.

Therefore, the equality in equation 15 remains true.

36see page 226 - 268 [Vep94]

27

3 Tessellation of Trimmed NURBS-Surfaces

Figure 15: Knot insertion - B-spline curve

For the bi-cubic approximation, additional knots get inserted into the NURBS

curve (surface) using Boehm’s knot insertion algorithm. Knots have to be inserted

until all outer knot values exist d + 1 times and all the internal knot values d

times. This means, that the knot vector τ = {0, 0, 0, 0.3, 0.7, 1, 1, 1} changes to

τ = {0, 0, 0, 0.3, 0.3, 0.7, 0, 7, 1, 1, 1} after the insertion. This process will transform

the previous NURBS curve to a NURBS curve consisting of 3 Bézier segments

(from t = 0 until t = 0.3, from t = 0.3 until t = 0.7, ...), without changing the

geometry of the curve.

28

3 Tessellation of Trimmed NURBS-Surfaces

Divide NURBS surface into Bézier surfaces: After the knot insertion the

NURBS surface now consists of separate Bézier surfaces. The NURBS surface can

simply be separated into the Bézier surfaces by using the control points of the

NURBS surface, that belong to the different Bézier segments to create new Bézier

surfaces. For example, in Figure 15 (bottom) three Bézier curves could be created

from the NURBS curve, that would together be identical to the NURBS curve itself.

Degree elevation / reduction: Now the NURBS surface is represented with

multiple Bézier surfaces, but still the Bézier surfaces are not necessarily bi-cubic,

they could have a higher or even lower degree. This means that now the degree

of the single Bézier surface has to be raised or lowered to become bi-cubic. First

of all the elevation of the degree is simple and the resulting curve will have the

same geometry as the original curve. However by reducing the degree of a Bézier

surface / Bézier curve it is not possible to always maintain the original geometry.

This means that the degree reduction will cause an error. If the error is too big

it should be considered to approximate the Bézier surface with multiple smaller

Bézier surfaces. Michael Guthe described an algorithm to build a binary hierarchy

of bi-cubic patches in [Gut05, page. 61 - 65] to adjust this problem and to reduce

the error.

Degree elevation: As mentioned above the elevation of the degree of a Bézier

curve is simple. Assuming the curve has the degree d and the degree should be

raised to d+ 1 and furthermore the geometry of the curve should not change. Note

that a Bézier curve has always d+ 1 control points. This means that the original

curve has d+ 1 control points while the new curve will have d+ 2 control points.

So the task is to find d+ 2 control points that will represent the same curve as the

original curve with its d+ 1 control points. Obviously, since Bézier curves always

29

3 Tessellation of Trimmed NURBS-Surfaces

interpolate its first and last control point, the first and the last control point of the

new curve have to equal the first and the last control point of the original curve.

Assuming that P are the control points of the new curve and P are the control

points of the previous curve, this means that:

P 0 = P0

P n+1 = Pn

(16)

Now the missing internal control points have to be calculated. This can be done

by: 37

P i = i

n+ 1 ∗ Pi+1 + (1− i

n+ 1) ∗ Pi i = 1, 2, 3, ..., n. (17)

The degree elevation of Bézier surfaces is very similar to the degree elevation of

Bézier curves. David Salomon described this algorithm for Bézier surfaces in [Sal05,

page. 225 - 227].

Degree reduction: As mentioned above the degree reduction is not as sim-

ple as the degree elevation, this is because in most cases a degree reduced curve

wont be equal to its previous curve. A.R. Forrest described an algorithm for the

degree reduction in [For90]. Furthermore, Michael Guthe described a specialization

of this algorithm for cubic Bèzier curves in [Gut05, page. 62 - 64]. The algorithm

follows a simple approach:

37[Sal05] see page 206

30

3 Tessellation of Trimmed NURBS-Surfaces

P 0 = P0

P 1 = P0 + λ0 ∗ (P1 − P0)

P 2 = Pn + λ1 ∗ (Pn−1 − Pn)

P 3 = Pn

(18)

This will ensure that the new curve will have the same start and end point and

will also have the same derivative at the start and the end point as the original

curve. The two parameters λ0 and λ1 can now be used to minimize the resulting

error of the curve approximation:

n∑
i=0
||Pi − P i||2 → min (19)

In [Gut05] Michael Guthe describes an analytical way of calculating the optimal

values for λ0 and λ1. Since a Bézier surface is a tensor product surface of Bézier

curves the algorithm can also be used for bi-cubic Bézier surfaces.

3.2.2 LOD selection:

There are three major parameters that are responsible for the error of the rendered

and tessellated NURBS surface: The size of the sampling grid for the evaluation

of the Bézier patches. The size of the trimming texture and the quality of the

trimming curve sampling. This section describes how the different parameters can

be calculated to provide a good visual quality of the NURBS model and, on the

31

3 Tessellation of Trimmed NURBS-Surfaces

other hand, keeping the quality as low as possible to maintain fast calculation times.

The sampling quality of the trim curves and the resolution of the trimming texture

are not as critical as the sampling quality of the surface evaluation. The reason

is that the evaluation of the trimming curves and the creation of the trimming

texture has to be done only once per NURBS surface. In contrast the sampling

of the Bézier surfaces has to be done every frame. More information on this in

section 3.3.

All three parameters can be adjusted in real time. However, if the texture quality

or the trim curve sampling quality is changed the calculations for the creation

of the trim texture has to be redone. This is also possible in real time but it

would decrease the overall performance of the algorithm. Due to the fact that the

calculation for the trim texture has to be done only once, the two parameters for

the sampling quality of the trim curves and the texture resolution can be chosen

to keep the resulting error as low as possible. So the idea is to use a very good

and easily sufficient sampling quality for the trim curves and a high resolution

for the trim texture and to furthermore keep these parameters static. Due to the

static parameters the rendering of the trim texture has to be done only once. The

increased calculation times for the potentially too high quality trim texture can be

disregarded because it has to be calculated only at the setup phase of the algorithm.

The sampling quality of the surface evaluation can be changed in real time with-

out negatively effecting the performance of the algorithm, by this the process of

changing the grid size is meant. For changing the grid size no additional data has

to transferred from the CPU to GPU because of the pre calculated grids that are

already stored in the GPU. Of course a finer evaluation grid will produce more

32

3 Tessellation of Trimmed NURBS-Surfaces

triangles and therefore increase the overall number of computations. (the reason

for that will be explained in section 3.3). Furthermore, the size of the evaluation

grid for the surface approximation is more critical in regard to the resulting 3D

model and to the performance of the algorithm. This is why the parameter for

the sampling grid will be determined and changed dynamically, depending on the

viewpoint of the camera. This means that the grid will have a low resolution if

the surface is rendered to only a few pixel on the screen, but it will have a high

resolution when the surface takes up a high amount of pixels. Furthermore, the

second derivative of the surface should influence the sampling grid size as well.

Surfaces that have a high curvature have to be sampled with more triangles, but

the bounding box alone will not be able to assure a sufficient quality for surfaces

with high curvature that are far away.

Figure 16 shows a (flat) trimmed NURBS surface and figure 17 visualizes the

different effects of the different parameters to the rendered surface.

Figure 16: Elliptic trimmed NURBS surface

On the left side of the figure 17 the texture resolution is very low (20 × 20 pixels).

In the center the sampling rate of the trimming curves is set to 2 segments per

33

3 Tessellation of Trimmed NURBS-Surfaces

curve, the trimming loop is defined by 2 cubic Bézier curves, which will result in

4 linear segments. On the right side the texture resolution and the sampling is

chosen very low.

