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ABSTRACT 

Ongoing urbanization and population growth affect physical, ecological and socio-economic 

processes within and beyond urban areas. In this context, the physical spatial structure of cit-

ies serves as a basis for understanding urban areas in their entirety in order to achieve a sus-

tainable urban growth. Remote sensing is a cost-effective data source to derive information on 

the physical spatial structure of urban areas in large areal and temporal coverage. The Europe-

an Urban Atlas dataset is generated mainly on the basis of remotely sensed data and provides 

information on landuse/landcover of cities with more than 100,000 inhabitants in Europe. 

However, as proved within this study, the classification scheme does only partially hold dis-

tinct information on building structures and thus, as a matter of fact, does not contain holistic 

information on the morphology of urban areas. Within this study, a methodology towards the 

delineation of urban structures utilizing Cartosat-1 nDSM data and Urban Atlas building block 

information was developed. The nDSM data proved to be substantial in terms of building 

height classification but fails to add information on the building density. The methodology 

was applied in another city context achieving constant results and to an artificial reference unit 

of square objects achieving worse but still satisfactory results. The latter overcomes spatial 

limitations and allows for deriving information on urban structures independently from addi-

tional spatial data sources, on continental and even global scale. A cross-city structural analysis 

revealed differences and analogies of the urban morphology of Paris and London depending 

on the distance to the respective city center. 

 

KEYWORDS: European Urban Atlas, Cartosat-1, Random Forest, urban remote sensing, 

urban structure types, urbanization   
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1. INTRODUCTION 

Within this chapter background information on urban dynamics (1.1), the necessity of infor-

mation on urban structures (1.2) and on urban remote sensing (1.3) is presented in order to 

identify research gaps. Subsequently, the research objectives (1.4) are derived and the research 

questions are outlined. Finally, the research framework (1.5) of this study is introduced. 

1.1 Urban Dynamics  

The 21st century can generally be considered as ‘urban century’ (Heinzel and Kemper 

2015: 151). A turning point was reached in 2007, when for the first time in human history a 

larger share of the world population lived in urban environments instead of in rural areas 

(Griffiths et al. 2010: 426).  

The world population constantly continues growing and is predicted to reach 9.6 billion in 

2050, which equals an increase of 2.3 billion compared to mid-2013 (United Nations 2013: 1). 

Within this context, it is expected that urban areas will carry the major share of population 

growth over the next decades (Esch et al. 2012: 2) – with the largest urbanization rates esti-

mated for Africa and Asia (United Nations 2014: 1). As a consequence of the ongoing urbani-

zation and population growth, the United Nations (2014: 1) predict, that by the year 2050 al-

ready around 70% of the world’s population will live in urban areas.  

The continuing urbanization causes a significant increase of the number of megacities from 

todays 28 (United Nations 2014: 13) to more than 100 (Esch et al. 2012: 2). According to the 

United Nations (2012: 5) megacities can be defined as urban areas inhabiting more than 10 

million people. However, urban development is not solely restricted to megacities since almost 

half of the urban population is still living in small urban centers with less than 500.000 inhab-

itants (United Nations 2014: 1).  

Compared to the large population proportion, urban areas do only cover a small part of 2 to 

3% of the Earth’s surface (Esch et al. 2012: 2). Nevertheless, cities are the center of human 

activities and affect physical, ecological and socio-economic processes within and beyond their 

boundaries (Luck and Wu 2002: 328; Esch et al. 2012: 2).  

The ongoing population growth leads to continuous spatial expansion and re-densification of 

urban areas (Wurm et al. 2010: 1). This dynamic change of cities has caused significant effects 

on biodiversity, energy flows, biogeochemical cycles and climate conditions (Luck and Wu 
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2002: 327; Voltersen et al. 2014: 193; Hahs et al. 2009: 1165–1166). Besides, urban expansion 

in developing countries is often unplanned due to the governments being unable to keep track 

with growth related processes (Griffiths et al. 2010: 426). As a result of this, a large proportion 

of the urban inhabitants are prone to poverty, insufficient basic infrastructures, substandard 

housing, overcrowding and unhealthy living conditions (Niebergall et al. 2008: 193). 

Furthermore, cities affect large areas beyond their borders due to the magnitude of energy, 

nutrition, water and raw material demands of the inhabitants (Pacifici et al. 2009: 1276). With-

in this context, urbanization has caused landscape transformations around the world which 

resulted in a variety of effects on structure, function and dynamics of ecological systems (Luck 

and Wu 2002: 327; Niebergall et al. 2008: 193; Seto et al. 2011: 1). 

1.2 Necessity of Information on Urban Structures     

Structure and size of urban areas are the outcome of driving forces of urban development 

over time (Wurm et al. 2009: 1). Within this context, the social, cultural, economic, and politi-

cal behavior of the human population and their interaction with the environment have marked 

the surface appearance of cities (Patino and Duque 2013: 1; Anas et al. 1998: 1426).  

Besides being the most visible outcome of driving forces, the physical structure determines the 

social and environmental quality of cities. Therefore, it is important to understand the linkages 

between urban structures and socioeconomic as well as environmental issues (Pauleit and 

Duhme 2000: 1–2). In the scope of ongoing urbanization and population growth, city plan-

ners, economists, ecologists, resource managers and decision makers are in need of advanced 

methods and comprehensive knowledge of the cities (Pham et al. 2011: 223). Only these sup-

port intelligent decisions and help to guide the development of rapidly changing urban envi-

ronments in order that a sustainable urban growth can be achieved (Herold et al. 2002: 1443). 

All urban areas have their individual history, and although they share some basic similarities, 

each city represents an unique, stone-made urban ecosystem (Wurm et al. 2010: 1–2). Howev-

er, cities exhibit not only variances between each other but also within their own boundaries 

by means of spatial variations in building densities and structural characteristics (Hermosilla et 

al. 2014: 68).  

Thus, it is useful to divide cities into entities with homogeneous urban structures in order to 

understand urban areas in their entirety and achieve a sustainable growth. These entities are 
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commonly named urban structure types (Wurm and Taubenböck 2010a: 94; Wurm et al. 

2010: 2; Voltersen et al. 2014: 192).   

Urban structure types can be delineated with regard to type, amount and/or arrangement of 

urban objects (e.g. building, streets, trees, lawns, etc.) (Bochow et al. 2010: 1796; Osmond 

2011: 1–2). Further characteristics which can be used for differentiation are landuse and land-

cover (Bochow et al. 2010: 1796). Nevertheless, the main indicator for discrimination are the 

structural properties of the built-up physiognomy (Wurm et al. 2010: 2).  

The approach of portioning the city into homogeneous entities brings many benefits. Urban 

structure types are indicators that allow for differentiating the urban fabric  in order that typi-

cal characteristics like physical, functional and energetic factors can be identified (Banzhaf and 

Höfer 2008: 130). Urban structure types are often delineated on the basis of building blocks 

and therefore present a comparable and transferable classification framework for the total area 

of cities (Wurm and Taubenböck 2010a: 97; Osmond 2011: 17). At this scale the entities rep-

resent administrative units which fit in the hierarchical structure of cities, with a direct rela-

tionship to both, the individual urban objects (lower level) and the urban morphology of local 

districts (higher level)(see Figure 1) (Wurm and Taubenböck 2010a: 96). Furthermore, the 

urban structure type approach serves as a common spatial working fundament which allows 

for integrating a variety of technical, methodological and spatial approaches to urban areas 

(Wurm et al. 2010: 2).  

Owing to the advantages, the concept of urban structure types has already been used in a vari-

ety of application fields. In this regard, those units were used as input for comparing the mor-

phology of slums (Taubenböck and Kraff 2015), energy models (Gill et al. 2007) as well as for 

the extrapolation of ecological (Gill et al. 2008) and socioeconomic (Avelar et al. 2009) varia-

bles. 
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Figure 1: Scale-dependent analysis and evaluation of urban structures (Sukopp and Wittig 1998)  

1.3 Urban Remote Sensing 

Satellite based remote sensing is a consistent and comprehensive data source which enables to 

detect the global landcover and its changes over time (Griffiths et al. 2010: 426–427). The 

majority of remote sensing applications dealt with natural environments over the last decades 

(Weng and Quattrochi 2007: I). Nevertheless, due to the availability, temporal coverage and 

increasing cost effectiveness of satellite data, the added value of remote sensing to monitoring 

urban areas is widely accepted today (Donnay et al. 2001: 4). Within this context, a variety of 

approaches, using remote sensing to derive information on urban environments, were carried 

out on different spatial and thematic scales.  

Attempts to map urban areas on large scale comprise among others Mod 500, the CORINE 

Landcover Programme as well as the European Urban Atlas. In the scope of Mod 500, a mask 

of the urbanized area was derived globally with a geometric resolution of 500m using satellite 

data of the Moderate Resolution Imaging Spectroradiometer (MODIS) from the year 2001 
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(Schneider et al. 2009). The CORINE landcover program focused on the detection of settle-

ment areas in Europe. Within the framework of that program, landcover/landuse were 

mapped in the scale 1:100,000 mainly based on remote sensing date using a standardized 

mapping key (EEA 2010a). Another, more detailed dataset of the European urban environ-

ment is provided by the European Urban Atlas. In the scope of the European Urban Atlas 

initiative, landuse/landcover of cities with more than 100.000 inhabitants was mapped in the 

scale 1:10,000. Within this context, the derivation was mainly based on remote sensing data 

using 20 landuse/landcover classes (EEA 2010b). With regard to the Mod 500 outcome, the-

matic resolution and detail are criticized, which are too coarse in order to enable an effective 

support of analysis within the urban context (Esch et al. 2012: 4). The datasets on continental 

scale on the contrary, provide information on urban areas with increased thematic and geo-

metric detail but exhibit limitations with regard to spatial coverage.  

The progress of remote sensing technology over the last decades has led to a constant increase 

in spatial resolution of earth observation products. This in return facilitates more detailed clas-

sifications of landuse/landcover. New missions like the German TerraSAR-X and TanDEM-

X sensors allow for deriving urbanized areas with high spatial detail. With the help of the au-

tomated ‘Urban Footprint Processor’ a global binary mask (Global Urban Footprint (GUF)) 

with a spatial resolution of 12m could be derived based on radar datasets of the two satellites 

from 2011 and 2012. This data discriminates ‘built-up’ and ‘none built-up’ areas and provides 

a suitable basis for the analysis of urban expansion (Esch et al. 2011; Esch et al. 2012; Esch et 

al. 2013). Comparable new datasets are e.g. the Global Human Settlement Layer (GHSL) of 

the joint Research Center (Pesaresi et al. 2013). Due to the GUF layer it was possible, to de-

velop methods to monitor the growth of megacities (Taubenböck et al. 2012) as well as of 

megaregions (Taubenböck et al. 2014). Besides, the GUF data in combination with Landsat 

satellite data, enabled to trace the development of the investigated urban areas back to the 

1970s. However, although the datasets brought urban analysis to a more detailed level, they 

still do not allow for identification of urban structures (Wurm et al. 2009: 1). 

Nevertheless, the improved spatial detail of remote sensing data further enables to derive in-

formation of smaller spatial entities like individual buildings or urban structure types. Thus, 

detailed analysis of intra-urban structures and their composition utilizing remote sensing are 

increasingly in the focus of research. Within the scope of urban structure type classification, a 

variety of methodological approaches were applied comprising, e.g. spatial metrics and texture 
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(Herold et al. 2003), supervised classification (Bochow 2010) and object-based image analysis 

with decision trees (Wurm et al. 2009). Aiming at specific classes of urban structure types, 

mapping of slums and other informal settlements is a popular research field (e.g. Baud et al. 

2010; Kuffer and Barros 2011; Taubenböck and Kraff 2014). 

The usage of very high resolution (VHR) imagery and digital surface models (DSM) allow the 

delineation of building footprints and heights (e.g. Khoshelham et al. 2010; Wurm et al. 2014; 

Sirmacek et al. 2012). Those building information enable to generate 3-D city models which in 

turn provide the basis for the delineation of urban structure types of whole cities. Recent re-

mote sensing studies of urban structure types comprise detailed classifications of European 

cities like Leipzig (Banzhaf and Höfer 2008), Munich (Wurm et al. 2010), Berlin (Voltersen et 

al. 2014) or Valencia (Hermosilla et al. 2014). These studies were based on VHR DSM and/or 

multispectral data and achieved good overall accuracies of around 80-95%. However, the 

VHR data used within these studies is cost-extensive and provides only limited spatial cover-

age. Hence, the applications mainly remain on the level of case studies and are not suited to 

derive area-wide information on the physical spatial structure of entire cities. 

New approaches utilize Cartosat-1 DSM data, which are more favorable in terms of acquisi-

tion costs, availability and spatial coverage compared to e.g. LIDAR DSMs. Within this con-

text, Wurm et al. (2014) developed a methodology which uses Digital Topographic Maps in 

the scale 1:25,000 to extract building footprints and combines those with height information 

from Cartosat-1 DSMs. This approach allows for localization of urban mass concentrations in 

urban and peri-urban regions in the magnitude of 100x100km. Besides, an extraordinary urban 

structuring application was investigated from Taubenböck et al. (2013) by delineating central 

business districts in Paris, London and Istanbul based on Cartosat-1 nDSM data.  

1.4 Research Objectives 

As indicated in the previous sections, ongoing population growth and urbanization have al-

ready caused rapid developments like expansion and re-densification of cities, and will contin-

ue to do so (Wurm et al. 2010: 1). With regard to this, the structure and size of urban areas is 

the most visible outcome of driving forces of urban development and further determines so-

cial and environmental quality (Pauleit and Duhme 2000: 1–2; Wurm et al. 2009: 1; ). There-

fore, information on the physical structure of cities serves as a valuable information basis (An-

as et al. 1998: 1426). These can help to gain comprehensive knowledge on urban areas in order 
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to support intelligent decisions for a sustainable urban growth (Herold et al. 2002: 1443).  

Thus, area-wide and up-to date information on urban structures is necessary (Wurm et al. 

2009: 1).   

Remote sensing is an independent and valuable source to provide area-wide information on 

cities and their suburban regions on various scales (Esch et al. 2010: 2–3). The European Ur-

ban Atlas is one of the large-scale approaches based on satellite data. It provides cost-free 

landuse/landcover information in polygon format of cities with more than 100,000 inhabitants 

in Europe (EEA 2010b). The Urban Atlas datasets allow for detailed urban analysis and have 

already been applied in a variety of research applications like urban heat island analysis (Fab-

rizio et al. 2011), analysis of urban development (Sapena and Ruiz 2015), land use modelling 

(Prastacos et al. 2011) and analysis of urban compactness (Stathakis and Tsilimigkas 2013). 

However, the datasets are spatially limited to large cities on the European continent and fur-

thermore, are criticized for hiding information on the morphology of cities (Prastacos et al. 

2011: 2). Nevertheless, the latter has never been proved quantitatively and therefore represents 

a gap in research. Due to the demonstrated importance of information about the physical spa-

tial structure of cities, it is thus useful to evaluate if the Urban Atlas datasets are really not ca-

pable to represent the morphology of urban areas.  

