5. InterdisziplinärerWorkshop KognitiveSysteme

Driver Behaviour Prediction at Roundabouts: Results from a Field Study

Min Zhao

E-Mail: min.zhao@dlr.de

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verkehrssystemtechnik, 38108 Braunschweig

Knowledge for Tomorrow

Agenda

- 1. Motivation and objective
- 2. State of the art
- 3. Methodology
- 4. Field study and results
 - data preprocessing
 - data exploration and behaviour classification
- 5. Conclusion and future work

Motivation

Roundabouts:

- Increasing number of roundabouts
- Crashes at roundabouts

Objective

driver behaviour prediction:

take the exit or not

State of the art

driver behaviour at section:

longitudinal control behaviour (lane changing/carfollowing)

- Hidden Markov Model (Pentland, 2000)
- machine learning techniques (Tango, 2009)
- Bayesian programming (Möbus, 2009)

driver behaviour at intersection:

decision estimation

- Bayesian network (Lefèvre, 2011)
- K-means clustering (Naito, 2010)
- Hidden Markov Model (Gadepally, 2014)

Methodology

Field study

- seven participants
- ViewCar equippment
- Standardized driving route

Data preprocessing

data selection:

Data preprocessing

error data removal:

DLR

possible variables :

- velocity, acceleration
- indicator
- location
- yaw
- steering angle
- steering angle speed
- head motion, eye motion

When entrance and exit are adjacent :

type 2

When entrance and exit are **not** adjacent :

type 3

result of prediction for type 1:

site on the roundabout

		label_prediction		
	label_test		staying	leaving
		staying	42	0
		leaving	2	18
		hit rate	95.45%	100%

result of prediction for type 2:

		label_prediction		
	label_test		staying	leaving
		Staying	38	1
		leaving	2	19
		hit rate	95.00%	95.00%

5

result of prediction for type 3:

site on the roundabout

	label_prediction		
		staying	leaving
labol tost	staying	40	1
ומטפו_נפגנ	leaving	5	44
	hit rate	88.89%	97.78%

Sumary of the field study :

- status of steering wheel for prediction
- prediction accuracy above 90%, c.a.10 m away from exit

Open questions

- Online prediction
- Driver behaviours \leftrightarrow roundabout geometry

Future work:

- Hidden Markov Models for behavior prediction
- Simulator study

Simulator study design

roundabout geometry:

- angle between exits (3-arm, 4-arm)
- diameter (25 m, 40 m)

Simulator study design

Thanks for your attention!