Figure 17: Effect of the trimming parameters

Trimming curve sampling quality: So how many regular spread lines are

needed to approximate the trim curve to guarantee a minimum error for the

approximation? Remember that at this point all trimming curves are represented

in the form of cubic Bézier curves. The theorem from Filip et al. in [FMM86]

describes a way of computing the upper bound for the distance between the actual

function and its linear approximation:

sup
a≤t≤b

||f(t)− l(t)|| ≤ 1
8(b− a)2 sup

a≤t≤b
||f ′′(t)|| (20)

The parameters b and a are the borders of the defined interval of the function. In

the case of the Bézier curve function the interval is defined over [0,1]. The theorem

34

3 Tessellation of Trimmed NURBS-Surfaces

can then be used to calculate the sampling density that is needed to maintain a

minimum error ε:

dmax =
√√√√√ 8ε

sup
a≤t≤b

||f ′′(t)|| (21)

Hence the number of needed samples n can be calculated as follows:

n =
⌈

(b− a)
dmax

⌉
(22)

The second derivative of the cubic Bézier function can be calculated by looking at

the definition of the Bézier curve and the definition of the Bernstein polynomials

(see formula 6 and 7):

f ′′(t) = 6((1− t)(P0 − 2P1 + P2) + t(P1 − 2P2 + P3)) (23)

In [Gut05, page. 58] Michael Guthe also describes a way of calculating the supre-

mum of the second derivative of rational cubic Bézier curves.

Surface sampling grid: The sampling grid for the surfaces can be calculated very

similar to the trimming curve sampling density. Remember that a Bézier surface is

created by the tensor product of Bézier curves. This is why the same algorithm can

be used for the surface sampling grid resolution and the trimming curve sampling

rate. But in addition the bounding box of the rendered object on the actual screen

35

3 Tessellation of Trimmed NURBS-Surfaces

will be taken into account as well. The bounding box on the actual screen of a

rendered Bézier surface can be calculated by multiplying all control points Pi of

the Bézier surface with the projection matrix P and the modelview matrix M .

The modelview matrix can be seen as 2 separate matrices, the model matrix and

the view matrix. The modelview matrix and the projection matrix are common

constructs in 3D visualization tools. The model matrix transforms the objects

of a scene in space. The view matrix transforms the camera, it includes position

and orientation of the camera in 3D space. The projection matrix transforms the

world coordinates (3D) to clip coordinates (2D screen coordinates). The projection

matrix can be used to do an orthographic or a perspective projection. Equation 24

shows the projection matrix for a perspective projection:



tan−1(FOVx

2) 0 0 0

0 tan−1(FOVy

2) 0 0

0 0 −Zfar+Znear

Zfar−Znear
−2(ZfarZnear)

Zfar−Znear

0 0 −1 0


(24)

Zfar and Znear define the clipping distances and FOVi the viewing angle. This

means that the Bézier control points can be transformed to clip coordinates like

shown in equation 25:

P i = P ×M × Pi (25)

36

3 Tessellation of Trimmed NURBS-Surfaces

Assuming that viewi is the offset of the current viewport in x and y direction and

w is the width and h the height of the screen. Then the actual position of the

control points on the screen can be calculated:

px = viewx + w∗Pxi

2

py = viewy + h∗Pyi

2

(26)

Then the coverage of a single Bézier patch on the screen can be determined by

finding the maximum and the minimum of px and py. The maximum coverage in

one direction, together with an additional factor f can then be used to calculate

the number of needed samples n:

n = f ∗ max(coveragey, coveragex)
100 (27)

The parameter f is basically the number of needed samples per hundred pixels

screen coverage (in one direction).

Texture resolution: The needed texture resolution to maintain a minimum

error ε can be calculated by using the supremum of the first derivative of the

Bézier surface. As before the derivative of the single Bézier curves can be used

to determine the supremum of a Bézier surface more easily. Again by using the

Bernstein polynomial form of Bézier curves, their first derivative is given by:

f ′(t) = 3((1− t)2(P1 − P0) + 2t(1− t)(P2 − P1) + t2(P3 − P2)) (28)

37

3 Tessellation of Trimmed NURBS-Surfaces

By using the convex hull property of the Bézier curve an upper bound of the first

derivative is given by:

sup
0≤t≤1

||f ′(t)|| ≤ 3max(||P1 − P0||, ||P2 − P1||, ||P3 − P2||) (29)

The required texture resolution res can then be calculated by dividing the supremum

of the first derivative by the minimum error ε.

res =
⌈

3max(||P1 − P0||, ||P2 − P1||, ||P3 − P2||)
ε

⌉
(30)

3.3 GPU part in detail

In this chapter the theory behind the GPU side of the algorithm will be explained in

more detail. Figure 14 shows the basic workflow of the GPU side of the algorithm.

The algorithm can be separated into 2 phases. A setup phase, which has to be done

only once and a rendering phase which has to be done on every frame. The first

shader pass in the rendering pipeline belongs to the setup phase and the second

shader pass to the rendering phase.

3.3.1 Setup

In the setup phase the predefined grids for the Bézier surface evaluation will be

calculated and stored in the GPU’s memory. Several different grid sizes can be

uploaded to the GPU. It is proposed to use grid sizes by the power of 2 since the

38

3 Tessellation of Trimmed NURBS-Surfaces

graphics hardware is often specially designed to handle vertex numbers by the

power of 2. Furthermore, in the setup phase the vertex and fragment shader source

codes are compiled by the graphics driver and then eventually uploaded to the GPU.

Then for each NURBS surface a trimming texture has to be calculated. This has

do be done only once for each NURBS surface, even if the control points of the

Bézier patches are changed. However, if the trimming curves get modified then the

process has to be redone. A NURBS surface can have multiples trimming loops

and each of them are converted into multiple Bézier curves. The trimming curves

gets evaluated and polygonized with a given sampling rate n (see section 3.2.2).

The following process will be done for every trimming loop of the NURBS surface.

A triangle fan will be created from the first sampled point on the trimming loop

to every other point on the trimming loop. Each generated triangle will take a

trip through the OpenGL rendering pipeline (see Figure 12). Note that the input

vertices for the rendering pipeline are not already evaluated points on the trimming

loop. Instead, the input values are the Bézier curve parameter t of the trimming

curve for every sampled point on the curve. This means that the vertex shader does

the evaluation of the Bézier curve. Hence the input into the rendering pipeline can

bee seen as a simple 1 dimensional array. Still one problem remains, the triangle

fan starts at the first point of a trimming loop but a loop can consist of many

Bézier curves. Since the vertex shader only knows of the control points of the

current Bézier curve this is a problem. To address this problem the control points

of the current Bézier curve and additionally the first control point of the trimming

loop (the first curve of the loop) are uploaded to the GPU. Then −1 entries will be

inserted in the input array to tell the vertex shader that this vertex should be set

to the start location of the trimming loop. All other values will be evaluated using

39

3 Tessellation of Trimmed NURBS-Surfaces

the De Casteljau’s algorithm. The input array for a triangle fan for a trimming

loop could look like this:

[−1, 0.0, 0.1, −1, 0.1, 0.2, −1, ..., 0.9, 1.0] (31)

Note that the shown input array above is used to create a triangle fan for a single

Bézier curve of the trimming loop. 3 values in the input array define a single

triangle. Figure 18 shows how the input data can be interpreted visually.

Figure 18: Input vertices for the generation of a triangle fan. 3 cubic Bézier curves
form a single trimming loop. Each curve is defined in its domain [0,1]. The input
array tells the vertex shader on which points the curve should be evaluated. If a
−1 is sent to the vertex shader, the starting position of the trimming loop will be
returned instead.