The progress of remote sensing technology has led to a constant increase of spatial resolution 

and thus, now facilitates to derive information on smaller entities like the urban structure 

types. New approaches toward the delineation of urban structure types are based on Cartosat-

1 DSMs (Wurm et al. 2014; Taubenböck et al. 2013). However, the approach of Wurm et al. 

(2014) still relies on Digital Topographic Maps for building footprint extraction. The method-

ology of Taubenböck et al. (2013) on the contrary, relinquishes the extraction of building 

footprints and uses the pixels of Cartosat-1 nDSMs as building substitutes instead. Neverthe-

less, the approach aimed only at delineating a specific urban structure type, namely the central 

business district. Hence, a research gap still exists towards the capability of Cartosat-1 nDSMs 

to delineate further information on the physical spatial structure of cities.   

With regard to the aforementioned research gaps, this study seeks to validate the Urban Atlas 

classification scheme on the one hand. On the other, a classification methodology towards urban structure 

delineation using the Urban Atlas entities in polygon format and Cartosat-1 nDSM data is de-

veloped. This methodology is further applied to another European city in order to gain confi-

dence about the transferability to another city context. Furthermore, it is tested if the Urban 
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Atlas entities can be substituted by an artificial reference unit of square objects. Thereby, it can 

be proved if the developed methodology works independently from the Urban Atlas datasets 

and thus, overcomes the spatial limitation to European cities with more than 100,000 inhabit-

ants.  

The following research objectives and questions are addressed in the scope of this study: 

Table 1: Research objectives and research questions of the study 

Research Objectives Research Questions  

1. Validation of the  

Urban Atlas  

Classification Scheme 

1.1 
Are the density ranges of the Urban Atlas ‘Discontinu-
ous’ and ‘Continuous Urban Fabric’ classes accurate? 

1.2 
Do the Urban Atlas classes feature information on ur-
ban structures? 

2. Urban Structure          
Classification utilizing    
Cartosat-1 nDSM Data 

2.1 
Is it possible to automatically derive information on 
urban structures from Cartosat-1 nDSM datasets? 

2.2 
Which features have the highest explanatory power for 
classification of urban structures? 

3. Transferability Evalua-
tion of Urban Structure 
Classification 

3.1 

 

Is the developed urban structure classification        
methodology transferable…? 

a) …to another city context? 

b) …to an independent spatial unit of square objects? 

4. Cross-City Structural 
Analysis 

4.1 

Are there differences and/or analogies between the 
urban morphology – by means of the horizontal and 
vertical urban structure – of London, England and Paris, 
France? 

 

1.5 Research Framework 

In accordance with the research objectives and questions formulated in the previous section, 

the framework of this study comprises four working steps. 

As mentioned above, the Urban Atlas datasets are criticized for hiding information of the 

morphology of urban areas. Inspired by this point of criticism, the central hypothesis of this 

study reads as follows: The Urban Atlas classes do only partially contain information on the horizontal 

and vertical structure of cities. 

On the basis of this hypothesis, the first working step of the study comprises the validation of 

the Urban Atlas classification scheme. Within this context, an accuracy assessment is carried 
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out and the Urban Atlas classes are reviewed on whether they contain distinct information on 

urban structures or not. In order to do this, a spatial dataset of one of the test sites is used to 

aggregate physical parameters – suitable to describe the horizontal and vertical structure of 

cities quantitatively – on the level of the Urban Atlas polygons. The validation is conducted by 

comparing the calculated physical parameters with the Urban Atlas classes on the level of the 

Urban Atlas polygons.  

In the scope of the second working step, a methodology for urban structure classification based 

on the Urban Atlas polygons and Cartosat-1 nDSM data is developed for one of the test sites. 

For that purpose, some of the physical parameters calculated within the first working step are 

used to delineate urban structures and create reference classifications. These are used to train 

the classifiers and to conduct an accuracy assessment of the classification results. Thereby, 

confidence is gained on the classification quality and performance.  

In the third working step, the transferability of the previously developed urban structure classifi-

cation methodology is tested. On the one hand, the methodology is applied on the Urban 

Atlas polygons and nDSM data of another test site in order to review the transferability of the 

methodology in another city context. On the other hand, the Urban Atlas polygons are substi-

tuted by an artificial spatial unit of square objects in order to test whether the developed 

methodology works independently from other than remote sensing datasets, too.  

In the fourth working step, a cross-city structural analysis is conducted between the two test sites 

in order to prove that information on urban structures allows for detailed analysis of the mor-

phological composition of cities. For that purpose, some of the physical parameters of the 

first working step are used again.  

An outline of the contents of this thesis is presented within Figure 2. Within the first chapter 

background information on urban dynamics, the necessity of information on urban structures 

and on urban remote sensing is presented in order to identify research gaps. Subsequently, the 

research objectives are derived and the research questions are outlined. The second chapter in-

troduces the selected study sites as well as the utilized spatial and remote sensing datasets. In 

the third chapter the methodological approaches of the Urban Atlas validation, of the urban 

structure classification, of the transferability evaluation of the urban structure classification as 

well as of the cross-city structural analysis are outlined. Finally, the results of this study are 

presented and analyzed within the fourth chapter. 
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With the results gained during this study, the central hypothesis can be proved or falsified and 

the research questions can be answered. Subsequently, the outcomes are reviewed critically in 

terms of a discussion on the limitations of the applied methodology and the used data. 

 

 

Figure 2: Outline of the thesis contents 
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2. STUDY SITES & DATA 

Within this chapter, the selected study sites (2.1) as well as the utilized spatial (2.2) and remote 

sensing (2.3) datasets are introduced. 

2.1 Study Sites 

The two major aims of this study are the validation of the European Urban Atlas as well as the 

development of a methodology for urban structure classification using the Urban Atlas poly-

gons and Cartosat-1 nDSM data. Urban Atlas data, as already mentioned in the previous chap-

ter, is only available for European cities with more than 100,000 inhabitants (EEA 2010b). 

The nDSM data used within the scope of this study are taken over from (Klotz 2012; 

Taubenböck et al. 2013), who used these for the purpose of central business district delinea-

tion in London, England; Paris, France and Istanbul, Turkey. In order to be able to fulfill the 

research objectives of this study both, Urban Atlas as well as Cartosat-1 nDSM data need to 

be available for the cities to be analyzed. Thus, London and Paris are selected as study sites for 

this research. Although nDSM data is available for Istanbul, too, the city is not covered by the 

Urban Atlas and hence, not suited for the purpose of this research. In the following sections, 

the two selected study sites are briefly introduced.  

2.1.1 London, England 

London is the capital of England and located in the United Kingdom at the south-eastern part 

of England. The Thames River runs through the city and splits it into a northern and a south-

ern part. London is currently home for 10.2 million people (United Nations 2014: 26) and can 

therefore be categorized as megacity1.  

London was established around 43 A.D. from the Romans under the name “Londinium”. 

After the Normans took over the city in 1066, London became the capital of the British 

Kingdom. In medieval times the city was a major center of English and continental networks 

of trade. (Keene 2000) 

In 1666 large parts of London were destroyed by an event commonly named “the great fire”. 

Subsequently, a lot of plans were made for large-scale reconstructions. However, none of 

these was ever realized. During industrialization London experienced a tremendous expansion 

                                                      
1 According to the United Nations (2012: 26), megacities can be defined as cities inhabiting more than 10 million 
people. 
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and became a major city of politics. Due to the city’s spatial expansion beyond statutory city 

boundaries, it is often termed as “spreading city” which consists of a vast number of small 

houses. (Alter 2000) 

Today’s London is one of the leading world cities with regard to finance and commerce, 

communication, culture and knowledge (Simmie and Sennet 2001: 195). 

2.1.2 Paris, France 

Paris is the capital of France located in the Île-de-France region in the northern part of the 

country. The city is split by the Seine River which meanders through the whole city area. With 

around 10.8 million inhabitants (United Nations 2014: 26), Paris is, besides London, another 

European megacity.  

In the mid of the 3rd century B.C. a small settlement named “Lutetia” was established on the 

Île-de la-Cité from the Keltic. This settlement was conquered by the Romans in 52 B.C., who 

subsequently established the city of Paris at that location. (Sohn 2000) 

In the 17th century, under the rule of King Ludwig XIV, a lot of baroque buildings and boule-

vards were built within Paris who determined the appearance of the city henceforth. Begin-

ning from 1768, during the French Revolution, the city increasingly gained importance as the 

center of France. Under Napoleon III, Haussmann revolutionized the urban development of 

Paris. Due to public safety, hygienic as well as imperial prestige reasons almost all medieval 

streets in the center and in the western part of Paris were replaced by new street networks and 

representative administration, transport as well as cultural buildings. In the scope of industrial-

ization, the population of Paris experienced a rapid growth which was mainly absorbed by the 

suburb regions (Banlieues). (Wirsching 2000) 

Today’s Paris holds a unique position in France which, first under monarchy and later under 

successive republics, concentrates political, cultural and economic functions (Halbert 

2006: 180).  

2.2 Spatial Datasets 

In the following sections the spatial datasets used within the scope of this study are intro-

duced. These comprise the Urban Atlas (2.2.1) as well as building references for London 

(2.2.2) and Paris (2.2.3).  

https://de.wikipedia.org/wiki/%C3%8Ele_de_la_Cit%C3%A9
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2.2.1 European Urban Atlas  

The European Urban Atlas provides reliable, intercomparable, high-resolution 

landuse/landcover data for cities with more than 100,000 inhabitants in Europe for the refer-

ence year 2006 (± 1 year). It is part of the Global Monitoring for Environment and Security 

(GMES)/Copernicus land monitoring service program and is distributed free of costs in vec-

tor/polygon format over the Internet by the European Environment Agency (EEA) (EEA 

2010b; Prastacos et al. 2011: 261 Prastacos et al. 2012: 261; Sapena and Ruiz 2015: 1412). 

Table 2: Urban Atlas nomenclature  

Class 
Code 

Nomenclature Usage of Urban 
Built-up Areas 

11100 Continuous Urban Fabric (Sealing Degree > 80%) residential 

11210 Discontinuous Dense Urban Fabric (Sealing Degree 50 - 80%) residential 

11220 Discontinuous Medium Density Urban Fabric (Sealing Degree 30 - 
50%) 

residential 

11230 Discontinuous Low Density Urban Fabric (Sealing Degree 10 - 30%) residential 

11240 Discontinuous Very Low Density Urban Fabric (Sealing Degree < 
10%) 

residential 

11300 Isolated structures non-residential 

12100 Industrial, commercial, public, military and private units non-residential 

12210 Fast transit roads and associated land  

12220 Other roads and associated land  

12230 Railways and associated land  

12300 Port Areas non-residential 

12400 Airports non-residential 

13100 Mineral extraction and dump sites  

13300 Construction Sites non-residential 

13400 Land without current use  

14100 Green urban Areas  

14200 Sports and leisure facilities  

20000 Agricultural areas, semi-natural areas and wetlands  

30000 Forests  

40000 Water  

Source: EEA 2010c : 8-9 
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The Urban Atlas datasets are equivalently provided in the scale 1:10,000 with a minimum 

mapping unit of 0.25 ha. The positional accuracy of the dataset is ±5m and the overall accura-

cy averagely amounts 80% for all classes (EEA 2010c: 1).  

The Urban Atlas classification scheme differentiates 20 distinct landuse/landcover classes. 17 

out of the total 20 classes can be considered as built/artificial urban classes (Prastacos et al. 

2012: 261). However, only 10 of the 17 urban classes contain built-up structures (EEA 

2010c: 12ff.) and can further be differentiated in “residential” and “non-residential” usage. 

These particular 10 classes are delineated on the level of building blocks. The Urban Atlas 

nomenclature for all classes is shown in Table 2. 

The nomenclature of the Urban Atlas “Continuous” and “Discontinuous Urban Fabric” clas-

ses (see Table 2) is based on the CORINE land cover classes “Continuous Urban Fabric > 

80%” and “Discontinuous Urban Fabric 30-80%”. Nevertheless, some refinements were 

made. While the class “Discontinuous Urban Fabric >80%” was retained, the class “Discon-

tinuous Urban Fabric 30-80%” was subdivided into two classes. Additionally, two further clas-

ses were added to the Urban Atlas classification scheme, namely “Discontinuous Urban Fabric 

10-30%” and “Discontinuous Urban Fabric <10%”. (Prastacos et al. 2012: 262)  

The production of the Urban Atlas datasets has been carried out mainly on the basis of high-

resolution (2.5m) satellite images (e.g. Spot 5, Quickbird, Formosat-2, Kompsat-2 and ALOS 

Data) in combination with topographic, land use and ancillary maps (EEA 2010c: 2; Stathakis 

and Tsilimigkas 2013: 127). The degree of sealing of the “Discontinuous” and “Continuous 

Urban Fabric” classes was derived using a soil sealing layer (EEA 2010c: 2). This layer pro-

vides a quantitative measure of the area covered by buildings, streets and other artificial ob-

jects. The production process of the Urban Atlas datasets involved a mix of classification and 

image-interpretation (Prastacos et al. 2012: 261) following uniform standards which are de-

scribed in a specific mapping guide (EEA 2010c). Thus, the Urban Atlas datasets are permit-

ting comparison of landuse/landcover between the participating European cities (EEA 

2010b). In order to ensure a high quality of the Urban Atlas datasets, the production process 

further included a three-step validation. This comprised a project intern quality assessment, 

independent experts as well as a technical review by the European Topic Centre on Land Use 

and Spatial Information (Prastacos et al. 2012: 261).  
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The landuse/landcover information of the Urban Atlas datasets is provided based on exactly 

the same boundaries as used for the Urban Audit dataset (Prastacos et al. 2011: 2). The latter 

is a database containing a collection of statistical information on e.g. demography, social and 

economic aspects, environment, etc. of European cities (Seifert 2009: 232; Prastacos et al. 

2011: 2). Hence, the analysis of the Urban Atlas datasets strongly benefits from having access 

to socioeconomic data of the Urban Audit database for the same areas and vice versa (Pra-

statcos et al. 2011: 3). Regular continuations of the Urban Atlas datasets are planned for every 

three to five years, in the same time frame as the update frequencies of the Urban Audit da-

tasets (Seifert 2009: 240; Prastacos et al. 2011: 3).  

Due to the manifold advantages, the Urban Atlas allows for a wide range of urban analysis and 

applications (EEA 2010b). Within this context, a variety of research applications like urban 

heat island analysis (Fabrizio et al. 2011), analysis of urban development (Sapena and Ruiz 

2015), land use modelling (Prastacos et al. 2011) and analysis of urban compactness (Stathakis 

and Tsilimigkas 2013) have already made use of the Urban Atlas. Nevertheless, the datasets 

are criticized for hiding information on the urban morphology (Prastacos et al. 2011: 2, 

2012: 261) and therefore pose an obstacle to the application in the domain of physical urban 

structure research. However, this point of criticism has not yet been proved quantitatively and 

is one of the research aims of this study. Another aim is to develop a classification methodol-

ogy to differentiate urban structures based on the Urban Atlas polygons and Cartosat-1 nDSM 

data.  

With regard to the formulated research aims and to the selected study sites, Urban Atlas da-

tasets of London, England and Paris, France were utilized within the scope of this research. 

Nevertheless, since the study focusses solely on urban structures, only polygons of the “resi-

dential” and “non-residential” Urban Atlas classes (see Table 2) were considered. 

2.2.2 UKMap - Building Inventory of London 

The UKMap building inventory is a comprehensive database which provides information on 

building footprints and their associated height in shapefile format covering the whole city area 

of London. Height and coverage attributes of the buildings are LIDAR-derived with a vertical 

accuracy of  95% and 0.5m confidence limits (Klotz 2012: 19). The dataset is openly available 

for teaching, learning and research aims (Kittmito et al. 2000: 1) and provided by the Geoin-

formation Group of the University of Manchester (UKMap building inventory © The Geoin-
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formation Group 2012). Within the scope of this study, this data is utilized for the validation 

of the European Urban Atlas classification scheme, for the development of the urban struc-

ture classification methodology as well as for the cross-city structural analysis.  

