Discrete optimisation problems on an adiabatic quantum computer

Knowledge for Tomorrow

Tobias Stollenwerk, Elisabeth Lobe, Anke Tröltzsch Simulation and Software Technology German Aerospace Center (DLR)

BFG 2015, London, 16.6.2015

Outlook

- Introduction to Adiabatic Quantum Computing
- Hardware limitations
- Application: Clique Problem

What is an Adiabatic Quantum Computer?

• Solver for Quadratic Unconstraind Binary Optimisation Problems (QUBOs)

$$E(s_1, s_2, ..., s_n) = \sum_i H_i s_i + \sum_{ij} J_{ij} s_i s_j$$
 with $s_i \in \{0, 1\}$

 $H_i \in \mathbb{R}$ On-site strength $J_{ij} \in \mathbb{R}$ Coupling

Source: D-Wave Sys.

- Device by company D-Wave Systems commercially available
- We have access to hardware simulator / programming interface

Quantum physics

• Eigenvalue equation determines physical state of a system

$$\widehat{H} |\psi_i\rangle = E_i |\psi_i\rangle$$

where E_i is the energy of the state and $|\psi_i\rangle \in$ Hilbert space and \widehat{H} is the Hamilton operator.

• Discrete Eigenvalues lead to quantised energy levels.

Measurement in Quantum physics

• Let the system be in a superposition of energy Eigen states $|\psi_i\rangle$

$$|\chi\rangle = \sum_i a_i |\psi_i\rangle$$

• Measurement of energy E_j changes state

$$|\chi\rangle \rightarrow |\psi_j\rangle\langle\psi_j| |\chi\rangle = a_i |\psi_j\rangle$$

• Probability P_j to measure state $|\psi_j\rangle$

$$P_j = |a_i|^2$$

Adiabatic Quantum Computer – How does it work?

- Encode objective function in ground state of quantum system
- Initial system groundstate simple and implementable

Adiabatic Quantum Computer – How does it work?

- Sufficiently slow (adiabatic) transition to final system
- Lowest energy gap ΔE determines runtime

Quantum Bits – Two Level Quantum Systems

Classical bits

Voltage

Quantumbits (Qubits)

• State is Superposition of "0" und "1"

 $|\varphi\rangle = a|0\rangle + b|1\rangle$

- Measurement changes the state \rightarrow Observe "0" with probability $|a|^2$ $\Rightarrow |\varphi\rangle = |0\rangle$ \rightarrow Observe "1" with probability $|b|^2$ $\Rightarrow |\varphi\rangle = |1\rangle$
- Multiple Qubits $|\chi\rangle_{12} = |\psi\rangle_1 \otimes |\varphi\rangle_2$

e.g. $|\chi\rangle_{12} = |0\rangle_1 \otimes |1\rangle_2$

Adiabatic Optimisation Procedure

Farhi et. al., Quantum Computation by Adiabatic Evolution (2001)

Why use an Adiabatic Quantum Computer?

• QUBO / Ising is NP-hard

• Quantum speed-up assumed but subject to discussion

(Defining and detecting quantum speedup, Rønnow et. al., Science 345, 1695, (2014))

Map other NP-hard problems to QUBO/Ising

(Ising Formulations of many NP problems, A. Lucas, Frontiers in Physics (2014))

Hardware limitations on a D-Wave device

- *Unit cell* with 8 Qubits an 2 partitions
- 8x8 Unit cells on D-Wave On chip \Rightarrow 512 Qubits
- Range of strenghts *H_i* and couplings *J_{ij}* limited and subject to uncertainties

Hardware limitations on a D-Wave device

- Not all Qubits are connected
- How to realise complete graphs?
- Solution:
 - Connection via other qubits
 - Representation of a *logical* qubit with several physical qubits

Overcome connectivity limitation

• Rule for implementing a complete graph onto the D-Wave hardware:

Source: D-Wave Sys. Simulator Software Documentation

Clique problem as QUBO

- Set negative strength at all nodes, e.g. $H_i = -1$
- Penalise all edges of graph complement with positive couplings, e.g. $J_{ij} = +10$
- Edges of the graph itself can be activated without penalty,

$$E(s_1, s_2, \dots, s_n) = \sum_i \frac{H_i s_i}{I_i s_i} + \sum_{ij} \frac{J_{ij} s_i s_j}{I_i s_i s_j}$$

Cliquen Problem on D-Wave Device

Outlook

- What kind of problems can be converted to QUBO?
- Combine conventional algorithms with AQC (hybrid approach)
- Investigate scaling behaviour