After the vertex shader has evaluated the actual position of the vertices on the

trimming texture the fixed units (primitive assembly and rasterizer) will stream the

fragments for each created triangle to the fragment shader. The fragment shader is

40

3 Tessellation of Trimmed NURBS-Surfaces

very simple: For each incoming fragment it will return a red color value for the

corresponding pixel. The OpenGL blending function will then do the toggling,

this will be explained in section 3.4.1. Figure 19 visualizes the working of the

algorithm.38

Figure 19: Generation of the trimming texture

On step (1) the actual trimmed domain of the NURBS surface can be seen. On

step (2) a triangle fan for the outer trimming loop is created. Each pixel color

inside one of the triangles will be toggled one time. After that another triangle fan

will be created for the inner trimming loop in step (3). Again all pixels inside the

created triangles will be toggled. In step(4) it can be seen how often a specific area

38[Gut05] see page 52 - 53

41

3 Tessellation of Trimmed NURBS-Surfaces

has been toggled. Each area that matched by an even amount will be drawn as red

and all uneven areas black. Therefore all black parts of the NURBS surface will be

visible and all red parts will be discarded.

3.3.2 Rendering

In the rendering phase the level of detail gets calculated for every NURBS surface

and then every Bézier patch gets evaluated by the vertex shader. The fragment

shader will then discard every fragment that has been marked as lying outside of

the surface by the trimming texture. The tricky part of this is the evaluation of

the Bézier patches on the GPU and the alignment of the trimming texture on the

surface. This will be explained in detail in the next section.

Figure 20 shows a rendered aircraft model consisting of 158 trimmed NURBS

surfaces, which consist of 3157 bi-cubic Bézier surfaces and 6134 cubic Bézier

curves.

Figure 20: Rendered aircraft model

Figure 21 shows the same aircraft model as figure 20, but in this case no trimming

of NURBS surface has been done.

42

3 Tessellation of Trimmed NURBS-Surfaces

Figure 21: Untrimmed aircraft model. The blue surfaces are the parts of the model
that normally should be trimmed away.

3.4 Implementation of the GPU Based Trimming

In this section the actual implementation of the GPU part of the algorithm will be

explained. As mentioned above the algorithm uses 2 OpenGL rendering pipeline

passes to render a NURBS surface. In the first pass the trimming texture is

generated and in the second pass the Bézier surfaces get evaluated and trimmed

with the trimming texture.

But first of all the pre calculated grids for the surface evaluation have to be

uploaded into the GPUs memory. Source code 5 shows the generation of a uniform

grid:

43

3 Tessellation of Trimmed NURBS-Surfaces

Source Code 5: creating the Bézier surface evaluation grid
1 f l o a t ∗data = new f l o a t [2 ∗ (size+1) ∗(size+1)] ;

2 f o r (i n t i = 0 ; i <= size ; i++)

3 {

4 f o r (i n t j = 0 ; j <= size ; j++)

5 {

6 data [0 + i∗2 + j∗2∗(size+1)] = (i) / ((f l o a t)size) ; // u

7 data [1 + i∗2 + j∗2∗(size+1)] = (j) / ((f l o a t)size) ; // v

8 }

9 }

The data is then uploaded to the GPU by using the OpenGL methods glBindBuffer()

and glBufferData(). In source code 6 the indexing of the grid data is shown. For

each 4 grid points inside the grid, 2 triangles will be indexed. With the indexing it

is made sure that the same vertices of the grid are not calculated multiple times by

the vertex shader.

44

3 Tessellation of Trimmed NURBS-Surfaces

Source Code 6: indexing of the Bézier surface evaluation grid
1 size+=1;

2 f o r (i n t j = 0 ; j < size−1; j++)

3 {

4 f o r (i n t i = 0 ; i < size−1; i++)

5 {

6 i n t idx1 = i + j∗size ;

7 i n t idx2 = (i+1) + j∗size ;

8 i n t idx3 = (i+1) + (j+1)∗size ;

9 i n t idx4 = i + (j+1)∗size ;

10

11 _index_arrays [idx] . push_back (idx1) ;

12 _index_arrays [idx] . push_back (idx2) ;

13 _index_arrays [idx] . push_back (idx3) ;

14

15 _index_arrays [idx] . push_back (idx3) ;

16 _index_arrays [idx] . push_back (idx4) ;

17 _index_arrays [idx] . push_back (idx1) ;

18 }

19 }

The whole process is being done for several grid sizes (2, 4, ..., 1024). A grid size of

1024 will generate approximately 2 million triangles per Bézier surace, which are

actually way to many for most Bézier patches. In the aircraft models used for the

analysis in this thesis, a grid size of 2 or 4 has been sufficient most of the time.

3.4.1 First Shader Pass

In the first shader pass the trim texture is being generated. The following source

code 7 shows how all parameters for the drawing of the trimming curves onto the

trimming texture are initialized. The variable start is storing the first control point

of the first trimming curve of the current trimming loop. In cps the 4 control

points of the current trimming curve are stored. Note that every trimming curve

inside a trimming loop is drawn with the same values in start but with different

45

3 Tessellation of Trimmed NURBS-Surfaces

control points. The variable minMaxNurbs stores the minimum and the maximum

uv-values of the NURBS surface.

Source Code 7: Generating the trimming texture (1)
1 // loop over a l l trimming loops

2 f o r (unsigned i n t j = 0 ; j < surf−>curves () . size () ; j++)

3 {

4 f l o a t start [4] =

5 {

6 surf−>curves () [j] [0] [0] [0] , // u

7 surf−>curves () [j] [0] [0] [1] , // v

8 0 , // z

9 1 // w

10 } ;

11 // loop over a l l b e z i e r curves in trimming loop

12 f o r (unsigned i n t i = 0 ; i < surface−>curves () [j] . size () ; i++)

13 {

14 f l o a t cps [1 6] =

15 {

16 surf−>curves () [j] [i] [0] [1] , surf−>curves () [j] [i] [0] [0] , 0 , surf−>curves←↩

() [j] [i] [0] [2] ,

17 surf−>curves () [j] [i] [1] [1] , surf−>curves () [j] [i] [1] [0] , 0 , surf−>curves←↩

() [j] [i] [1] [2] ,

18 surf−>curves () [j] [i] [2] [1] , surf−>curves () [j] [i] [2] [0] , 0 , surf−>curves←↩

() [j] [i] [2] [2] ,

19 surf−>curves () [j] [i] [3] [1] , surf−>curves () [j] [i] [3] [0] , 0 , surf−>curves←↩

() [j] [i] [3] [2]

20 } ;

21 printTrimCurveOnBackBuffer (cps , start , minMaxNurbs) ;

22 }

23 }

The following source code 8 shows the method printTrimCurveOnBackBuffer(cps,

start, minMaxNurbs) which has been used in the previous source code. The method

draws the current Bézier curve to the trimming texture.