2.2.3 OpenStreetMap – Building Footprint Data of Paris 

In recent years, the interest in volunteered geographic information (VGI) was growing rapidly 

(Goodchild 2007: 211). VGI is a specific version of crowd-sourcing, where participants create 

and contribute geographic facts to websites where these are stored in databases (Goodchild 

and Li 2012: 110). OpenStreetMap (OSM) is one example for VGI and represents an interna-

tional work to create a cost-free source of map data by the collective effort of many volun-

teers. Within this context, OSM represents a valuable source of geographical information for 

different purposes. Nevertheless, quality and availability of the data are strongly dependent on 

the individual volunteers (Goodchild 2007: 213ff).  

France is one of the countries providing free access to building footprint data in vector for-

mat. In this context, the OSM community already undertakes considerable activities to imple-

ment these data into the OSM database (Hecht et al. 2013: 1087). Thus, a large dataset of 

building footprints with good quality is provided within OSM especially for Paris. In this re-

gard, OSM data (2012) is used for the purpose of transferability evaluation to another city 

context as well as for the cross-city structural analysis in this study.  

2.3 Remote Sensing Datasets 

In the following sections, the remote sensing datasets used within this study are introduced. 

These comprise Cartosat-1 nDSMs of London and Paris (2.3.1) as well as Global Urban 

Footprint (GUF) data of London (2.3.2).  

2.3.1 Cartosat-1 – normalized Digital Surface Model (nDSM) 

Cartosat-1 nDSMs are the major datasets used for urban structure classification within the 

scope of this study. These data were taken over from (Klotz 2012; Taubenböck et al. 2013) 

who used it for the purpose of central business district delineation. The nDSMs were derived 

in a three-step process from Cartosat-1 stereo scenes. In the following, general and technical 

facts of the Cartosat-1 satellite as well as the particular procedures to derive the desired data 

are briefly outlined.  
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Cartosat-1 or IRS-P5 (Indian Remote Sensing Satellite P5) was launched from the Indian Na-

tional Remote Sensing Agency on the 5th of May in 2005. The satellite orbits the Earth sun-

synchronously in a height of 618km and captures the entire globe with a repeat cycle of 128 

days. It carries two panchromatic cameras which record images in the spectral wavelength 

range 500-850nm (Gianinetto 2008: 300) in stereo mode. Within this context, one of the cam-

eras is looking forward 26º and the other one is looking aft -5º. The stereo images feature a 

geometric resolution of 2.5m and are recorded at a relatively large swath width of 26km. (Jen-

sen 2007: 229–231) 

Table 3: Cartosat-1 stereo scenes of London and Paris 

City 
No. of 
stereo 
pairs 

Aerial 
coverage 
(in km²) 

Sensor 
Date/Data 

source 
Cloud 
cover 

Path/Row Product 

London 2 1,521 

Pan Fore 

Pan Aft 

19 May 2010 

/Euromap 
<10% 86/162 

Standard 

GeoTiff 

Pan Fore 

Pan Aft 

19 May 2010 

/Euromap 
<10% 86/163 

Standard 

GeoTiff 

Paris 4 2,505 

Pan Fore 

Pan Aft 

29 June 2011 

/Euromap 
0% 104/174 

Standard 

GeoTiff 

Pan Fore 

Pan Aft 

29 June 2011 

/Euromap 
<10% 104/175 

Standard 

GeoTiff 

Pan Fore 

Pan Aft 

3 July 2011 

/Euromap 
0% 105/174 

Standard 

GeoTiff 

Pan Fore 

Pan Aft 

3 July 2011 

/Euromap 
0% 105/175 

Standard 

GeoTiff 

Source: Klotz 2012: 15 

The satellite has already captured stereo images of large parts of the Earth’s surface including 

the European continent (Uttenthaler et al. 2013: 4). Due to the availability as well as the spatial 

and temporal coverage (revisiting rate = 5 days) of the images, Cartosat-1 is particular suited 

to capture very large urban areas in a cost-effective manner (Wurm et al. 2014: 2). An over-

view of the Cartosat-1 stereo scenes used for the generation of the nDSM data for London 

and Paris is given within Table 3. The data has been provided within the scope of the DLR 

scientific data pool by the Euromap GmbH, which is responsible for the distribution of the 

Cartosat-1 data in Europe (Klotz 2012: 16).  
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The derivation of the nDSMs required the generation of DSMs in advance (Step 1). DSMs 

contain elevation information about all features of a landscape including buildings, vegetation 

and other structures (Jensen 2007: 335). Cartosat-1 stereo images are suited to generate DSMs 

with a geometrical resolution of 5m (dAngelo et al. 2008: 1137). The DSMs for London and 

Paris were derived from the Cartosat-1 stereo scenes presented within Table 3 by the German 

Remote Sensing Data Center (DFD) (Klotz 2012: 16). For that purpose, fully automatic semi-

global image matching was applied (dAngelo et al. 2010: 2), using mutual information 

(Hirschmüller 2008: 329) of the respective stereo images of London and Paris.  

Stereo matching in general finds corresponding pixels in image pairs and uses the known cam-

era orientations (intrinsic and extrinsic) for triangulation. This in turn enables for 3D recon-

struction of image objects. Local stereo image matching techniques use matching windows to 

find corresponding pixels in two or more overlapping images. However, images are locally 

very ambiguous. Global image matching techniques on the contrary, overcome this problem 

by matching pixels individually but require high computation effort. Semi-global image match-

ing combines the concepts of local and global stereo methods successfully and matches the 

pixels individually with a low runtime. (Hirschmüller 2011: 174–175)  

The semi-global matching method applied for derivation of the DSMs of London and Paris 

was evaluated by comparing DSMs generated from stereo images of 18 test sites in Europe 

with independent ground truth data. The tests confirmed an average horizontal accuracy of 

6.7m and an average vertical accuracy of 5.1m. (dAngelo et al. 2010: 3–4)  

In order to be able to derive the desired nDSM data, DTMs needed to be derived from the 

previously created DSMs (Step 2) (Klotz 2012: 34). DTMs contain only information of the 

Earth’s surface without the influence of vegetation, buildings or other structures (Jensen 

2007: 335). The DTMs used for the generation of the nDSMs of London and Paris were de-

rived using a morphological opening approach (Haralick et al. 1987) from the field of mathe-

matical morphology (Klotz 2012: 34). The algorithm is based on a sequence of erosion (mini-

mum) and dilation (maximum) filter. The kernel window-based filter operation firstly substitutes 

each pixel of the DSMs with the filter minimum. The resulting interim image is subsequently 

filtered again using the same kernel window, but this time substituting each pixel with the fil-

ter maximum (Bochow 2010: 57). In order to smooth the DTM surface a median filter was 

applied subsequently (Klotz 2012: 36).  
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Since the results of the morphological filtering are sensitive to the size of the kernel filter 

(Arefi et al. 2009: 3), several kernel sizes were tested (Klotz 2012: 34). The best results could 

be achieved with a kernel window with a size of 10x10 pixels which was thus used for the 

generation of the DTMs of London and Paris.  

In a last step (Step 3), the final nDSMs were derived by calculating the difference between the 

DSMs and the DTMs (see Figure 3). The nDSMs contain solely height information of vegeta-

tion, buildings and other objects above ground without the influence of the Earth’s surface 

elevation. Maps showing the derived nDSMs of London and Paris can be found in Appendix 

3 and Appendix 4. 

 

Figure 3: Schematic representation of nDSM calculation (Brüsshaber et al. 2010: 4) 

The final nDSMs feature a geometric resolution of 5m and can therefore be categorized as 

high resolution products (Taubenböck et al. 2012: 162). This resolution is yet too coarse in 

order to allow for the extraction of single buildings (Taubenböck et al. 2013: 395). Neverthe-

less, using the single pixels of the nDSMs as building substitute allows for the detection of 

physical urban structures as proved in the context of central business district delineation from 

Taubenböck et al. (2013). Besides, as already mentioned above, Cartosat-1 nDSMs are very 

cost-effective and cover large areas due to the large swath width. Thus, the data represents a 

valuable source for urban structure classification as intended within this study.   

2.3.2 TerraSAR-X & TanDEM-X – Global Urban Footprint (GUF) 

New missions like the German TerraSAR-X and TanDEM-X sensors allow for deriving ur-

banized areas with high spatial detail. In this regard, the German Remote Sensing Data Center 
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(DFD) of the German Aerospace Center (DLR) has developed a fully automated processing 

chain (Urban Footprint Processor) for the global delineation of human settlements based on 

radar data of the two satellites (Esch et al. 2013: 1617). In the following, general facts of the 

TerraSAR-X and TanDEM-X satellites as well as the processing stages of the “Urban Foot-

print Processor” are briefly outlined.  

TerraSAR-X was launched on the 15th of June in 2007, implemented by a public-private-

partnership between the DLR and EATS Astrium GmbH. The satellite circles the Earth in a 

sun-synchronous orbit at 514km. The main recording device on board of the satellite is a 

modern X-band radar sensor, a so-called “Synthetic-Radar-Aperture” (SAR), which is record-

ing at a frequency of around 9.65 GHz, corresponding to a wavelength of 3cm. The sensor 

enables different modes (Spotlight, Stripmap and ScanSAR) of operation which in turn allow 

capturing radar images with different swath width (10, 30 and 100km), geometric resolutions 

(1, 12 and 30m) and polarisations. Since TerraSAR-X carries an active system, it is independ-

ent from sun-illumination and weather conditions. This enables to record images around the 

clock and even of areas which are covered by clouds. TerraSAR-X images can be used for 

both, scientific and commercial applications and have already been applied in a variety of 

fields like geology, climate research, urban research, etc. (DLR 2009; Buckreuss et al. 2009) 

The TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) mission serves as 

an extension of the TerraSAR-X satellite and was again implemented by a public-private-

partnership between DLR and EATS Astrium GmbH. The TanDEM-X Satellite was 

launched on the 21st of June in 2010 and orbits sun-synchronously in a height of 514km. The 

satellite is a replica of the TerraSAR-X satellite with only few modifications and thus, enables 

to record in Spotlight, Stripmap and ScanSAR mode, too. The two satellites are flying in a 

unique formation with a distance of 250 up to 500m between each other. Thereby, two opera-

tion modes are possible. On the one hand, both satellites can operate independently in mono-

static mode and on the other, synchronously in bi-static mode. Within this context, the bi-

static mode serves as the basis for the generation of a worldwide, consistent, timely, and high-

precision Digital Elevation Model (DEM), which is the primary objective of the TanDEM-X 

mission. Within one year, the whole surface of the Earth can be recorded twice with radar 

imagery of the TerraSAR-X and TanDEM-X satellites. (Moreira et al. 2004; Krieger et al. 

2007; Esch et al. 2012)  
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Besides using the radar data of the two satellites for DEM generation, these are also utilized 

for the derivation of a global human settlement layer (Felbier et al. 2014: 4816). For identifica-

tion and delineation of urban areas, single-polarized very high resolution (3-5m) SAR imagery, 

recorded independently by both satellites in the years 2011 and 2012, is used (Esch et al. 

2012: 5). In order to classify these data automatically the DFD-DLR has developed the fully 

automatic “Urban Footprint Processor” which comprises three main processing stages (Esch 

et al. 2013: 1617) (see Figure 4).  

The first stage is devoted to feature extraction. Within this step, a specific texture measure is 

calculated which enables to point out highly structured and heterogeneous built-up areas on 

the radar imagery (Esch et al. 2013: 1618). In the second step, an unsupervised classification ap-

proach on Pixel level is conducted. This uses the previously calculated texture information as 

well as local backscattering characteristics in order to generate a binary mask, discriminating 

between “built-up” and “none built-up” areas (Esch et al. 2013: 1619). With regard to this, 

high texture and backscattering values of the pixels are associated with built-up structures 

while low values correspond to none urbanized areas (Felbier et al. 2014: 4816). In the third 

step, post-editing and mosaicking of the binary masks generated in the classification process is 

carried out (Esch et al. 2013: 1619). 

 

Figure 4: Schematic representation of the process chain of the "Urban Footprint Processor" (Esch et al. 2013: 

1618)  

The utilization of the “Urban Footprint Processor” enabled already to derive human settle-

ment classifications covering the whole globe from around 180.000 radar images of the Ter-

raSAR-X and TanDEM-X satellites. This Global Urban Footprint (GUF) is available in two 
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different resolutions, namely 12m (high resolution) and 75m (medium resolution). (Felbier et 

al. 2014: 4816) 

Within this study, an extract of the high resolution GUF of London (see Appendix 5), derived 

from radar data of the year 2011, was utilized in the context of urban structure classification 

using an independent reference unit of square objects. This allowed for generating square ob-

jects only for areas which are classified as “built-up” in the GUF dataset.  
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3. METHODOLOGY  

The workflow of this study comprises four methodological steps which are presented briefly 

in the following:  

(1) The first step is concerned with the validation of the Urban Atlas classification scheme. This 

is done using the city of London as an example. The reference dataset for the validation is a 

high resolution 3D city model (UKMap building inventory). Initially, some preprocessing 

steps are conducted in order to correct inconsistencies of the UKMap building inventory and 

of the Urban Atlas dataset. From the corrected 3D model physical parameters such as building 

size and density are calculated on Urban Atlas building block level. By comparing the calculat-

ed parameters with the particular Urban Atlas classes, the Urban Atlas classification scheme 

can be reviewed concerning its accuracy on the one hand and on whether it contains distinct 

information on urban structures on the other.  

(2) In the second step, an object-based classification methodology is developed to extract infor-

mation on urban structures utilizing Cartosat-1 nDSM data. The Urban Atlas building block 

level (initially implemented for the example of London) provides the spatial level. At the be-

ginning, the physical parameters, calculated on Urban Atlas level within the first step, are used 

to delineate urban structures and create reference classifications. Subsequently, a mixture of 

spatial and textural features is computed for the spatial entities of building blocks. In the next 

step, Random Forest classification models are developed and applied on the Cartosat-1 nDSM 

dataset in London. Finally, the accuracy of the resulting classifications is assessed in order to 

gain confidence on their correctness and on the performance of the different classification 

models. 

(3) The next and third step is concerned with the transferability evaluation of the previously 

developed urban structure classification methodology. On the one hand, it is evaluated wheth-

er the classification models developed based on the city structure of London do perform simi-

lar in another urban context. This is tested for the city of Paris in France. On the other hand, 

it is examined if equal classification results can be gained by substituting the Urban Atlas 

building blocks by an artificial reference unit of square objects, to evaluate if the classification 

can be conducted independently from the Urban Atlas dataset. This is tested for the city of 

London. By comparing the classification results on Urban Atlas level of Paris and on square 
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object level of London with those on Urban Atlas level of London (see second working step) 

the transferability of the urban structure classification methodology can be evaluated.  

(4) In the fourth step, a cross-city structural analysis is conducted based on the urban structures 

of London and Paris in order to demonstrate that information on the urban morphology al-

lows for detailed urban analysis. Within this context, analogies and differences between the 

urban morphology – by means of physical parameters – of the two cities are identified de-

pending on the distance to the respective city center.  

A graphical outline of the methodological workflow is presented within Figure 5. 
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Figure 5: Methodological workflow of the study 
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3.1 Validation of the Urban Atlas Classification Scheme 

As indicated in the introduction (see 1.4 Research Objectives), although the European Urban At-

las datasets allow for detailed urban analysis based on landuse/landcover information, these 

are criticized for hiding information on the morphology of cities (Prastacos et al. 2011: 2). At 

the first glance, the Urban Atlas classification scheme mainly comprises information on the 

landuse/landcover of urban areas and only few characteristics on the urban structure by 

means of the different degree of sealing ranges – given within the class descriptions of the 

“Continuous” and “Discontinuous Urban Fabric” classes. Nevertheless, it may be possible 

that the “Continuous” and “Discontinuous Urban Fabric” classes as well as the other Urban 

Atlas classes under consideration reveal further information on urban structures and urban 

morphologies although not explicitly mentioned.  

The UKMap building inventory is a comprehensive database which provides information on 

building footprints and their associated height covering the whole city region of London. The 

building parameters allow for aggregating information on the physical spatial structure of cities 

– by means of physical parameters – on Urban Atlas building block level. Comparing the 

structural information with the class descriptions of the Urban Atlas classes on Urban Atlas 

building block level enables to examine whether or not the Urban Atlas dataset reveals distinct 

information on the horizontal and vertical structure of cities. Besides, those parameters can be 

utilized to validate the accuracy of the sealing degree ranges of the “Discontinuous” and 

“Continuous Urban Fabric” classes.  

In the following sections the preprocessing steps as well as the derivation of physical parame-

ters is described gradually. Eventually, a strategy for the validation of the European Urban 

Atlas classification scheme is introduced.  

3.1.1 Data Preprocessing 

In order to be able to generate preferably accurate reference datasets for the aggregation of 

physical parameters a few preprocessing tasks need to be carried out.  

UKMap Building Inventory 

The UKMap building inventory in itself is not fully consistent and features some errors. These 

are polygons which were falsely classified as buildings – mainly encompassing green and forest 

areas. Since those expanses would distort the calculation of physical parameters and lead to an 
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overestimation of e.g. building densities, the incorrect building footprints need to be eliminat-

ed in advance. This is done by visually checking the dataset against Google Earth up-to-date 

satellite imagery (Google Inc. 2013). Thereby, incorrect polygons can be identified and re-

moved manually. 

The calculation of physical parameters requires the utilization of the parameters building 

height, building area as well as floor count values. However, the UKMap building inventory 

does only comprise information on the height and area of buildings. The number of floors, 

and in the case of some buildings even the height values, are missing. Hence, these values 

need to be modeled beforehand based on obtainable information.  

The derivation of the floor counts is done as follows. The facades of around 70 buildings are 

visually checked, using Google Street View in order to count the number of floors and to gen-

erate a representative database with known accuracy. Within this context, attention is paid, to 

an equal spatial distribution of the buildings over the city area as well as to the coverage of the 

full range of building heights occurring in the UKMap dataset. 

Subsequently, a linear regression is performed, which enables to determine the influence of an 

independent variable on a dependent variable (Wurm 2013: 148). The regression equation 

expresses the correlation between dependent and independent variables in mathematical 

terms. The robustness of the correlation between the independent and the dependent varia-

bles can be evaluated by means of the determination coefficient r². This is a measure which 

describes the explained variance of a dependent variable utilizing a specific regression model. 

In the best case r² is alike 1/-1 and therefore enables to derive every dependent variable utiliz-

ing the respective independent variable within the regression equation. On the contrary, an r² 

equal 0 means that there is no correlation at all between the considered data. (Bahrenberg et 

al. 1999: 136–148) 

The linear regression carried out to model the floor counts is based on the correlation be-

tween the floor counts of the previously inquired buildings and their corresponding building 

height information. The regression analysis is done using the statistical software R (R Core 

Team 2014). Building height values are converted to floor counts by the following equation:  

𝑌 =  −0.0032𝑥2 +  0.312𝑥 + 0.0021 (1) 
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where Y is the dependent variable (floor counts) and x is the independent variable (building 

height).  

The missing height values are derived performing a linear regression, too, but this time em-

ploying the correlation between the building area and building height. The derived equation 

used to model the missing height values reads as follows: 

𝑌 = (4𝐸−10𝑥3) − (3𝐸−06𝑥2) + 0.0105𝑥 + 9.8757 (2) 

where Y is the building height to be derived and x is the building area. 

Urban Atlas Dataset 

Another problem is given by a non-linear distortion of the Urban Atlas dataset of London. To 

overcome resulting positional inaccuracies of averagely 6m the dataset is newly geo-

referenced. For this purpose, a topographic map provided within the “Basemap Function” of the 

ArcGIS Software (ESRI 2013) is utilized as reference data. Around 100 control points, equally 

distributed over the whole extent of the Urban Atlas dataset and precisely identifiable on both, 

the Urban Atlas dataset and the topographic map, are set. Subsequently, an affine transfor-

mation is executed in order to correct the distortions as far as possible.  

3.1.2 Aggregation of Physical Parameters  

The validation of the Urban Atlas classification scheme requires, first and foremost the gener-

ation of a database which allows for a systematical structural analysis. Therefore, a certain 

number of physical parameters need to be selected and calculated in advance.  

Many authors consider the building density as one of the most important parameters when 

describing the physical structure of a city (e.g. Acioly Jr. and Davidson 1996: 6; OECD 

2012: 27; Fina et al. 2014: 180). It measures the proportional area of a building block which is 

covered by buildings and is therefore suited to describe the horizontal urban structure. Never-

theless, in order to capture the holistic morphology of a city, the vertical component of urban 

objects has to be considered, too (Wurm and Taubenböck 2010b: 67). In this regard, Wurm 

and Taubenböck (2010a: 98) have stated that the size and height of buildings as well as their 

integration in the urban structure are valuable physical parameters to quantify the physical 

spatial structure of a city. The integration of building structures in the urban structure is 

among others definable by the previously mentioned building density and by the floor space 
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density. The floor space density is an index which measures the total floor area of buildings 

within a building block as a share of the total area of that considered building block. 

To calculate physical parameters describing the structure of a city, spatial reference areas are 

needed (Taubenböck et al. 2010: 87). Since the Urban Atlas dataset provides information on 

the basis of building blocks, these are used as reference units for physical parameter aggrega-

tion. In order to implement information on the size and height of buildings on building block 

level, the mean building volume as well as the mean height present suitable measures in addi-

tion to the building density and floor space density. Thus, these four physical parameters are 

selected for the purpose of Urban Atlas validation within the scope of this study.    

In order to derive the chosen physical parameters, the building parameters of the UKMap 

building inventory are aggregated on Urban Atlas building block level using the equations de-

scribed in Table 4. Nevertheless, since the spatial coverage of the Urban Atlas exceeds that of 

the UKMap building inventory, the building blocks that do not contain buildings of the latter 

are initially excluded from the calculation. This is done in order to avoid zero values of the 

physical parameters which do not necessarily mirror the actual urban structure of the building 

blocks, but are rather an outcome of the different spatial extents of the two datasets.  

As a result, a data basis containing the four physical parameters on Urban Atlas building block 

level is created. 

Table 4: Overview of the selected physical parameters with the respective equations 

Physical parameter Equation  Variables 

Building Density 

(in %) 
𝐵𝐷 =  

∑𝑛=1

𝑛𝑅𝑢  
 𝐵𝑎𝑛

𝑅𝑢𝑎
  

(3) Ru = Building Block 

Rua= Building Block Area 

Ba = Building Area 

Bh = Building Height 

Bf = Floor Count per Building 

n = Number of Buildings 

Floor Space Density 
𝐹𝑆𝐷 =  

∑𝑛=1

𝑛𝑅𝑢  
 (𝐵𝑓𝑛

× 𝐵𝑎𝑛
)

𝑅𝑢𝑎
  

(4) 

Mean Building  

Volume (in m³) 𝑉𝑜𝑙̅̅ ̅̅ =  
∑

𝑛=1

𝑛𝑅𝑢  
 (𝐵ℎ𝑛

× 𝐵𝑎𝑛
)

𝑛𝑅𝑢

  
(5) 

Mean Building Height  

(in m) 𝐻𝑔𝑡̅̅ ̅̅ ̅  =  
∑

𝑛=1

𝑛𝑅𝑢  
 𝐵ℎ𝑛

𝑛𝑅𝑢

  
(6) 
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3.1.3 Validation Strategy 

The validation of the Urban Atlas classification is carried out by comparing the values of the 

previously calculated physical parameters with the Urban Atlas classes on Urban Atlas build-

ing block level utilizing boxplots. Boxplots are graphical figures that enable to interpret the 

distribution and position of data values. A Boxplot consists of a box with two whiskers on the 

upper and lower side of it. The box itself is a representation of the interquartile range between 

the first and third quartile, containing 50% of all occurring values. The whiskers display the 

1.5-fold interquartile distance. Additionally, the median can be inferred by means of the line 

within the box (see Figure 6). (Wurm 2013: 83) 

 

 

Figure 6: Schematic illustration of a boxplot 

With the help of boxplots the value ranges of the different physical parameters on building 

block level per Urban Atlas class can be identified. Outliers are neglected since these are not 

representative and would lead to an erroneous representation of the upper and/or lower class 

limits. The sufficiency of the Urban Atlas classification scheme to characterize horizontal and 

vertical urban structures requires that the classes reveal a certain degree of homogeneity. Fur-

thermore, the between-class variability should be significant enough in order to allow differen-

tiation between the considered Urban Atlas classes. Thus, the validation of the Urban Atlas 

classification scheme is done by comparing the particular value ranges of the physical parame-

ters on within-class level as well as on between-class level. The homogeneity of the classes is a 

measure for the homogeneity of the urban structure these represent. Besides, the more clearly 

the separability between the Urban Atlas classes with regard to the considered physical param-

eters, the more appropriate are the classes to represent specific urban structures and to de-

scribe a city’s morphology. Thus, the within-class and between-class evaluation of the consid-
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ered Urban Atlas classes enables to evaluate whether the Urban Atlas classification scheme 

contains distinct information on urban structures or not.  

A further concern of this study is to assess the accuracy of the “Discontinuous” and “Contin-

uous Urban Fabric” classes. In order to do this, the degree of sealing ranges of the “Discon-

tinuous” and “Continuous Urban Fabric” classes were compared with the building densities 

aggregated on block level of the same classes utilizing boxplots. The correspondence between 

the density ranges, given in the description of the “Discontinuous” and “Continuous Urban 

Fabric” classes of the Urban Atlas, and the degree of sealing ranges prevalent on the building 

blocks of the same classes, is used for assessing the accuracy. Within this context, it should be 

noted that the building density values are averagely smaller than the respective sealing degree 

values given in the Urban Atlas class descriptions. This is caused by the fact that the degree of 

sealing values were derived using a soil sealing layer (EEA 2010c: 2) which measures the per-

centage of sealing of a building block, considering buildings, streets and other artificial objects. 

The building density on the contrary was aggregated – as the name already indicates – solely 

on the basis of buildings. 

3.2 Urban Structure Classification utilizing Cartosat-1 nDSM-Data 

The central hypothesis of this study states that the Urban Atlas classes only partially contain 

distinct information on urban structures. However, in order to describe a city’s morphological 

composition information on the horizontal and vertical city structure is an obligatory prereq-

uisite (Wurm and Taubenböck 2010b: 67). These information on urban structures serve as a 

valuable information basis (Anas et al. 1998: 1426) in order to gain comprehensive knowledge 

and support intelligent decisions for a sustainable urban growth (Herold et al. 2003: 1443). 

The nDSM data generated based on stereo images of Cartosat-1 provide a reliable data source 

to implement 3D information by means of the height values of the single pixels. Furthermore, 

although the geometrical resolution of 5m does not allow the extraction of individual build-

ings, pixels with a height value exceeding 0m can be seen as a generalized representation of 

urban objects (Taubenböck et al. 2013: 395). Therefore, information on the 2D coverage of 

urban objects above ground – even though accompanied by a certain degree of information 

loss (Klotz 2012: 36) – can be derived from the nDSM-datasets, too.  

Taking into account this prior knowledge, a methodology towards urban structure delineation 

– by means of urban structure types – based on the Cartosat-1 nDSM dataset is to be devel-
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oped. In this regard, one necessary requirement to derive urban structure types based on re-

motely sensed data is the employment of reference units. The Urban Atlas datasets provide 

such information in terms of the individual building blocks and are therefore utilized as the 

spatial entities to be classified. Since the individual building blocks are composed of several 

pixels of the Cartosat-1 nDSM dataset an object-based method is applied within the scope of 

this study. 

Object-based image analysis uses a two-step process comprising image segmentation and clas-

sification. However, these are further composed of many intermediate processes (Campbell 

and Wynne 2011: 371). The stepwise procedure of the object-based approach applied within 

this study is described in the following sections.  

3.2.1 Delineation of Urban Structure Types 

A commonly used approach to describe the physical face of a city is the delineation of smaller 

entities in classes with similar structural characteristics, the so-called urban structure types. 

However, no compulsory and generally accepted scheme for the delineation of urban structure 

types exists so far, so that their definition is always case specific, mainly depending on the area 

under study and the objective of an analysis (Banzhaf and Höfer 2008: 131). 

Thus, in order to automatically derive information on the physical spatial structure of cities, 

appropriate urban structure type classes need to be defined in advance (Voltersen et al. 

2014: 194). This definition can be done using physical parameters which are suitable to de-

scribe the physical spatial structure of cities, for instance the amount and/or arrangement of 

urban objects like buildings within the spatial reference units (Bochow et al. 2010: 1796).  

The physical parameters aggregated based on the building parameters of the UKMap building 

inventory (see section 3.1.2 Aggregation of Physical Parameters) meet the requirements to represent 

the physical spatial structure of a city on the basis of spatial reference entities, namely the Ur-

ban Atlas building blocks of London. Particularly, the mean building height and the building 

density are measures which are suitable to characterize the 3D and 2D urban structure, respec-

tively. Therefore, urban structure type delineation is conducted on Urban Atlas building block 

level utilizing building density and mean height for the differentiation purpose. 

However, one of the later working steps of this study tests the performance of the classifica-

tion methodology in a different city context, namely Paris in France. Thus, the LiDAR-derived 
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height values of the UKMap building inventory need to be substituted by height information 

of the Cartosat-1 nDSM dataset of London. Only the Cartosat-1 nDSMs are available for en-

tire Europe (Uttenthaler et al. 2013: 4) and provide compared to the sparsely available LIDAR 

data consistent coverage. Thus, using the height information of the Cartosat-1 data allows for 

generating a transferable urban structure type classification scheme. Using the respective equa-

tions given in Table 4 (see section 3.1.2 Aggregation of Physical Parameters) the mean height is 

aggregated on Urban Atlas level, but this time using the Cartosat-1 height information. Within 

this context, it should be noted that the areal coverage of the Cartosat-1 nDSM of London is 

smaller than that of the Urban Atlas dataset of London (see Appendix 3). Therefore, only 

those Urban Atlas building blocks as well as those buildings of the UKMap building inventory 

that are located within the area covered by the nDSM data are taken into consideration for 

urban structure type delineation.  

In order to utilize the chosen physical parameters for the delineation of urban structure types, 

both, the building density and the mean height range on Urban Atlas building block level need 

to be divided into preferably meaningful classes. This requires the definition of an appropriate 

number of classes in advance.  