46

3 Tessellation of Trimmed NURBS-Surfaces

Source Code 8: Generating the trimming texture (2)
1 void printTrimCurveOnBackBuffer (f l o a t ∗ cps , f l o a t ∗ start , std : : array<f l o a t ,4> ←↩

minMaxNurbs)

2 {

3 f l o a t uMin = minMaxNurbs [2] ;

4 f l o a t uMax = minMaxNurbs [3] ;

5 f l o a t vMin = minMaxNurbs [0] ;

6 f l o a t vMax = minMaxNurbs [1] ;

7 f l o a t scaleUV [2] = { 1 .0f/(uMax − uMin) , 1 . 0f/(vMax − vMin) } ;

8 f l o a t offsetUV [2] = { −uMin/(uMax − uMin) , −vMin/(vMax − vMin) } ;

9

10 // upload scaleUV and offsetUV as uni forms to the GPU

11

12 // draw Bez i e r curve onto the trimming t ex t u r e

13 glDrawArrays (GL_TRIANGLES , 0 , _trimSize∗6) ;

14 }

First of all the method is calculating a scaling parameter and the offset parameter:


scaleu

scalev

 =


1

umax−umin

1
vmax−vmin




offsetu

offsetv

 =


−umin

umax−umin

−vmin

vmax−vmin



(32)

The scaling and offset values are needed to correctly align the trimming curves onto

the trimming texture. Then the method uploads those parameters to the GPU.

After that the in line 13 of the source code 8 the trimming curve will be drawn

to the trimming texture. This call will start data streaming into the rendering

pipeline, as described in formula 31.

47

3 Tessellation of Trimmed NURBS-Surfaces

Listing 9 shows the code for the first vertex shader pass.

Source Code 9: Vertex Shader first rendering pass
1 #v e r s i o n 120

2

3 uniform mat4 control_points ;

4 uniform vec4 start ;

5 uniform vec2 param_scale ;

6 uniform vec2 param_offset ;

7

8 void main (void)

9 {

10 f l o a t t = gl_Vertex [0] ;

11

12 vec4 temp1 = mix (control_points [0] , control_points [1] , t) ;

13 vec4 temp2 = mix (control_points [1] , control_points [2] , t) ;

14 vec4 temp3 = mix (control_points [2] , control_points [3] , t) ;

15

16 temp1 = mix (temp1 , temp2 , t) ;

17 temp2 = mix (temp2 , temp3 , t) ;

18

19 temp1 = mix (temp1 , temp2 , t) ;

20 temp1 /= temp1 . w ;

21

22 i f (gl_Vertex [0] < −0.5)

23 temp1 . xy = start . xy ;

24

25 temp1 . xy = temp1 . xy ∗ param_scale + param_offset ;

26 temp1 . xy = temp1 . xy ∗ vec2 (2 , 2) + vec2 (−1,−1) ;

27

28 g l_Pos i t i on = temp1 ;

29 }

As mentioned in the fundamentals chapter the De Casteljau’s algorithm is used for

the Bézier curve evaluation in the vertex shader. The control points of the trimming

curve, the starting point of the trimming loop and the scaling / offset parameters

are loaded to the shader programs as uniforms. First the algorithm is doing a

48

3 Tessellation of Trimmed NURBS-Surfaces

linear interpolation between the 4 control points of the curve with the parameter t

(line 12 - 14). This will result in three new points on the curve (temp1 - temp3).

Then again a linear approximation will be done for the new three remaining points

(line 16 - 17). Then a final interpolation is made between the last 2 remaining

control points (line 19). Then the last remaining point is divided by the weight

of the evaluated point. This has to be done because the Bézier curves could also

be rational. In case of a rational curve the curves control points already have

been multiplied with its weight. It is common to do this already when loading or

creating the curve. In line 25 the evaluated point is transformed by the scaling

and the offset of the NURBS surface. At last the point gets offset again, this is

because the curves are defined in the domain [0,1] for both directions u and v. But

the drawing area for the trimming texture is defined from in the domain [-1,1].

In line 22 the special case of a −1 input is taken care of. The Bézier curves are

defined for the parameters [0,1], therefore the -1 input is used to notify the ver-

tex shader to set the position of this vertex to the start position of the trimming loop.

Source code 10 shows the programmed fragment shader for the first shader pass,

which is quite very simple. The fragment shader will set the color of every incoming

fragment to red.

Source Code 10: Fragment Shader first rendering pass
1 #v e r s i o n 120

2

3 void main ()

4 {

5 gl_FragColor = vec4 (1 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;

6 }

49

3 Tessellation of Trimmed NURBS-Surfaces

The fragment shader will be called for every pixel inside a triangle. Remember that

a pixel can be covered by multiple triangles (see figure 19). The actual toggling of

the texture color is done by the OpenGL blend function. The used fixed blending

functions is shown in listing 11.

Source Code 11: OpenGL blending function
1 glBlendFunc (GL_ONE_MINUS_DST_COLOR , GL_ZERO) ;

The blending function defines what should be done when a new fragment is drawn

over an already existing color. Which means it can compute a new color with the

given already rendered color and the new to be rendered fragment color. The first

argument of the function defines how the source blending colors of the pixel should

be computed. In this case it is GL_ONE_MINUS_DST_COLOR,GL_ZERO

which will result in the following calculation for the source color:



r

g

b

a

 =



1
1
1
1

−


rd

kr

gd

kg

bd

kb

ad

ka

 (33)

The values rd, gd, bd, ad are the destination colors, which is basically the output

color of the fragment shader. The values ki are needed for scaling purposes. The

second argument defines how the destination color of the pixel should be computed.

The argument GL_ZERO will output zeros for every color. With this blending

function the pixel color at the screen location (x,y) will be flipped every time the

fragment shader outputs a fragment at this location.

50

3 Tessellation of Trimmed NURBS-Surfaces

3.4.2 Second Shader Pass

The entire second vertex shader source code can be found in the appendix, see

listing 15. Here only the most important parts will be shown and explained.

Just as the first pass vertex shader, the second vertex shader is using the De

Casteljau’s algorithm to evaluate the Bézier surfaces. The vertex shader takes 4

uniform 4× 4 matrices as uniform input, they represent the 16 control points of

the bi-cubic Bézier patch. Other uniform inputs are the minimum and maximum

uv values of the NURBS surface and of the Bézier patch itself.

As previously mentioned each step of the De Casteljau’s algorithm will reduce the

dimension of the Bézier patch in one direction. This means that the 4× 4 Bézier

patch will be reduced to a 4× 3 patch after one step, then a 4× 2 patch, and so

one.

Figure 8 visualizes this process. The most efficient way of evaluating the patch

would be to reduce one direction dimension to 1 and then the other direction.

However in the vertex shader the dimension is reduced to 4× 2 then to 2× 2 and

then finally to the last remaining point. This is because the four control points in

the 2× 2 step are used to evaluate the normal vector of the evaluated point. This

would also be possible with the 4× 1 way of evaluating the surface, but however

the 4× 1 way would fail if an edge of the Bézier patch is degenerated.

51

3 Tessellation of Trimmed NURBS-Surfaces

Figure 22 shows a degenerated Bézier patch. In the area, marked by the red circle

the 4× 1 way would not be able to find a valid normal vector. However the 2× 2

method can use 4 control points to calculate the normal vector, thus the algorithm

will also find valid normals in degenerated Bézier patches. This is crucial, because

valid normals are required for the shading of the surface. Without correct normals,

visual artifacts are produced.

Figure 22: Degenerated Bézier patch. A degenerated Bézier surface is shown. In
the area marked by the red circle visual artifacts can be produced if the normals of
the surface are not calculated correctly.

The following source code shows how the normal evaluation is done in the vertex

shader:

52

3 Tessellation of Trimmed NURBS-Surfaces

Source Code 12: Calculating the normals of the Bézier surface
1 // reduce c o n t r o l p o i n t s with De Caste l jau ' s a lgor i thm u n t i l 2 x 2 c o n t r o l ←↩

p o in t s are l e f t

2

3 vec4 dirV = cp2 [0] − cp1 [0] ;

4 vec4 dirU = cp1 [1] − cp1 [0] ;

5

6 vec4 dirV2 = cp2 [1] − cp1 [1] ;

7 vec4 dirU2 = cp2 [1] − cp2 [0] ;

8

9 // reduce u n t i l l a s t po int remains in cp1 [0]

10 [. . .]

11

12 dirV = mix (dirV , dirV2 , gl_Vertex [0]) ∗ w − cp1 [0] ∗ (dirU . w ∗ w) ;

13 dirU = mix (dirU , dirU2 , gl_Vertex [1]) ∗ w − cp1 [0] ∗ (dirV . w ∗ w) ;

14 vec3 normal1 = c r o s s (dirV . xyz , dirU . xyz) ;

As soon as 2 × 2 control points are left, the four connecting direction vectors

between the control points will be stored. Then the De Casteljau’s algorithm

will finish the reducing of the control points. In line 12 and 13, both directional

derivatives of the reduced Bézier patch are computed at (u,v). Their cross product

finally gives the normal vector.

Figure 23 visualizes the calculation of the normal vector.

Figure 23: Calculating the normals of a Bézier patch

53

3 Tessellation of Trimmed NURBS-Surfaces

After the evaluation of the surface point and its normal vector, the vertex shader

will additionally calculate the location of the point on the trimming texture, which

is needed by the fragment shader. Source code 13 shows how this is done in the

vertex shader.

Source Code 13: Calculating the trimming texture parameter
1 vec2 range_b = max_param_b − min_param_b ;

2 vec2 range_n = max_param_n − min_param_n ;

3 vec2 relative_b = gl_Vertex . xy ∗ range_b + min_param_b ;

4 parameter = (relative_b − min_param_n) / range_n ;

The method shown in source code 13 does a mapping from the relative Bézier

coordiantes to the NURBS coordinates. The in the source code shown calculations

will make sure that the trimming texture will be overlain correctly.

The next source code (14) shows the fragment shader of the second pass. The actual

part that is needed for the trimming are the lines 15 - 19, this part will discard

all fragments that are marked as outside of the NURBS surface. A fragment is

determined as lying outside if the corresponding red color value in the trim texture

is smaller than 0.9.

The part from line 21 - 36 shows the implementation of a very simple phong

shading algorithm that is used for the lighting and coloring of the model. The

phong shading was developed by Bui Tuong Phong, who has presented the algo-

rithm in 1975 in [Pho75]. In line 23 - 27 the normal vector is inverted if its not

facing towards the viewer. This has to be checked because otherwise there would

be discontinuous transitionsin the shading, between areas with normal vectors that

face in different directions.

54

3 Tessellation of Trimmed NURBS-Surfaces

Source Code 14: Fragment Shader second rendering pass
1 #v e r s i o n 120

2

3 vary ing vec3 normalInterp ;

4 vary ing vec3 vertPos ;

5 vary ing vec2 parameter ;

6

7 const vec3 lightPos = vec3 (2 . 0 , 3 . 0 , 2 . 0) ;

8 const vec4 ambientColor = vec4 (0 . 2 , 0 . 1 , 0 . 8 , 1 . 0) ;

9 const vec4 diffuseColor = vec4 (0 . 9 , 0 . 7 , 0 . 6 , 1 . 0) ;

10 const vec4 specColor = vec4 (0 . 2 , 0 . 2 , 0 . 8 , 1 . 0) ;

11 uniform sampler2D texture_color ;

12

13 void main ()

14 {

15 i f (texture2D (texture_color , parameter) [0] < 0 . 9)

16 {

17 d i s c a r d ;

18 re turn ;

19 }

20

21 vec3 normalDirection = normal ize (normalInterp) ;

22 f l o a t diff = dot (normalDirection , normal ize (vertPos−lightPos)) ;

23 i f (diff < 0)

24 {

25 diff = −diff ;

26 normalDirection = −normalDirection ;

27 }

28 gl_FragColor = diff ∗ diffuseColor ;

29 gl_FragColor += ambientColor ;

30 vec3 vReflection = normal ize (r e f l e c t (−normal ize (vertPos−lightPos) ,←↩

normalDirection)) ;

31 f l o a t spec = max (0 . 0 , dot (normalDirection , vReflection)) ;

32 i f (diff != 0)

33 {

34 f l o a t fSpec = pow(spec , 4 2 . 0) ;

35 gl_FragColor += vec4 (fSpec , fSpec , fSpec , 0) ;

36 }

37 }

55

4 Results

4 Results

The visual appearance of models that have been tessellated by the algorithm

is acceptable and can be compared to the appearance of conventional meshing

algorithms. Furthermore, the algorithm is also capable of rendering complex models

with multiple trimming loops on single Bézier surfaces. Figure 24 shows a cube

with two trimming loops on a single Bézier surface.

Figure 24: Cube model with multiple trimming loops on a single Bézier patch

The following chapter gives a brief overview over several performance measurements

and analyses that have been made to determine some of the possible bottlenecks of

the algorithm. Furthermore, the scalability of the algorithm has been tested.

To further improve the performance of the algorithm, possible bottlenecks have to

be analyzed. Figure 25 shows the current tasks and components of the rendering

loop.

56

4 Results

Figure 25: Components of the rendering loop

The overall speed of the algorithm depends on the slowest component of the ren-

dering loop. The following analysis aims to identify the current bottleneck of the

algorithm. The focus on this tests is to analyze the performance of the GPU side of

the algorithm. Possible bottlenecks could be the communication and data transfer

between the CPU and the GPU, the computations in the vertex shader or the

computations in the fragment shader. Furthermore, the reading of the textures out

of the GPU memory could affect the performance negatively.

4.1 Test Environment

The following analysis and performance measurements have been created on the

following machine:

57

4 Results

CPU Intel Xeon E5520(2,26GHz,5,86GT/s,8MB) 1066MHz

GPU 4 GB Quadro NVIDIA FX5800.

bandwidth: 102 GB/s performance: 622 GFlop/s

RAM 24GB(6x4GB)1066MHz DDR3 ECC-RDIMM

Hard Disk 1TB Serial ATA II (7200 1/min) NCQ 16MB

Operating System Suse 11

4.2 Test Data

The rendered aircraft model consists of 157 NURBS surfaces which are represented

by 3157 bi-cubic Bézier patches. Furthermore, the model has 6134 cubic Bézier

curves for trimming. Figure 26 shows the model that has been used for the tests.

Figure 26: Rendered aircraft model. The aircraft model is made of 157 trimmed
NURBS surfaces consisting of 3157 Bézier surfaces and 6134 Bézier curves.

58

4 Results

4.3 Test execution and Results

Several different tests have been executed to analyse the effects of the different

parameters (trim texture resolution, number of rendered triangles, number of

rendered Bézier patches, ...) on the performance of the algorithm. The test

execution can be separated into three categories: Testing the vertex shader (second

pass), testing the fragment shader (second pass) and the setup time of the algorithm

(first pass).

4.3.1 Vertex Shader

For testing the vertex shader the aircraft model has been rendered and the camera

was not facing towards the aircraft model. This basically disables the fragment

shader because then no fragments are visible on the screen. To test the vertex

shader 2 approaches have been made. First raising the number of rendered triangles

by keeping the amount of rendered NURBS surfaces and Bézier patches static and

second raising the number of rendered Bézier surfaces.

Figure 27 shows the computing time of the algorithm with increasing number

of rendered triangles and disabled fragment shader.

59

4 Results

Figure 27: Computing time by increasing number of triangles. The blue graph
visualizes the required computing time for the given amount of rendered triangles.
The red line shows the maximum computing time that is acceptable for a real
time application (60 FPS). The two graphs are intersecting at 3.7 million rendered
triangles.