The Urban Atlas “Discontinuous” and “Continuous Urban Fabric” classes are partitioned into 

five classes, each corresponding to a specific sealing degree range. However, taken together 

the complete range of sealing degrees of the Urban Atlas “Discontinuous” and “Continuous 

Urban Fabric” classes is larger than that of the building densities aggregated on Urban Atlas 

level. This results from the fact that the first measures the degree of sealing per building block, 

including buildings, streets and other artificial objects while the latter considers buildings only. 

Thus, the number of classes was reduced from five to a maximum of three and a minimum of 

two. The three classes are supposed to be representatives for high, medium and low building 

densities respectively mean heights. Additionally, the binary approach is chosen in case the 

Cartosat-1 nDSM dataset proves to be insufficient to extract more differentiated information. 

In this context, the two classes are representatives of high and low building densities respec-

tively mean heights.  

The class breaks are defined utilizing the Jenks Natural Breaks algorithm. The algorithm de-

rives class limits in order that within-class differences are minimized and between-class differ-

ences are maximized (ESRI 2014). Resulting from the previously defined number of classes as 
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well as from the derived class breaks, respectively two building density and mean height classi-

fication schemes are generated. These are shown in Table 5.  

Table 5: Class-breaks of physical parameters for different numbers of classes 

 Class description Building density (in %) Mean height (in m) 

3
 C

la
ss

e
s low ≤ 24 ≤ 7.5 

medium > 24 - ≤ 40 > 7.5 - ≤ 11.3 

high > 40 > 11.3 

2
 C

la
ss

e
s 

low ≤ 29.7 ≤ 8.8 

high > 29.7 > 8.8 

 

In order to meet the requirements of a classification methodology suitable to extract infor-

mation on the horizontal and vertical physical structure of cities simultaneously, the urban 

structure type classes need to contain both, 2D and 3D information. Hence, the building den-

sity and the mean height classification schemes were further combined in every possible way. 

Thereby, four different urban structure type classification schemes are derived. One example 

is shown in Table 6. 

Table 6: Example of urban structure type classification key 

Class number Class description 

1 1 low  low  

1 2 low  high  

2 1 medium low 

2 2 medium high 

3 1 high low 

3 2 high high 

Building density 

Mean height 

 

Both, the four urban structure type as well as each of the two building density and the mean 

height classification schemes are applied on Urban Atlas building block level. As a result, eight 
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reference classifications – containing information on the 2D and 3D urban structure in com-

bined and separate form – are generated.  

3.2.2 Feature Calculation 

Thematic classification of image objects based on remotely sensed data is normally conducted 

using a multitude of properties – within this study referred to as features – which enable to 

discriminate different thematic classes. These features are not synonymous with geographical 

features but statistical characteristics of the image objects in numerical form (Campbell and 

Wynne 2011: 341; Lillesand et al. 2004: 551). In order to be able to distinguish the individual 

classes of the different reference classifications based on the Cartosat-1 nDSM dataset, some 

suitable features need to be selected and calculated. 

Selection of appropriate Features 

In the scope of this research, urban structure type classification schemes are derived based on 

spatial characteristics – building density and mean height – of the Urban Atlas building blocks. 

Those spatial properties, as stated by Bochow et al. (2010: 1796), can be assessed from images 

by calculating spatial features. In the scope of urban structure type classification based on re-

motely sensed data, a variety of studies have already successfully applied spatial features for 

object-based differentiation of urban structures (Wurm et al. 2010; Bochow et al. 2010; Vol-

tersen et al. 2014; Hermosilla et al. 2014; Heinzel and Kemper 2015; Taubenböck et al. 2013). 

Features used within this context were among others, building density, floor space density as 

well as height and volume parameters.  

Another important characteristic which can be used to assess information from remotely 

sensed data is texture. Textural features contain information about the spatial distribution of 

tonal variations within an image or image object (Haralick et al. 1973: 611–612). There are 

several ways to calculate textural features (Herold et al. 2003: 993). Nevertheless, most com-

monly these are derived utilizing Grey-Level Co-occurrence Matrices (GLCM) introduced by 

Haralick et al. (1973). The GLCM statistically describe the relationship of neighboring pixels 

within an image or image object, and can be calculated for different angles and distances be-

tween pixels (Haralick et al. 1973: 612; Haralick 1979: 791). With the help of GLCM several 

textural features like dissimilarity, entropy, contrast etc. can be derived which were applied in a 

variety of studies concerned with landuse/landcover classifications in urban environments 
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achieving promising results (e.g. Herold et al. 2003; Pacifici et al. 2009; Mahmoud et al. 2011; 

Mhangara and Odindi 2013).  

Taking into consideration the above mentioned advantages, a set of ten spatial features (see 

Table 7) and eight textural features after Haralick et al. (1973) (see Table 8) is selected for the 

purpose of urban structure type classification based on the Cartosat-1 nDSM dataset of Lon-

don within this study. 

Table 7: Pixel-based equations of selected spatial features 

Feature Pixel-based Equation  Variables 

Building Density  
𝐵𝐷 =  

∑𝑛=1

𝑛𝑅𝑢  
 𝑃𝑎𝑛

𝑅𝑢𝑎
 

(7) Ru = Building Block 

Rua= Building Block Area 

Pa = Pixel-based Area 

Ph = Pixel-based Height 

Pf = Pixel-based Floor Count 

n = Number of Built-up Pixels 

Floor Space Density 
𝐹𝑆𝐷 =  

∑𝑛=1

𝑛𝑅𝑢  
 (𝑃𝑓𝑛

× 𝑃𝑎𝑛
)

𝑅𝑢𝑎
 

(8) 

Mean Height 

𝐻𝑔𝑡̅̅ ̅̅ ̅  =  
∑

𝑛=1

𝑛𝑅𝑢  
 𝑃ℎ𝑛

𝑛𝑅𝑢

 

(9) 

Maximum Height 
𝐻𝑔𝑡

𝑚𝑎𝑥
=

𝑚𝑎𝑥

𝑛 ∈ 𝑅𝑢
(𝑃ℎ𝑛 

) 
(10) 

Median Height 
𝐻𝑔𝑡𝑚𝑒𝑑 =

𝑚𝑒𝑑
𝑛 ∈ 𝑅𝑢

(𝑃ℎ𝑛 
) 

(11) 

Quantile90 Height 
𝑄90 =  

𝑄90

𝑛 ∈ 𝑅𝑢
(𝑃ℎ𝑛 

) 
(12) 

Standard Deviation 
Height 

𝐻𝑔𝑡𝑆𝑡𝑑= 
𝑠𝑡𝑑

𝑛 ∈ 𝑅𝑢
(𝑃ℎ𝑛 

) 
(13) 

Volume 𝑉𝑜𝑙 =  ∑𝑛=1

𝑛𝑅𝑢  
 (𝑃ℎ𝑛

× 𝑃𝑎𝑛
) (14) 

Mean Volume 

𝑉𝑜𝑙̅̅ ̅̅ =  
∑

𝑛=1

𝑛𝑅𝑢  
 (𝑃ℎ𝑛

× 𝑃𝑎𝑛
)

𝑛𝑅𝑢

 

(15) 

Normalized Volume 
𝑉𝑜𝑙𝑛𝑜𝑟𝑚 =  

∑𝑛=1

𝑛𝑅𝑢  
 (𝑃ℎ𝑛

× 𝑃𝑎𝑛
)

𝑅𝑢𝑎
 

(16) 
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Table 8: Description of selected Haralick texture features 

Feature Description Source 

Angular 2nd Moment Measures the homogeneity of pixel values Trimble GmbH 2014b: 377 

Contrast Measures the amount of local pixel value 
variations 

Trimble GmbH 2014b: 375-376 

Correlation Measures the linear dependency between 
neighboring pixel values  

Trimble GmbH 2014b: 379 

Dissimilarity Measures the contrast of pixel values Trimble GmbH 2014b: 376 

Entropy Measures the distribution of GLCM ele-
ments 

Trimble GmbH 2014b: 377 

Homogeneity Measures the amount of local pixel value 
variations opposite to contrast 

Trimble GmbH 2014b: 375 

Mean Measures the average co-occurrence of 
pixel values 

Trimble GmbH 2014b: 378 

Standard Deviation Measures the dispersion of pixel values 
around the mean 

Trimble GmbH 2014b: 378 

 

Feature Calculation 

Feature calculation is carried out within the object-based image analysis software eCognition 

Developer (Trimble GmbH 2014b) on the basis of a top-down segmentation approach, 

adapted and modified after Klotz (2012: 35 ff.). 

The derivation of spatial features is done utilizing the Cartosat-1 nDSM dataset of London. As 

already mentioned in the beginning of this chapter, the pixel size of the nDSM data does not 

allow extracting single buildings (Taubenböck et al. 2013: 395). Therefore, spatial features are 

calculated using the pixels as substitutes for urban objects as conducted by Klotz (2012) and 

Taubenböck et al. (2013), who employed the same dataset for central business district delinea-

tion.  

For the purpose of calculating textural features the height values of the Cartosat-1 nDSM are 

reclassified in order to minimize the computational effort as suggested by Jensen (2005: 423). 

This is done utilizing the reclassification key presented in Table 9. 
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Table 9: Cartosat-1 nDSM reclassification key 

Cartosat-1 nDSM 
heights (in m) 

Reclassified value 

0 0 

1 - 8 1 

9 - 23 2 

24 - 38 3 

39 - 53 4 

54 - 68 5 

69 - 83 6 

84 - 98 7 

99 - 113 8 

114 - 128 9 

> 129 10 

 

The segmentation procedure is carried out on the basis of the Cartosat-1 nDSM which repre-

sents the pixel level. The lowest spatial scale is the Urban Atlas Level (L1) (see Figure 7) which 

is created by integrating the Urban Atlas dataset of London as a thematic layer into the seg-

mentation procedure.  

 

 

Figure 7: Top-down segmentation scheme – Urban Atlas level (modified after Klotz 2012) 
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In order to be able to calculate the selected spatial features a Building Substitute Level (L2) 

needs to be created, too. This is done by copying L1 and performing chessboard segmentation 

within the individual building blocks. The size of the square segments to be created is set to 

25m² as this equals the pixel level of the Cartosat-1 nDSM. By classifying the pixels with 

height values greater than 0m into ‘built-up’ and that with height values alike 0m into ‘non-

built-up’, a pixel-based representation of urban objects and surface area within each of the 

Urban Atlas building blocks (L1) is generated. Subsequently, the spatial features are calculated 

by aggregating the individual pixel values of the Building Substitute Level (L2) on the individ-

ual building blocks of the Urban Atlas Level (L1) employing relational features (Trimble 

GmbH 2014a: 280). Within this context, only the pixels classified as ‘built-up’ are of interest 

since these present the substitute for urban objects above ground. The ten selected spatial 

features are derived using the pixel-based equations presented within Table 7. 

Nevertheless, one of the spatial features to be calculated is the floor space density which re-

quires a pixel-based floor count substitute to be modeled in advance. This is done by linear 

regression based on the correlation between the floor counts of the previously inquired build-

ings (see section 3.1.1 Data Preprocessing) and their corresponding Cartosat-1 nDSM height in-

formation. The Cartosat-1 nDSM height values are converted into floor counts utilizing the 

following equation: 

𝑃𝑓 =  −0.0081𝑥2 +  0.4402𝑥 + 0.1849 (17) 

where Pf is the pixel-based floor count to be modeled and x the corresponding Cartosat-1 

nDSM height value of the pixels classified as ‘built-up’. 

In order to derive the eight selected textural features after Haralick et al. (1973) GLCM are 

utilized. The GLCM are computed for all building blocks of the Urban Atlas Level (L1) in all 

directions – this means considering all neighboring pixels in the directions 0º, 45º, 90º and 

135º (Trimble GmbH 2014a: 374) – based on the reclassified nDSM. The name as well as a 

short description of the employed textural features is presented in Table 8. 

Resulting from the calculations of the ten spatial features and eight textural features an 18-

dimensional feature vector is generated. This contains the numerical values of the spatial and 

textural features for each building block on Urban Atlas Level (L1). 
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3.2.3 Random Forest Classification  

When information on class membership as well as on feature values of the objects to be classi-

fied is available, classification can be conducted following a supervised approach. In super-

vised classification this prior knowledge is used to develop classification models in order to 

subsequently be able to classify data of unknown identity (Campbell and Wynne 2011: 349). A 

variety of classifiers is available for supervised classification. Some of these are machine learn-

ing2 algorithms like artificial neural networks, support vector machines, decision trees and 

ensemble learning classifiers (Rodriguez-Galiano et al. 2012b: 94).  

In recent years, ensemble learning classifiers have increasingly been proved successful (Waske 

et al. 2009: 17). These are sets of single classifiers whose individual decisions are combined to 

classify new data (Pal 2005: 217). Advantages of the ensembles are that they utilize the 

strength of individual classifiers on the one hand while avoiding their weaknesses on the other 

(Ghimire et al. 2010: 46; Rodriguez-Galiano et al. 2012b: 94). Thus, ensembles generate more 

accurate results and are more robust to noise in comparison to conventional classification 

methods (Breiman 1996: 124; Rodriguez-Galiano et al. 2012b: 94).  

Random Forest is an ensemble learning classifier based on a combination of decision trees and 

was first introduced by Breiman (2001). The classifier has shown promising results in a variety 

of remote sensing applications (e.g. Pal 2005; Guo et al. 2011; Rodriguez-Galiano et al. 2012a; 

Rodriguez-Galiano et al. 2012b). Advantages of the classifier in the field of remote sensing are, 

that it runs fast on large datasets, can handle high-dimensional feature spaces, estimates which 

of the features mostly contribute to the classification, has an inherent error measure and is 

robust against overfitting, noise and outliers (Rodriguez-Galiano et al. 2012b: 95–96). Fur-

thermore, Fernández-Delgado et al. (2014) who reviewed the performance of a large number 

of classifiers on a variety of datasets, have found that Random Forest performed best in the 

majority of tested applications. 

Under consideration of the explanations presented above a Random Forest approach is se-

lected for the purpose of urban structure type classification within the scope of this study.  

                                                      
2 “Machine learning is an area of artificial intelligence and generally refers to the development of methods that 

optimize their performance by iteratively learning from the data (Waske et al. 2009: 4).” 
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Theoretical Background of the Random Forest Algorithm 

The Random Forest algorithm combines bagging with decision trees (Breiman 1996) and a 

random feature selection method (Breiman 2001). 

In bagging different sample subsets – the bootstrap samples or bags – are created from the 

original training dataset (Guo et al. 2011: 60). This is done using a technique called bootstrap 

aggregating (Rodriguez-Galiano et al. 2012b: 96) which randomly resamples the training data 

with replacements (Rodriguez-Galiano et al. 2012a: 95; Breiman 2001: 11). Within this con-

text, some of the samples of the original training dataset are considered when creating a boot-

strap sample – altogether around 2/3 of the total count - while others are completely discard-

ed (Rodriguez-Galiano et al. 2012b: 96). In order to train the classifier, a decision tree is inde-

pendently grown from each of the different bootstrap samples (Liaw and Wiener 2002: 18; 

Guo et al. 2011: 60).  

In addition to bagging, Random Forest changes how the decision trees are constructed (Liaw 

and Wiener 2002: 18). The classifier uses a randomly selected subset of features at each node 

to find the best split and not like conventional tree-methods all input features (Rodriguez-

Galiano et al. 2012a: 95) and therefore adds a further layer of randomness to bagging (Liaw 

and Wiener 2002: 18). 