The measurements show that at first, increasing the number of triangles does not

affect the performance until about 1 million triangles are sampled. For higher

numbers the computing time scales linearly. The aircraft model rendered in figure

26 was tessellated with 6314 triangles. Even with small amounts of triangles the

model looks visually fine. Increasing the number of rendered triangles will not

change much of the shape of the aircraft (see figure 28). Therefore, the performance

of the vertex shader should not be critical even for large and complex models.

60

4 Results

Figure 28: Comparison of different sampling grid sizes. On the left side the aircraft
has been rendered with 6314 triangles. On the right side it has been rendered with
25256 triangles. The visual difference of the shape of the models is minimal.

Further measurements have shown that the number of rendered Bézier surfaces has

more impact on the performance than the amount of rendered triangles. Figure

29 shows the results of some measurements that have been made regarding an

increasing number of Bézier patches.

The FPS are dropping below 60 when more than 9800 Bézier patches are rendered.

This means that there is still lots of room for more details in this particular rendered

aircraft model. But still the amount of Bézier patches is somehow limiting the

computing time.

61

4 Results

Figure 29: Computing time by increasing number of Bézier patches. The blue
graph visualizes the needed computing time for the given number of Bézier surfaces.
The red line shows the maximum computing time that is acceptable for a real
time application (60 FPS). The increasing of the amount of Bézier patches directly
affects the computing time. This means that the tasks that have to be made to
render the Bézier patches directly limit the computing time and therefore the
achieved FPS.

62

4 Results

Figure 30 shows a turbine model, rendered by the algorithm. The shown model

consists of 87383 Bézier patches. The algorithm is able to render models like the

turbine model, that have a very high amount of Bézier patches, but the FPS are

dropping with every additional Bézier surface. The shown model has been rendered

with 9 FPS.

Figure 30: Rendered turbine model. The model consists of 221 NURBS surfaces
which are represented by 87383 Bézier patches. The turbine model has been created
and provided by [BRK+15]

4.3.2 Fragment Shader

The fragment shader of the second rendering pass has been tested using the same

aircraft model. The fragment shader has to do more calculations if the rendered

63

4 Results

aircraft model fills more parts of the screen. Therefore some tests have been

made while moving the camera around. Measurements have been collected with

different texture resolutions (512 × 512, 1024 × 1024, ... , 8196 × 8196). In all

tests the FPS stayed stable at 185, even if the camera was moving very closely

to the aircraft model. The model was tessellated with 6314 triangles. Thus the

current implementation of the fragment shader does not limit the computing time.

Furthermore, loading the textures (memory bandwidth) is not the limiting factor.

But to obtain an idea, whether the fragment shader could be a limiting factor when

adding more complex shading tasks, measurements were performed with different

numbers of additional operations. The results of these measurements are shown in

figure 31.

The FPS start to decrease reasonably after increasing the fragment shader com-

putations by 512 additional floating point operations (flops). After around 3000

additional flops the critical 60 FPS border is crossed. As expected, additional

flops in the fragment shader negatively influence the overall performance of the

algorithm. But there is still space for many additional calculations. The current

fragment shader implementations uses less than 60 flops. Without any additional

flops the aircraft model could be rendered with 185 FPS. By adding 512 additional

flops the FPS stayed nearly the same (184).

4.3.3 Setup time

The most time of the setup is consumed by the creation of the trimming textures.

Therefore, the setup time has been measured using different texture resolutions and

trim curve sampling qualities. Figure 32 shows the results of this measurements.

64

4 Results

Figure 31: Computing time by increasing flops in fragment shader. The red line
shows the maximum computing time that is acceptable for a real time application
(60 FPS). The blue graph visualizes how additional floating point operations affect
the overall performance of the algorithm.

The time needed for the creation of the textures is not very critical because they

have to be created only once. And still with really high resolutions like 2048 × 2048,

the needed time is still shorter than a second. Additional tests have shown that the

texture resolution does not affect the render time negatively as well (for textures

that are smaller than 4096 × 4096). Thus the texture size is not that crucial and

can be chosen very high. The algorithm uses 8 bit textures, the estimate texture

size for a single 2048 × 2048 texture is 4MB (2048 × 2048 * 8). This results in

65

4 Results

Figure 32: Time consumption of texture creation during setup phase by increasing
texture resolution. For this test the trim curve sampling rate has been set to 512,
which is a quite big amount. Most of the time a sampling rate of 64 would be
enough. It can be seen that for even very big textures (e.g. 1024 × 1024 and 2048
× 2048) the setup time is shorter than a second.

a total of 632 MB for the 158 NURBS surfaces used for this aircraft model. As

mentioned above the GPU has a bandwidth of 102 GB/s. Since 60 FPS is the

minimum of the acceptable performance, the GPU should at maximum need to

transfer 1.7 GB/frame. Since this aircraft model only needs 632 MB per frame

(even with very high texture resolutions), the GPU bandwidth is currently not

limiting the overall performance. In the final experiment, the setup times have

been time measured with a static texture size and increasing sampling size for the

trimming curves. Figure 33 shows the results of this measurements.

66

4 Results

The trim curve quality has only a minor influence on the overall setup time. With
a texture resolution of 1024 × 1024 the setup time never exceeded 120

milliseconds, even with high sampling rates like 512.
Figure 33: Time consumption of texture creation during setup phase by increasing
trim curve quality.

The measurements have shown that the increase of the trim curve sampling rate

only has a very small effect on the overall setup time. Therefore, the trim curve

sampling rate can be chosen very high as well, without badly affecting the rendering

performance or the setup time of the algorithm.

67

4 Results

4.3.4 LOD selection

The implemented algorithm for the LOD selection provides good visual results.

Figure 34 shows multiple rendered NURBS surfaces in 3D space. The farther away

a NURBS surface is located, the smaller its resulting bounding box will be. Thus

the NURBS surfaces farther away get tessellated with lower quality.

Figure 34: Level of detail of multiple rendered tori. The tori far away in the
background are tessellated with less triangles than the tori near to the camera.

However, the current implementation has to project every Bézier surface control

point on the screen. Thus, the algorithm is consuming lots of computing time of the

CPU. Nevertheless, the algorithm is also saving computing time by not rendering

Bézier surfaces that are not visible on the screen or by rendering objects that are

very far away with low quality. To analyse the performance consumption of the

algorithm, again the aircraft model has been tested. If the whole aircraft can be

seen on the screen, the FPS drop by around 50 (compared to rendering the model

with no LOD selection). However, if the camera zooms closely to the aircraft those

FPS drops disperse. This is due to the fact, that not visible parts of the aircraft

are not rendered then.

68

5 Discussion

5 Discussion

The analysis of the algorithm have shown several things. First, the vertex shader

does not seem to limit the current computation speed. This can be seen due to the

fact that by increasing the amount of rendered triangles the FPS stayed stable at

185 FPS. Furthermore, the measurements have shown that there is lots of room for

additional calculations in the fragment shader. However, the increase of the number

of rendered Bézier surfaces has the largest impact on the overall performance. By

increasing the number of Bézier surfaces more patches have to get evaluated by the

vertex shader and the fragment shader. But as mentioned above the GPU (vertex

shader and fragment shader) has not reached its limit for computing capacity yet.

Thus, the bottleneck has to be something else. It seems that the communication

between the CPU and GPU is currently slowing down the overall performance.