For the classification itself Random Forest utilizes the entire tree ensemble. Each of the trees 

gives a unit vote at each of the input samples to be classified. In accordance with the principle 

“the winner takes it all” the final class for each of the samples is determined by the majority 

vote of all trees (Guo et al. 2011: 60). An overview of the work flow of the Random Forest 

training and classification is presented in Figure 8. 

The samples that are not considered when creating the bootstrap samples – the remaining 1/3 

of the original training data – form the so-called Out-Of-Bag (OOB) subsets (Guo et al. 2011: 

60) which are independently created for every tree (Rodriguez-Galiano et al. 2012b: 96). These 

are not considered when training the classifier and can therefore be used to assess the Ran-

dom Forest ensemble performance (Rodriguez-Galiano et al. 2012a: 95). 
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Figure 8: Random Forest (RF) work flow (modified after Guo et al. 2011) 

One parameter to measure the model performance is the OOB error. By classifying each of 

the OOB samples utilizing only the classification trees which did not use the respective sample 

for training, every single sample of the total OOB samples has averagely been run through 1/3 

of the total number of trees (Breiman 2001: 11). The majority vote of the considered trees – a 

smaller ensemble version of the Random Forest model – decides the class membership of the 

respective sample. The OOB error is then expressed by the proportion between the misclassi-

fications and the total number of OOB samples and provides an unbiased estimation of the 

generalization error (Rodriguez-Galiano et al. 2012b: 96). 

Based on the OOB subsets the relative feature importance can be calculated, too. Therefore, 

each of the features is successively switched while keeping the remaining features constant. 

The importance of each feature is calculated for every tree by measuring the difference be-

tween misclassifications before and after the exclusion of the considered feature. In order to 

gain information on the importance of each feature within the total Random Forest classifier 
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ensemble, the importance measures of the single trees are averaged for each feature, respec-

tively (Breiman 2001: 23–24; Rodriguez-Galiano et al. 2012b: 96). 

The application of the Random Forest algorithm is very user-friendly by means that only two 

parameters need to be defined when developing a classification model. These are the number 

of bootstrap samples ntree and the number of features to be randomly selected at each node 

mTry (Breiman 2002: 3; Guo et al. 2011: 60; Rodriguez-Galiano et al. 2012b: 97). 

Implementation of Random Forest Classification 

The Random Forest classification models for urban structure type classification are derived 

using the “randomForest” Package (Liaw and Wiener 2015) within the statistical software R (R 

Core Team 2014). 

Classification models are developed based on the four different urban structure type as well as 

based on each of the two building density and mean height reference classifications (see sec-

tion 3.2.1 Delineation of Urban Structure Types). On the one hand, this experimental setup is cho-

sen in order to test whether or not, and if possible to what extent respectively level of detail 

urban structures can be classified based on the Cartosat-1 nDSM-dataset. On the other hand, 

the utilization of the classifications containing information solely on either the 2D or 3D ur-

ban structure enables to evaluate the performance of the classifier in extracting information on 

the building density and mean height, respectively based on the Cartosat-1 nDSM-dataset, too. 

The Urban Atlas building block dataset contains the information on the class membership – in 

accordance to the considered classification scheme – as well as on the corresponding feature 

values for each building block, respectively. Since a supervised classification approach is con-

ducted, some of the building blocks are used for training the classifier respectively for deriving 

the classification model. Training samples are selected using a stratified random sampling ap-

proach which considers the prior knowledge about the classification by means of class mem-

bership of the samples and class frequencies (Congalton and Green 1999: 23; Campbell and 

Wynne 2011: 399). In total, 10% of the Urban Atlas building blocks of each class per consid-

ered classification scheme are randomly selected out of the total dataset. Thus, the resulting 

training datasets represent a 10% share of the respective reference classification while main-

taining the occurring frequencies of the classes. The remaining 90% of the data not utilized 

for training are used for classification and a subsequent accuracy assessment which is de-

scribed in detail within the next section. 
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The development of classification models based on the Random Forest algorithm requires the 

number of features to be randomly selected at each node mTry, and the number of bootstrap 

samples ntree to be defined in advance. In order to select the optimal values of these parame-

ters two different procedures are conducted. 

In general, the Random Forest algorithm is not too sensitive concerning mTry and therefore 

the default value of √p – where p is the number of features – is often maintained since it gives 

near optimum results in many cases (Breiman 2002: 3). Nevertheless, a parameterization of the 

mTry values for all classification models is yet done in the scope of this study utilizing the 

“TuneRF” function integrated within the “randomForest” Package. The function searches, 

beginning from the default value the optimal number for mTry with respect to the decrease of 

the OOB error (Liaw and Wiener 2015: 26).  

The number of bootstrap samples or trees ntree is the second parameter to be defined. A step-

wise increase of the number of trees improves the classification until at some point the classi-

fiers performance converges (Rodriguez-Galiano et al. 2012a: 98). However, Random Forest 

does not overfit as more trees are added (Breiman 2001: 7). Hence, increasing the number of 

trees after the point of convergence is reached, neither leads to a decrease nor to an increase 

of the generalization error (Rodriguez-Galiano et al. 2012b: 97). However, it requires a higher 

computational effort. A good estimator for the generalization error depending on the number 

of trees is the OOB error (Rodriguez-Galiano et al. 2012b:97). In order to identify the point of 

convergence the classification models are repeatedly trained constantly keeping the optimal 

number of mTry while changing the ntree values. The optimal number of ntree corresponds to the 

point of convergence and therefore the point where the OOB error not significantly changes 

anymore.  

3.2.4 Accuracy Assessment 

The information derived by classification of remote sensing data can only be considered relia-

ble and correct after its accuracy has been assessed. Accuracy assessment is normally conduct-

ed by evaluating the correspondence between predicted class membership and reference class 

membership of objects or pixels and therefore, gives an impression to which degree the classi-

fication result agrees with reality or ‘truth’ (Foody 2002: 186).  

One straightforward option to computationally evaluate the accuracy of classifications is the 

so-called confusion or error matrix. It allows establishing a relation between reference entities 
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– pixels or objects of known identity – and the class of the same entities assigned by the uti-

lized classification model. Within this context, the number of columns and rows of the confu-

sion matrix equals the number of informational categories to be classified (Campbell and 

Wynne 2011: 417; Lillesand et al. 2004: 586). A scheme of the confusion matrix is exemplified 

within Figure 9. 

 

Figure 9: Schematic representation of a confusion matrix (modified after Foody 2002) 

The confusion matrix allows identifying and specifying classification errors (Foody 2002: 187), 

the so-called errors of commission and errors of omission. The commission error – derivable 

from each row of the matrix – is a specification for pixels or objects which were included in 

the false class. The omission error – derivable from each column of the matrix – is a measure 

for pixels or objects which were excluded from the class they belong to (Congalton and Green 

1999: 10; Richards and Jia 2006: 314). 

Analogously to the error measures the classification accuracy can be assessed from the confu-

sion matrix. In this context, the most prominent measure is the overall accuracy (OA) which 

can be calculated by dividing the total number of correct classified entities by the total number 

of reference entities (see equation 18). 

𝑂𝐴 =  
∑ 𝑛𝑖𝑖 

𝑘
𝑖=1

𝑛
 

(18) 

with k being the number of classes, nii being the number of correct classified samples and n 

the total number of reference samples (Congalton and Green 1999: 48).  

The accuracy of the individual classes of interest can be evaluated by computing the User’s 

Accuracy (UA) and the Producer’s Accuracy (PA) (Congalton and Green 1999: 10). The UA 
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can be calculated by dividing the total number of correct classified entities of one class (nii)  by 

the total number of entities of the same class (ni+) – the row totals – and is therefore the coun-

terpart of the commission error (see equation 19) (Congalton and Green 1999: 48) 

𝑈𝐴 =  
𝑛𝑖𝑖

𝑛𝑖+
 

(19) 

The PA on the contrary, can be calculated by dividing the total number of correct classified 

entities of one class (njj) by the total number of reference entities of the same class (n+j) – the 

column totals – and is therefore the counterpart of the omission error (see equation 20) (Con-

galton and Green 1999: 48). 

𝑃𝐴 =  
𝑛𝑗𝑗

𝑛+𝑗
 

(20) 

One obstacle in the context of accuracy assessment with the parameters described above is 

that they do not accommodate the effects of chance agreement (Foody 2002: 188). Some of 

the entities to be classified may be allocated to the right category during classification process 

but simply by chance. The Kappa Coefficient is a measure which considers all the elements of 

the confusion matrix and thereby overcomes the obstacle of chance agreement (Congalton 

and Green 1999: 59). A further advantage of the Kappa is that it constitutes an adequate 

measure when comparing results of different classifications (Foody 2002: 188) – as desired 

within the frame of this research. The equation to compute the Kappa reads as follows: 

𝐾𝑎𝑝𝑝𝑎 =  
𝑁∑𝑖=1

𝑟 𝑥𝑖𝑖 − ∑𝑖=1
𝑟 (𝑥𝑖 + 𝑥+𝑖)

𝑁2∑𝑖=1
𝑟 (𝑥𝑖 + 𝑥𝑖+)

 
(21) 

where N is the total number of samples, r is the total number of rows, xii the value of row i as 

well as column i and x+I and xi+ the totals of the columns and rows (Congalton and Green 

1999: 50).  

The resulting Kappa values range between 0 and 1, where a value of 1 indicates a total agree-

ment between classification and reference data while a value of 0 means that there is no 

agreement respectively only chance agreement (Congalton and Green 1999: 50). Within this 

context, Landis and Koch (1977) developed an interpretation key which can be utilized when 

scoring the resulting Kappa values and thus, evaluating the classification performance.  
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Table 10: Interpretation key for Kappa Values 

Kappa Value Agreement 

0 no/chance agreement 

0.01 – 0.20 slight 

0.21 – 0.40 fair 

0.41 – 0.60 moderate 

0.61 – 0.80 substantial 

0.81 – 1.00 almost perfect 

Source: modified after Landis and Koch 1977 

In the scope of this study, the above introduced accuracy measures are calculated for all classi-

fication results – the four urban structure type classifications as well as the four building densi-

ty and mean height classifications – and thereby allows for evaluating the performance of the 

urban structure type derivation utilizing the Random Forest classifier based on the Cartosat-1 

nDSM dataset. 

3.3 Transferability Evaluation of Urban Structure Type Classification 

Within the previous chapter, the development of a classification methodology to automatically 

detect urban structures based on the Cartosat-1 nDSM dataset was introduced. Within this 

context, urban structure classification schemes were derived on the basis of physical parame-

ters aggregated from the building parameters of London using the UKMap building inventory 

on Urban Atlas building block level. The urban structure type classification itself was further 

done by using the individual Urban Atlas building blocks as reference units. 

The physical parameters as well as the class breaks for the purpose of urban structure delinea-

tion are derived solely based on the urban structure of London. Nevertheless, the structure of 

other cities may be completely different in order that the defined categories might not be pre-

sent or differ in some way. Furthermore, Urban Atlas datasets are only available for cities with 

more than 100,000 inhabitants in Europe (EEA 2010b) and thus, constitute an obstacle when 

someone seeks to analyze the morphological structure of smaller cities or cities on another 

continent. Moreover, structural comparison between different urban areas is limited to the 

available Urban Atlas datasets, too.  
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Taking into account the considerations mentioned above, the transferability of the developed 

urban structure type classification methodology has to be examined. On the one hand, it is 

evaluated whether the classification models developed based on the city structure of London 

do perform similar in another urban context, which is tested for the city of Paris in France. 

On the other hand, it is examined if equal classification results can be gained by substituting 

the Urban Atlas building blocks by an artificial reference unit of square objects – to become 

independent from other than earth observation datasets.  

The transferability is tested roughly following the same procedure introduced within chapter 

3.2 Urban Structure Classification utilizing Cartosat-1 nDSM-Data, but with some context-specific 

adaptations which are going to be presented in the next sections. Within this context, only 

those three classification models that performed best in urban structure type classification 

based on the Urban Atlas building blocks and the Cartosat-1 nDSM data of London are con-

sidered for transferability evaluation of the classification methodology. 

3.3.1 Different City Context 

For the application of the urban structure type classification methodology in Paris, Urban 

Atlas building blocks, a dataset containing building footprints as well as a Cartosat-1 nDSM 

dataset were required. Unlike the Urban Atlas and the nDSM data, no dataset comparable to 

the UKMap building inventory of London is available for Paris. Therefore, building footprints 

provided by OSM - OpenStreetMap (2012) are utilized. The extent of the Urban Atlas and the 

OSM dataset are adjusted to that of the nDSM dataset since the latter – equal to the situation 

in London – does not cover the whole city area.  

Initially, the height information of the Cartosat-1 nDSM is assigned to the OSM building 

footprints. Subsequently, building density and mean building height are aggregated on Urban 

Atlas building block level based on the building parameters of the OSM dataset – building 

area and height – utilizing the respective equations presented in Table 4 within section 3.1.2 

Aggregation of Physical Parameters. As already mentioned above, only three classification models – 

those that performed best in urban structure type classification in London – are utilized for 

testing the transferability. Therefore, only the respective three urban structure delineation 

schemes are applied on the Urban Atlas building blocks – based on the aggregated building 

density and mean height values – in order that three reference classifications on Urban Atlas 

block level of Paris are resulting. 
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In the next step, the selected spatial and textural features are calculated following the same 

procedure as presented within section 3.2.2 Feature Calculation. Nevertheless, in this context the 

Cartosat-1 nDSM and the Urban Atlas dataset from Paris are utilized. Reclassification of the 

nDSM dataset for the purpose of textural feature derivation is done using the reclassification 

key presented in Table 9. The Urban Atlas dataset of Paris – containing information on urban 

structure type class membership as well as the numerical values of the spatial and textural fea-

tures of the individual building blocks – builds the input data for classification. The dataset is 

classified using the three Random Forest classification models that performed best on the 

London dataset. Additionally, it is used to develop three new classification models and subse-

quently conduct a classification following the procedure presented within section 3.2.3 Random 

Forest Classification. This is done in order to be able to compare performance variations be-

tween different classification models, too. On the one hand trained based on another city 

structure and on the other hand trained based on the structure of the city to be classified.  

The performance of urban structure type classification utilizing different classification models 

within Paris is assessed by calculating accuracy measures – presented within section 3.2.4 Accu-

racy Assessment – for the different classifications results. Within this context, especially the 

Kappa values are taken into consideration for evaluation since these are particularly suited 

when comparing results of different classifications (Congalton and Green 1999: 59; Foody 

2002: 188). The transferability is evaluated by comparing the accuracy measures on Urban 

Atlas building block level of Paris with the accuracy measures of the same classification 

schemes on Urban Atlas building block level of London.   

3.3.2 Square Objects 

The transferability of the urban structure type classification methodology utilizing an artificial 

reference unit of square objects is tested based on the city structure of London. Data used 

within this context are the Cartosat-1 nDSM, the reclassified nDSM and the UKMap building 

inventory, while the Urban Atlas building blocks are substituted by square objects. However, 

the latter are not available in advance and therefore need to be created during segmentation. 

In order to derive square units only for areas which actually feature urban structures, the 

Global Urban Footprint extract of London derived from data of the TerraSAR-X/TanDEM-

X sensors (Esch et al. 2012) is implemented in the process, too. The top-down segmentation 

procedure is conducted following the same approach as utilized by Klotz (2012: 35 ff.): 
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The lowest spatial scale is presented by the Urban Footprint Level (L1) (see Figure 10) which 

is generated by implementation of the Global Urban Footprint extract of London into the 

segmentation. The Building Block Level (L2) is created by copying L1 and conducting chess-

board segmentation within the Urban Footprint area. The size of the square segments to be 

created is set to 40,000m². The value is based on a suggestion of Taubenböck et al. 

(2013: 396), since they considered this size appropriate to capture urban alignment and struc-

ture. The Building Substitute Level (L3) is created based on the Building Block Level (L2) by 

copying the latter and performing chessboard segmentation within the individual building 

block segments – setting the size of square segments to be created to 25m² which equals the 

nDSM pixel level. Subsequently, feature calculation is carried out on Building Block Level (L2) 

following the same procedure as presented within section 3.2.2 Feature Calculation.  

After segmentation and feature calculation, mean height values and building density values are 

derived for the individual square objects (L2) by aggregating the building parameters of the 

UKMap building inventory (see section 3.1.2 Aggregation of Physical Parameters). However, the 

spatial coverage of L2 exceeded that of the UKMap building inventory and therefore, square 

segments not containing buildings of the latter are excluded in order to avoid erroneous zero 

values. Based on the physical parameters the three urban structure type classification schemes 

under consideration are applied on L2.   

Subsequently, Random Forest classification models are developed utilizing the class infor-

mation of the considered reference classifications as well as the numerical feature values fol-

lowing the approach presented within section 3.2.3 Random Forest Classification.  

Finally, accuracy measures – see section 3.2.4 Accuracy Assessment – are calculated for the result-

ing classifications in order to be able to quantitatively evaluate the performance of the classifi-

ers on square object level. The transferability is evaluated by comparing the accuracy measures 

on square object level of London with the accuracy measures of the same classification 

schemes on Urban Atlas building block level of London.    
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Figure 10: Top-down segmentation scheme – square object level (modified after Klotz 2012)   

3.4 Cross-City Structural Analysis 

The morphology of cities can be quantified by parameters capable to capture horizontal and 

vertical characteristics of urban structures. In the scope of this study, morphological proper-

ties – by means of physical parameters – were derived for the individual Urban Atlas building 

blocks of London and Paris. Those parameters are suitable to describe the structure of urban 

areas and therefore allow identifying analogies and differences of the urban morphology be-

tween different cities, as targeted within the fourth research objective.     

Luck and Wu (2002: 327) stated that morphology and growth of urban areas were subjects of 

investigation for geographers, economists and social scientists for a long time. Within this 

context, a variety of theories on the spatial and temporal composition of cities has been devel-

oped (e.g. Thünen 2011; Burgess 1984; Christaller 1933). The concentric zone model intro-

duced by Burgess (1984) is among the classic theories of urban morphology and understands 
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the city as a composition of concentric rings around a central business district. Although this 

model cannot be seen as the absolute reality, it is assumable that the physical face of cities 

might change beginning from the center to the fringe.  

Some studies have already conducted urban analysis depending on the distance to the city 

center. Luck and Wu (2002) have examined how land used types change with increasing dis-

tance from the city center in the Phoenix metropolitan region. Furthermore, Wurm et al. 

(2015a) have presented an approach to discriminate city centers in Germany depending on the 

correlation between the perceived distance of citizens from their home to a central point and 

changing morphological characteristics with increasing distance from that central point.   

Within this study, the approach of analyzing the urban morphology depending on the distance 

from the city center is taken up. Therefore, analogies and differences between London and 

Paris are identified based on physical parameters on Urban Atlas building block level and their 

alteration with increasing distance from the city center. The physical parameters considered 

within this context are the building density, the floor space density as well as the mean height. 

However, for the purpose of comparability the floor space density and mean height values 

calculated based on Cartosat-1 nDSM height information are utilized, since only these are 

available for both cities under consideration. 

In order to be able to derive distance values central points need to be defined within each of 

the city areas in advance. These are set to the church of Notre Dame in Paris and the St. 

Paul’s cathedral in London, because both are located in the historic center of the respective 

city. Subsequently, the Euclidean distance from the individual Urban Atlas building blocks to 

the respective city center is calculated. Within this context, only those building blocks located 

within a distance of 12km around the respective city center are taken into consideration for 

the subsequent analysis. This is done because the areal coverage of the building blocks within 

London is limited to that extent. Figure 11 exemplarily contrasts the calculated distance values 

on Urban Atlas building block level in London beginning from the city center with the build-

ing density values for the same building blocks.  
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Figure 11: Location and building density of London on Urban Atlas level (modified after Wurm et al. 2015b) 

For the purpose of analyzing the alteration of the urban morphology with increasing distance 

from the city center, the individual Urban Atlas building blocks are classified according to 

their distance to the city center by intervals of 1km. As a result of this step, a composition of 

eleven concentric rings around the city center is created for each city. The blocks being locat-

ed in a distance of up to 1km around the central point are classified as city center. The value 

ranges of the particular physical parameters are visualized as boxplots respectively for each of 

the concentric rings and the city center of Paris and London. This allows for analyzing the 

morphological composition of each city depending on the distance to the city center.  

Furthermore, the three considered physical parameters of the individual Urban Atlas building 

blocks are averaged for each of the eleven concentric rings and for the city center utilizing the 

equations presented within Table 11. 

For the purpose of comparability between Paris and London the averaged parameters are 

normalized by the dimension of the largest resulting value of the respective city. For the com-

parative structural analysis, the alteration of the normalized parameters with increasing dis-

tance from the city center of London and Paris are respectively contrasted using line charts. 
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Table 11: Ring-based equations of physical parameters 

Physical parameter Equation  Variables 

Averaged Building Den-
sity (in %) 𝐵𝐷̅̅ ̅̅ =  

𝐵𝐷

𝑛𝑅𝑢

  
(22) BD  = Building Density per Urban Atlas 

Building Block (see equation 3) 

FSD = Floor Space Density per Urban 
Atlas Building Block (see equation 4) 

HGT = Mean Height per Urban Atlas 
Building Block (see equation 6) 

n = Number of Building Blocks  

Ru = Concentric Ring 

Averaged Floor Space 
Density 𝐹𝑆𝐷̅̅ ̅̅ ̅̅ =  

𝐹𝑆𝐷

𝑛𝑅𝑢

  (23) 

Averaged Mean Height  

(in m) 
𝐻𝐺𝑇̅̅ ̅̅ ̅̅  =  

𝐻𝐺𝑇

𝑛𝑅𝑢

  (24) 
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4. RESULTS & ANALYSIS 

Within this chapter the results gained during this study are presented and analyzed in the con-

text of the research objectives. This includes (4.1) the validation of the Urban Atlas classifica-

tion scheme, (4.2) the assessment of the correctness and performance of the urban structure 

classification methodology, (4.3) the evaluation of the transferability of the urban structure 

classification methodology and (4.4) the cross-city structural analysis. Subsequently, the results 

are summarized briefly in order to answer the research questions (4.5). Eventually, the out-

comes gained during the study are discussed with regard to limitations of the applied method-

ological approaches and the used data (4.6).  

4.1 Validation of Urban Atlas Classification Scheme 

In the following sections the validation results of the Urban Atlas classification scheme are 

presented. These include the accuracy assessment of the ‘Discontinuous’ and ‘Continuous 

Urban Fabric’ classes and the review of Urban Atlas classes in terms of structural information.  

4.1.1 Accuracy Assessment 

The accuracy of the Urban Atlas classification scheme is assessed by comparing the density 

ranges of the ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes with the aggregated 

building densities on Urban Atlas block level utilizing boxplots (see Figure 12).  

 

Figure 12: Boxplots displaying building densities of the “Discontinuous” and “Continuous Urban Fabric” clas-

ses 
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In general, the boxplots reveal that the degree of sealing ranges of the ‘Discontinuous’ and 

‘Continuous Urban Fabric’ classes correspond to the building densities calculated from the 3D 

city model. However, in detail, the results display misclassifications of the Urban Atlas dataset, 

too.  

With the exception of the class ‘Discontinuous <10%’, the boxplots of the remaining classes 

reveal constantly increasing building densities beginning from the class ‘Discontinuous 10-

30%’. The interquartile ranges of the classes under consideration can clearly be differentiated 

with only small overlaps. This reflects by tendency an agreement with the descriptions of the 

respective Urban Atlas classes.  

Nevertheless, as already indicated above, building densities of the class ‘Discontinuous <10%’ 

are not consistent with the class description. The density values of the majority of the blocks – 

around four fifths - exceed the 10% limit. Within this context, it should be noted that the 

blocks featuring building density values larger 10% mainly feature building structures like de-

tached, semi-detached and row houses. Visually checking these blocks against Google Earth 

Imagery from 2006 – this date equals the production date of the Urban Atlas dataset – reveals 

that those building structures already existed during that time. A misclassification caused by 

construction of the building structures after the production date of the Urban Atlas is there-

fore excluded.  

A view at the upper and lower class limits – displayed by the staple lines at the upper and low-

er end of the whiskers – further reveals that there are more or less high within-group variances 

of building densities among the different classes. The greatest variation of absolute values can 

be found within the ‘Continuous >80%’ class where building densities range from 0 up to 

100%. In contrast to that, the class ‘Discontinuous 30-50%’ exhibits the lowest within-group 

variability and therefore a higher degree of homogeneity in terms of building densities. The 

building density values of the respective building blocks range only from approximately 5 up 

to 30%. However, comparing the ranges of all classes reveals that almost all of them are over-

lapping. Therefore, a clear distinction between the classes based on building densities is not 

possible.  

Concluding, the accuracy of the Urban Atlas classes can only be considered partially correct. 

Although, a right tendency in terms of agreement between the degree of sealing and the ag-

gregated building density values is given, no clear differentiation between the classes - as indi-
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cated by the Urban Atlas class descriptions – is possible due to low between-class variability of 

the building densities. Furthermore, the class ‘Discontinuous <10%’ does nearly not corre-

spond with the class description given in the Urban Atlas. Concluding, the degree of sealing of 

the Urban Atlas ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes is not consistent with 

the building density. Thus, the degree of sealing ranges of the considered Urban Atlas classes 

do not allow for drawing conclusion on the underlying building structures. 

4.1.2 Review of Urban Atlas Classification Scheme  

The sufficiency of the Urban Atlas classification scheme to characterize horizontal and vertical 

urban structures requires that the classes reveal a certain degree of homogeneity. Furthermore, 

the between-class variability should be significant enough in order that a differentiation be-

tween the classes is possible. Therefore, the Urban Atlas classes are subsequently reviewed in 

terms of their within-class and between-class variability based on the selected physical parame-

ters – building density, floor space density, mean volume and mean height – utilizing boxplots 

(see Figure 13). 

Building Density/ Floor Space Density (see Figure 13 – a/b): An almost identical picture of the with-

in-class and between-class distribution arises when looking at the building density and floor 

space density ranges of the different Urban Atlas classes. The ‘Discontinuous’ and ‘Continu-

ous Urban Fabric’ classes reveal – with the exception of the ‘Discontinuous <10%’ class – an 

increase of building densities and floor space densities beginning from the ‘Discontinuous 10-

30%’ class. However, due to more or less low between-class variances a clear separability be-

tween the classes is not possible. A closer look on the remaining Urban Atlas classes shows 

that the variability of building/floor space densities on block level of the classes ‘Industrial’, 

‘Port Areas’ and ‘Construction Sites’ is considerably larger than these of the classes ‘Airports’ 

and ‘Isolated Structures’. This indicates a higher degree of within-class homogeneity with re-

gard to building/floor space densities of the latter. Furthermore, building/floor space density 

values of the classes ‘Airports’ and ‘Isolated Structures’ are generally lower, owing to the typi-

cal scattered development of the respective building blocks. However, the between-class vari-

ability is not sufficient enough for physical differentiation. The building blocks of ‘Industrial’, 

‘Port Areas’ and ‘Construction Sites’ can by tendency be distinguished from that of ‘Airports’ 

and ‘Isolated Structures’ but reveal high similarities with regard to building/floor space densi-

ties among each other. Besides, analogies to the ‘Discontinuous’ and ‘Continuous Urban Fab-

ric’ classes are present, too. The building/floor space densities on block level of the classes 
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‘Airports’ and ‘Isolated Structures’ are for instance very similar to that of the ‘Discontinuous 

10-30%’ class. Furthermore, the lower and upper class limits of almost all classes reveal more 

or less distinctive overlaps resulting in separation difficulties between the classes. 

 

 

Figure 13: Boxplots displaying a) building densities, b) floor space densities, c) mean heights and d) mean vol-

umes of the Urban Atlas classes 

Mean Height (see Figure 13 - c): The mean height ranges of the different Urban Atlas classes un-

der consideration display a very homogenous distribution. Within this context, considerable 

differences can only be identified on block level between the classes ‘Airports’ and ‘Continu-

ous >80%’. Building blocks of the class ‘Airports’ exhibit the lowest within-class variances and 

therefore feature the highest degree of homogeneity in terms of the mean height values. Simi-

lar to the building/floor space density, the building blocks of the ‘Continuous >80%’ class 

reveal the highest within-class variability. Besides, the mean height values of ‘Airports’ are 
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considerably lower than that of the building blocks of the ‘Continuous >80%’ class. The re-

maining classes show more or less equal distributions on both, within-class and between-class 

level and can therefore physically hardly be separated in terms of the height. A closer look on 

the ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes reveals that – again with the excep-

tion of the ‘Discontinuous <10%’ class – mean height values by tendency increase starting 

from the ‘Discontinuous 10-30%’ class. However, this tendency is much lesser distinct than 

noticeable with respect to building density and floor space density.   

Mean Volume (see Figure 13 - d): With regard to the mean volume ranges the Urban Atlas classes 

can be delineated into two groups. The first group exhibits relatively high within-class vari-

ances and comprises the classes ‘Continuous >80%’, ‘Industrial’, ‘Port Areas’, ‘Airports’ and 

‘Construction Sites’. The second group on the contrary reveals relatively low within-group 

variances – indicating a higher degree of homogeneity in terms of building volumes – and 

comprises the remaining classes. Furthermore, mean building volumes within the second 

group are considerably lower than that within the first. Therefore, structural differences in 

terms of the mean building volume are prevalent between the two groups. Nevertheless, the 

between-class variability among the classes of the two different groups is too low in order that 

a differentiation on class level is not possible.  

Summarizing, the outcomes of the validation of the Urban Atlas classification scheme support 

the central hypothesis of the first research objective. The Urban Atlas classes under considera-

tion do only partially contain information building structures. The ‘Discontinuous’ and ‘Con-

tinuous Urban Fabric’ classes exhibit – with the exception of the ‘Discontinuous <10%’ class 

– an increase of the physical parameters in accordance with the respective class description. 

However, only with regard to building density, floor space density and mean height. This 

characteristic is not visible with respect to the mean volume. Nevertheless, clear physical sepa-

rability between the ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes is not possible due 

to the insufficient between-class variability which leads to overlaps of the upper and lower 

class limits. The remaining classes do not reveal distinct structural information in terms of the 

physical parameters. Although some of them can be assembled into groups of similar structur-

al characteristics and therefore differentiated on between-group level, per-class delineation 

based on structural information is hardly possible.  
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4.2 Urban Structure Classification utilizing Cartosat-1 nDSM Data 

Within this section the results of the different classification schemes are presented and ana-

lyzed in order to review the performance of the Random Forest classifier in deriving structural 

information from the Cartosat-1 nDSM data. Eventually, the features used for the classifica-

tion are evaluated regarding their explanatory power for classification.  