For each Bézier surface the CPU has to send additional data to the GPU on every

frame. For each surface four 4 × 4 matrices and four 2 dimensional vectors have to

be sent to the GPU (288 Byte). Since 288 Bytes is a very small amount of data

the problem has to lie somewhere else. Most likely the problem is not linked to the

amount of data transferred from the CPU to the GPU, instead the high amount of

single GPU calls and therefore driver calls seem to slow down the whole algorithm.

The current implementation of the algorithm has to do multiple GPU calls for

each Bézier surface. The number of Bézier patches can get very high for complex

models (like the turbine model shown in figure 30). A high amount of rendered

Bézier surfaces significantly reduces the overall performance. Thus, this problem

should be addressed first.

Modern OpenGL versions allow it to upload dynamic sizes of uniform input data.

Additionally, uniform buffers can be used. This is why in more modern OpenGL

69

5 Discussion

versions the algorithm could be advanced to not only evaluate bi-cubic Bézier

patches in the vertex shader. But, to furthermore evaluate whole NURBS surfaces.

The shown turbine model consists of 221 NURBS which are represented by 87383

Bézier patches. By evaluating NURBS surfaces and not Bézier surfaces on the

GPU, only a small fraction of the GPU calls would be required to render the whole

model. Furthermore, lots of computation time could be saved on the CPU side,

because then no bi-cubic approximation would be required.

Also, the LOD selection of the algorithm could be improved. For models consisting

of many Bézier surfaces, the current implementation consumes big amounts of the

available computation time of the CPU. To improve the performance of the LOD

selection several solutions come to mind. Instead of using the control points of the

Bézier surfaces, the control points of the NURBS surfaces could be used for the

LOD detection. Furthermore, instead of using bounding boxes, bounding sphere

could be used. Quinlan S. describes an efficient method of computing distances

between non convex objects by using bounding spheres in [Qui94].

70

6 Conclusion and Future Work

6 Conclusion and Future Work

The actual implementation of a fast and efficient tessellation algorithm for trimmed

NURBS surfaces has been described. The algorithm is heavily using the GPU

to evaluate and visualize NURBS surfaces. Furthermore, the algorithm allows

modifications of the rendered NURBS surfaces control points in real time. It has

been proven that the algorithm can be used to visualize highly detailed aircraft

models in real time applications. Moreover, an extensive analysis has shown the

algorithm is well suited for rendering aircraft model created by the geometry library

TiGL. Even complex models with multiple trimming loops can be tessellated and

trimmed by the presented algorithm.

In future the algorithm could by enhanced to evaluate NURBS surfaces directly

to further improve the performance of the Algorithm. By directly evaluating the

NURBS surfaces on the GPU even the bi-cubic approximation on the CPU side

would not be needed. Furthermore, compared to the current implementation, only

a fraction of GPU calls would be needed. It is assumed that this enhancement

could result in a major performance increase.

Another possible future work could be the integration of the algorithm into the

software TiGLViewer (a visualization software based on the TiGL library). Since

the library is constructing aircraft geometries that are represented in NURBS form,

the algorithm is perfectly suited for rendering the aircraft models, generated by

the TiGL library.

71

References

References

[AMR04] Balazs Akos, Guthe Michael, and Klein Reinhard. Efficient trimmed

nurbs tessellation, 2004.

[Aug] Universität Augsburg. Graphikprogram-

mierung. https://www.informatik.uni-

augsburg.de/lehrstuehle/dbis/pmi/lectures/ss06/graphikprogrammierung/

script/kap2-6.pdf. accessed : 18/08/2015.

[BFK84] Wolfgang Böhm, Gerald Farin, and Jürgen Kahmann. A survey of

curve and surface methods in {CAGD}. Computer Aided Geometric

Design, 1(1):1 – 60, 1984.

[BRK+15] R.-G. Becker, S. Reitenbach, C. Klein, T. Otten, M. Nauroz, and

M. Siggel. An Integrated Method for Propulsion System Conceptual

Design, volume 1: Aircraft Engine; Fans and Blowers; Marine. ASME,

Montreal, Quebec, Canada, 2015.

[CLR80] Elaine Cohen, Tom Lyche, and Richard Riesenfeld. Discrete b-splines

and subdivision techniques in computer-aided geometric design and

computer graphics. Computer Graphics and Image Processing, 14(2):87

– 111, 1980.

[Far02] Gerald Farin. Curves and Surfaces for CAGD: A Practical Guide.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th

edition, 2002.

[fBuF] Bundesministerium für Bildung und Forschung. Projektträger im DLR.

http://www.bmbf.de/de/1659.php. accessed : 26/02/2015.

72

References

[FHK02] G. Farin, J. Hoschek, and M.-S. Kim. Handbook of Computer Aided

Geometric Design, 1st Edition. Elsevier Science B.V., Arizona State

University, Tempe, USA, 2002.

[fHPG] The Industry’s Foundation for High Perfor-

mance Graphics. Rendering Pipeline Overview.

https://www.opengl.org/wiki/Rendering_Pipeline_Overview.

accessed : 27/08/2015.

[fLuRe] Deutsches Zentrum für Luft-und Raumfahrt e.V. DLR at

a glance. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-

10443/637_read-251/. accessed : 26/02/2015.

[FMM86] Daniel Filip, Robert Magedson, and Robert Markot. Surface algo-

rithms using bounds on derivatives. Computer Aided Geometric Design,

3(4):295 – 311, 1986.

[For90] A.R. Forrest. Interactive interpolation and approximation by bezier

polynomials. Computer-Aided Design, 22(9):527 – 537, 1990.

[fSuS] Institut für Simulations-und Softwaretechnik. Projektträger im DLR.

http://www.dlr.de/sc/. accessed : 02/03/2015.

[Gei14] Mark Geiger. Evaluation verschiedener algorithmen zur triangulation

of getrimmten nurbs-flächen, 2014.

[Gei15] Mark Geiger. Design and implementation of dynamic offensive strategies

in robocup small size league, 2015.

[Gut05] Michael Guthe. Appearance Preserving Rendering of Out-of-

Core Polygon and NURBS Models. PhD thesis, Mathematisch-

73

References

Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-

Universität Bonn, 2005.

[KM95] Subodh Kumar and Dinesh Manocha. Efficient rendering of trimmed

nurbs surfaces. Computer-Aided Design, 27(7):509 – 521, 1995. Display

and visualisation.

[LJKC09] Sungkil Lee, G. Jounghyun Kim, and Seungmoon Choi. Real-time

tracking of visually attended objects in virtual environments and its

application to lod. Visualization and Computer Graphics, IEEE Trans-

actions on, 15(1):6–19, Jan 2009.

[LSOK11] M Litz, D Seider, T Otten, and M Kunde. Integration framework for

preliminary design tool chains. DLRK2011-241239, DGLR, Deutscher

Luft-und Raumfahrtkongress Bremen, pages 27–29, 2011.

[MH02] Yingliang Ma and W. Terry Hewitt. Adaptive tessellation for trimmed

nurbs surface, 2002.

[oCSa] Michigan Tech: Department of Computer Sci-

ence. B-spline Basis Functions: Definition .

http://www.cs.mtu.edu/ shene/COURSES/cs3621/NOTES/spline/B-

spline/bspline-basis.html. accessed : 16/08/2015.

[oCSb] Michigan Tech: Department of Computer Sci-

ence. Bezier Surfaces: de Casteljau’s Algorithm.

http://www.cs.mtu.edu/ shene/COURSES/cs3621/NOTES/surface/bezier-

de-casteljau.html. accessed : 18/03/2015.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Com-

mun. ACM, 18(6):311–317, June 1975.

74

References

[PR95] Leslie A Piegl and Arnaud M Richard. Tessellating trimmed nurbs

surfaces. Computer-Aided Design, 27(1):16 – 26, 1995.

[Qui94] S. Quinlan. Efficient distance computation between non-convex ob-

jects. In Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, pages 3324–3329 vol.4, May 1994.

[Rog00] David F. Rogers. An Introduction to NURBS With Historical Per-

spective. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2000.

[SAFJL04] Mark Segal, Kurt Akeley, Chris Frazier, and Pat Brown Jon Leech.

The opengl(r) graphics system: A specification (version 2.0), 2004.

[SAFJL10] Mark Segal, Kurt Akeley, Chris Frazier, and Pat Brown Jon Leech. The

opengl(r) graphics system: A specification (version 4.0 (core profile)),

2010.

[Sal05] David Salomon. Curves and Surfaces for Computer Graphics. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[SFL+08] Thomas W. Sederberg, G. Thomas Finnigan, Xin Li, Hongwei Lin,

and Heather Ipson. Watertight trimmed nurbs. ACM Trans. Graph.,

27(3):79:1–79:8, August 2008.

[SK09] Robert J. Simpson and John Kessenich. The opengl(r) es shading

language, 2009.

[Vep94] Ranjan Vepa. Robotic systems: Advanced techniques and applications.

Intelligent Systems Engineering, 3(1):48–49, 1994.

75

Appendix

Appendix

Source Code 15: Vertex Shader second rendering pass
1 #v e r s i o n 120

2

3 uniform vec2 min_param_n , max_param_n ;

4 uniform vec2 min_param_b , max_param_b ;

5 uniform mat4 control_points1 , control_points2 , control_points3 , control_points4 ;

6 vary ing vec3 normalInterp ;

7 vary ing vec3 vertPos ;

8 vary ing vec2 parameter ;

9

10 void main (void)

11 {

12 vec4 pos ;

13 vec3 norm ;

14

15 mat4 cp1 , cp2 , cp3 , cp4 ;

16 cp1 = control_points1 ;

17 cp2 = control_points2 ;

18 cp3 = control_points3 ;

19 cp4 = control_points4 ;

20

21 // reduce u dimension

22

23 cp1 [0] = mix (cp1 [0] , cp1 [1] , gl_Vertex [0]) ;

24 cp1 [1] = mix (cp1 [1] , cp1 [2] , gl_Vertex [0]) ;

25 cp1 [2] = mix (cp1 [2] , cp1 [3] , gl_Vertex [0]) ;

26

27 cp2 [0] = mix (cp2 [0] , cp2 [1] , gl_Vertex [0]) ;

28 cp2 [1] = mix (cp2 [1] , cp2 [2] , gl_Vertex [0]) ;

29 cp2 [2] = mix (cp2 [2] , cp2 [3] , gl_Vertex [0]) ;

30

31 cp3 [0] = mix (cp3 [0] , cp3 [1] , gl_Vertex [0]) ;

32 cp3 [1] = mix (cp3 [1] , cp3 [2] , gl_Vertex [0]) ;

33 cp3 [2] = mix (cp3 [2] , cp3 [3] , gl_Vertex [0]) ;

34

35 cp4 [0] = mix (cp4 [0] , cp4 [1] , gl_Vertex [0]) ;

76

Appendix

36 cp4 [1] = mix (cp4 [1] , cp4 [2] , gl_Vertex [0]) ;

37 cp4 [2] = mix (cp4 [2] , cp4 [3] , gl_Vertex [0]) ;

38

39 // reduce u dimension

40

41 cp1 [0] = mix (cp1 [0] , cp1 [1] , gl_Vertex [0]) ;

42 cp1 [1] = mix (cp1 [1] , cp1 [2] , gl_Vertex [0]) ;

43

44 cp2 [0] = mix (cp2 [0] , cp2 [1] , gl_Vertex [0]) ;

45 cp2 [1] = mix (cp2 [1] , cp2 [2] , gl_Vertex [0]) ;

46

47 cp3 [0] = mix (cp3 [0] , cp3 [1] , gl_Vertex [0]) ;

48 cp3 [1] = mix (cp3 [1] , cp3 [2] , gl_Vertex [0]) ;

49

50 cp4 [0] = mix (cp4 [0] , cp4 [1] , gl_Vertex [0]) ;

51 cp4 [1] = mix (cp4 [1] , cp4 [2] , gl_Vertex [0]) ;

52

53 // reduce v dimension

54

55 cp1 [0] = mix (cp1 [0] , cp2 [0] , gl_Vertex [1]) ;

56 cp2 [0] = mix (cp2 [0] , cp3 [0] , gl_Vertex [1]) ;

57 cp3 [0] = mix (cp3 [0] , cp4 [0] , gl_Vertex [1]) ;

58

59 cp1 [1] = mix (cp1 [1] , cp2 [1] , gl_Vertex [1]) ;

60 cp2 [1] = mix (cp2 [1] , cp3 [1] , gl_Vertex [1]) ;

61 cp3 [1] = mix (cp3 [1] , cp4 [1] , gl_Vertex [1]) ;

62

63 // reduce v dimension

64

65 cp1 [0] = mix (cp1 [0] , cp2 [0] , gl_Vertex [1]) ;

66 cp2 [0] = mix (cp2 [0] , cp3 [0] , gl_Vertex [1]) ;

67

68 cp1 [1] = mix (cp1 [1] , cp2 [1] , gl_Vertex [1]) ;

69 cp2 [1] = mix (cp2 [1] , cp3 [1] , gl_Vertex [1]) ;

70

71 vec4 dirV = cp2 [0] − cp1 [0] ;

72 vec4 dirU = cp1 [1] − cp1 [0] ;

73

74 vec4 dirV2 = cp2 [1] − cp1 [1] ;

75 vec4 dirU2 = cp2 [1] − cp2 [0] ;

76

77

77 // reduce v dimension

78

79 cp1 [0] = mix (cp1 [0] , cp2 [0] , gl_Vertex [1]) ;

80 cp1 [1] = mix (cp1 [1] , cp2 [1] , gl_Vertex [1]) ;

81

82 // reduce u dimension

83

84 cp1 [0] = mix (cp1 [0] , cp1 [1] , gl_Vertex [0]) ;

85

86 // d i v i d e by weight

87 f l o a t w = 1.0/cp1 [0] . w ;

88 cp1 [0] ∗= 1 .0/cp1 [0] . w ;

89

90 f l o a t u = max (1 . e−4,min(1−1.e−4,gl_Vertex [0])) ;

91 f l o a t v = max (1 . e−4,min(1−1.e−4,gl_Vertex [1])) ;

92 dirV = mix (dirV , dirV2 , u) ;

93 dirU = mix (dirU , dirU2 , v) ;

94

95 dirU = dirU ∗ w − cp1 [0] ∗ (dirU . w∗w) ;

96 dirV = dirV ∗ w − cp1 [0] ∗ (dirV . w∗w) ;

97 vec3 normal1 = c r o s s (dirV . xyz , dirU . xyz) ;

98

99 g l_Pos i t i on = gl_ModelViewProjectionMatrix ∗ cp1 [0] ;

100 normalInterp = gl_NormalMatrix ∗ normal ize (normal1) ;

101 vertPos = vec3 (gl_ModelViewMatrix ∗ cp1 [0]) ;

102

103 vec2 range_b = max_param_b − min_param_b ;

104 vec2 range_n = max_param_n − min_param_n ;

105

106 vec2 relative_b = gl_Vertex . xy ∗ range_b + min_param_b ;

107 parameter = (relative_b − min_param_n) / range_n ;

108 }

78