4.2.1 Accuracy Assessment  

The accuracy of the different classification scheme results is assessed in order to gain confi-

dence on the correctness of the classification results and to determine the classifier performance. 

Table 12: Results of the accuracy assessment of the different classification schemes 

 

Classification Scheme 
Classification 
Scheme ID 

Overall            
Accuracy 

Kappa      
Value 

Interpretation 
of Kappa 

Value 

Urban 
Structure 

Types 

3-Class Density/ 

3-Class Height 
D3H3 0.45 0.30 fair 

3-Class Density/ 

2-Class Height 
D3H2 0.50 0.31 fair 

2-Class Density/ 

3-Class Height 
D2H3 0.56 0.39 fair 

2-Class Density/ 

2-Class Height 
D2H2 0.64 0.41 moderate 

Building 
Density 

3-Class Density D3 0.54 0.26 fair 

2-Class Density D2 0.69 0.33 fair 

Mean 
Height 

3-Class Height H3 0.79 0.63 substantial 

2-Class Height H2 0.91 0.75 substantial 

 

As the results reveal (see Table 12), the Random Forest classifier performs better in differenti-

ating and extracting height information than building density information based on the Car-

tosat-1 nDSM data. In terms of the classification schemes which contain separate information 

on the building density respectively mean height, considerably better classification results 

could be achieved for the mean height classifications. Within this context, overall accuracies of 

the mean height classification results are relatively high, ranging from 0.79 up to 0.91. Fur-

thermore, with Kappa values equal/greater than 0.63, both mean height classification out-

comes can be regarded substantial with respect to their accuracy. On the contrary, the results 

of the density classification schemes are considerably poorer. Overall accuracies of the classifi-
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cations remain on a mediocre level. In accordance to that, the Kappa values of 0.26 respec-

tively 0.33 indicate only “fair” classification outcomes, which are just slightly better than 

chance agreement. In general, these results allow for the conclusion that the Cartosat-1 nDSM 

is a valuable dataset for classification of building heights while it – at least for the tested meth-

od - is not appropriate for the derivation of building densities. 

In terms of the urban structure type classification schemes the classification precisions remain 

thoroughly on a mediocre level (see Table 12). For all classification schemes overall accuracies 

ranging from 0.45 up to 0.64 were achieved. The respective Kappa values reveal that solely the 

result of the D2H2 classification scheme – combination of 2-class building density and 2-class 

mean height – can be rated moderately. The outcomes of the other urban structure type classi-

fication schemes are slightly worse and remain – equal to the results of the building density 

classification schemes – on a fair level.  

With regard to the results presented above, the best classification outcomes could be achieved 

for the H2; H3 and D2H2 classification schemes (see Table 12). Nevertheless, taking a look at 

the confusion matrix of the D2H2 classification scheme (see Table 13 – a) reveals that omis-

sion and commission errors are very high for the classes being composed of a low-high mix-

ture of building density and mean height, 0.65 and 0.78 respectively 0.52 to 0.62. As a result of 

this, User’s and Producer’s accuracies of the respective classes are very poor, too. Within this 

context, it is particularly striking that omission and commission occurred primarily among the 

classes being composed of the same mean height but different density ranges. These short-

comings are a consequence of the only mediocre performance of the classifier in differentiat-

ing building density information based on the Cartosat-1 nDSM data. The best classification 

results could be achieved for the classes which are composed of ‘high/high’ respectively 

‘low/low’ building density and mean height ranges. A similar picture to that identified for the 

D2H2 classification arises when viewing the confusion matrices of the remaining urban struc-

ture type classification schemes (see Appendix 6 – a-c).  

In terms of the mean height classification schemes the omission and commission errors are 

considerably lower (see Table 13 – b/c). This reversely results in higher User’s and Producer’s 

accuracies in comparison to the D2H2 classification scheme. Within this context, the highest 

error values of 0.39 respectively 0.32, occur on the ‘Medium height’ class of the H3 classifica-

tion scheme. With User’s and Producer’s accuracies constantly exceeding 0.83 respectively 
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0.76 the ‘Low Height’ and ‘High Height’ classes are well distinct within both, the H2 as well as 

the H3 classification scheme.  

Table 13: Confusion matrices of a) D2H2 classification, b) H3 classification and c) H2 classification of London 

on Urban Atlas level 

  Reference Data  

 a) D2H2 1 1 1 2 2 1 2 2 
Row 
Total 

P
re

d
ic

ti
o

n
 1 1 13,191 708 4,710 541 19,150 

1 2 259 563 116 524 1,462 

2 1 2,391 262 2,772 305 5,731 

2 2 357 1,074 267 3,667 5,365 

 Column 
Total 

16,199 2,607 7,865 5,037 31,708 

 Omission 
Error 

0.19 0.78 0.65 0.17 
Density 

Height  Producer’s 
Accuracy 

0.81 0.22 0.35 0.73 

 Commis-
sion Error 

0.31 0.62 0.52 0.32 
1 = Low 

2 = High  User’s     
Accuracy 

0.69 0.38 0.48 0.68 

 

  Reference Data  

 b) H3 1 2 3 Row Total 

P
re

d
ic

ti
o

n
 

1 16,502 3,097 80 19,679 

2 1,856 5,700 844 8,400 

3 44 583 3,003 3,630 

 Column 
Total 

18,402 9,380 3,927 31,709 

 Omission 
Error 

0.10 0.39 0.24 

Height 
 Producer’s 

Accuracy 
0.90 0.61 0.76 

 Commis-
sion Error 

0.16 0.32 0.17 1 = Low 

2 = Medium 

3 = High 
 User’s     

Accuracy 
0.84 0.68 0.83 

    



4. RESULTS & ANALYSIS 

 

63 

 

  Reference Data  

P
re

d
ic

ti
o

n
 

c) H2 1 2 
Row 
Total 

1 22,944 1,678 24,622 

2 1,120 5,967 7,087 

 Column 
Total 

24,064 7,645 31,709 

 Omission 
Error 

0.05 0.22 

Height 
 Producer’s 

Accuracy 
0.95 0.78 

 Commis-
sion Error 

0.07 0.16 
1 = Low 

2 = High  User’s     
Accuracy 

0.93 0.84 

 

Summarizing, the classifier performed best in deriving height information within the scope of 

the H2 and H3 classification schemes achieving substantial results. The performance of the 

classification models in extracting information on building density is significantly poorer. The 

results remain thoroughly on a mediocre level never exceeding fair rankings. As a consequence 

of the poor differentiation ability of building densities, the outcomes of the urban structure 

type classifications remain on a mediocre level, too. The best but only moderate ranked result 

could be achieved for the D2H2 scheme which is also the third-best result in terms of all clas-

sification schemes under consideration. Nevertheless, relatively high omission and commis-

sion errors occur. Concluding, Cartosat-1 nDSMs reveal to be a substantial Earth observation 

dataset for classification of building heights but fail to add information on the building densi-

ty. 
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4.2.2 Classification Results 

A visual comparison of reference classifications and prediction results of the three best-ranked 

classification schemes – D2H2, H3 and H2 – is presented within Figure 14, Figure 15 and 

Figure 16.  

The visual presentations reveal that the H3 and H2 classification results agree quite well with 

the respective reference classifications. The largest but still minor deviations can be observed 

on building blocks belonging to the ‘Medium Height’ class of the H3 classification scheme. In 

accordance with the accuracy assessment presented within the previous section differentiation 

problems occurred primarily between the ‘Medium Height’ and ‘Low Height’ class.  

The visual agreement between reference classification and classification result of the D2H2 

classification scheme is significantly poorer. The high omission and commission errors of the 

‘High Density/Low Height’ and ‘Low Density/High Height’ classes (see Table 13 – a) are 

clearly reflected in the classification outcome. The majority of the building blocks belonging to 

those classes were falsely delineated during classification. As a result a clear underrepresenta-

tion of the blocks of the ‘High Density/Low Height’ and ‘Low Density/High Height’ classes 

is apparent when comparing the classification result with the reference (see Figure 14).  
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Figure 14: D2H2 classification of London on Urban Atlas level: a) reference data and b) classification result 
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Figure 15: H3 classification of London on Urban Atlas level: a) reference data and b) classification result 
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Figure 16: H2 classification of London on Urban Atlas level: a) reference data and b) classification result 
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4.2.3 Evaluation of Feature Importance 

In the scope of this study an 18-dimensional feature vector comprising spatial and textural 

features was used for classification. The relative importance of each feature was automatically 

assessed within the Random Forest classification process (see section 3.2.3 Random Forest Clas-

sification). The results of the feature importance assessment for the three best-ranked classifica-

tion schemes - H3, H2 and D2H2 - are presented in terms of a feature importance ranking 

within Figure 17.    

 

 

Figure 17: Feature importance ranking of a) H3 classification, b) H2 classification and c) D2H2 classification of 

London 

With regard to the H3 and H2 – mean height – classification schemes (see Figure 17 – a/b) 

three spatial features have the highest explanatory power for classification. These are in both 

cases ‘Mean Volume’, ‘Standard Deviation Height’ and ‘Mean Height’. Excluding these fea-
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tures would result in a mean decrease of classification accuracy ranging from 30 up to 55%. 

However, the largest decrease would be recorded for ‘Mean Volume’ with 50 respectively 

55%. The mean increase of the other two features would be significantly lower. The best-

ranked textural feature in the frame of the H3 and H2 classification is ‘GLCM Entropy’. Nev-

ertheless, although not all spatial features contribute equivalently to the classification process, 

spatial features clearly have a greater influence on the classification success than textural fea-

tures.  

In the scope of the D2H2 – combination of 2-class building density and 2-class mean height – 

classification scheme (see Figure 17 – c), two spatial features and one textural feature are 

among the three best-ranked features. These are namely ‘Mean Volume’, ‘Volume’ and 

‘GLCM Entropy’. Nevertheless, while the two spatial features would cause a mean decrease of 

accuracy of around 50% each, the loss of accuracy in terms of the textural feature is substan-

tially lower and amounts only around 36%. Equal to the H2 and H3 classification scheme, 

spatial features have a greater influence on the classification success than textural features in 

terms of the D2H2 classification scheme. 

4.3 Transferability Evaluation of Urban Structure Classification 

The transferability of the urban structure classification was tested by applying the classification 

methodology in a different city context as well as on square reference units which act as sub-

stitutes of the Urban Atlas building blocks. In the following sections the results of the accura-

cy assessment are presented in order to gain confidence about the correctness of the classifica-

tions and to determine the transferability of the urban structure classification methodology.  

4.3.1 Different City Context 

In order to review the performance of the urban structure classification in a different city con-

text, the three best-ranked classification schemes – D2H2, H3 and H2 – were applied on ur-

ban Atlas building block level within Paris, France. The classification was conducted by apply-

ing the Random Forest classification models on a Cartosat-1 nDSM dataset of Paris. In this 

context, classification models trained with a subset of the London data as well as classification 

models trained with a subset of the Paris data were used. Within Table 14 the overall accura-

cies (OA) as well as the Kappa values of the different classification outcomes on Urban Atlas 

building block level of London and Paris are compared.  
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Table 14: Comparison between classification results of London on Urban Atlas level and classification results of 

Paris on Urban Atlas level (Paris trained/London trained) 

 London Paris (London trained) Paris (Paris trained) 

Classification 
Scheme 

OA Kappa 
Kappa 

Key 
OA Kappa 

Kappa 
Key 

OA Kappa 
Kappa 

Key 

D2H2 0.64 0.41 moderate 0.64 0.45 moderate 0.69 0.51 moderate 

H3 0.79 0.63 substantial 0.77 0.63 substantial 0.79 0.67 substantial 

H2 0.91 0.75 substantial 0.88 0.74 substantial 0.88 0.75 substantial 

 

The overall accuracies of the D2H2 classification outcomes, with 0.64 in London and 0.64 

respectively 0.69 in Paris, are relatively constant across the two cities. The Kappa values - as 

more robust indicators when comparing the results of different classifications – of 0.45 re-

spectively 0.51 in Paris are even slightly better compared to 0.41 in London. Nevertheless, all 

Kappa values of the D2H2 classifications indicate moderate classification outcomes.  

With regard to the H3 and H2 classification schemes the overall accuracies of Paris are equal 

respectively just slightly poorer in comparison to that of London (see Table 14). The respec-

tive Kappa values are indicating substantial results across the two cities.  

Spatial precision deficits, in terms of per-class omission and commission errors, are relatively 

constant among the different classification schemes across Paris and London. Figure 18 ex-

emplarily shows a visual comparison of reference classification and prediction result of the H3 

classification model trained with London data in Paris. The classification result agrees well 

with the reference classification. Nevertheless, deviations are observable on the building 

blocks belonging to the ‘Medium Height’ class as a result of the omission and commission 

errors of 0.43 respectively 0.32 (see Appendix 7 – b). These values are very similar to the 

omission and commission errors of 0.39 and 0.32, identified for the same class in the context 

of the H3 classification of London (see 4.2.1 Accuracy Assessment). With regard to the per-class 

spatial precision of the D2H2 and the H2 classification scheme, equal magnitudes of omission 

and commission errors are noticeable among the two cities, too (see Table 13 – a/c and Ap-

pendix 7 – a/c) 
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Figure 18: H3 classification of Paris on Urban Atlas level: a) reference data and b) classification result 
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Summarizing, the overall accuracies as well as the Kappa values constantly remain on an equal 

level across Paris and London. The per-class spatial precisions of the different classification 

schemes are very similar across the two cities, too. Furthermore, the classification accuracies in 

Paris utilizing the classifiers trained with Paris data are only slightly better in comparison to 

that trained with London data. Therefore, no significant improvement is noticeable. Conclud-

ing, the consistent results of the classification accuracies across London and Paris confirm the 

transferability of the methodology to a different city context.  

4.3.2 Square Objects 

The availability of Urban Atlas building block information is spatially limited to European 

cities with more than 100,000 inhabitants (EEA 2010b). Thus, it was tested whether the classi-

fication methodology is applicable on artificial spatial units of square objects with a size of 

40,000m². In order to review the transferability of the urban structure classification, the 

D2H2, H3 and H2 classification schemes were applied on this particular square object level. 

The classification was conducted by training the respective Random Forest classification mod-

els with the information available on this square object level. Subsequently, classification was 

carried out based on the Cartosat-1 nDSM dataset of London. The overall accuracies (OA) as 

well as the Kappa values of the different classification outcomes on Urban Atlas building 

block and on square object level of London are compared within Table 15.  

Table 15: Comparison between classification results of London on Urban Atlas level and classification results of 

London on square object level 

 London (Urban Atlas Building Blocks) London (Square Objects) 

Classification 
Scheme 

OA Kappa Kappa Key OA Kappa Kappa Key 

D2H2 0.64 0.41 moderate 0.80 0.41 moderate 

H3 0.79 0.62 substantial 0.79 0.56 moderate 

H2 0.91 0.75 substantial 0.91 0.65 substantial 

 

With regard to the D2H2 classification Scheme, the overall accuracy of 0.80 on square object 

level is considerably better than that of 0.64 on Urban Atlas building block level. However, the 

Kappa value is identical on Urban Atlas and square object level, indicating moderate classifica-

tion outcomes. Within the context of the D2H2 classification on square object level, the most 

precise class, in terms of accuracy and spatial precision, is ‘Low Density/Low height’. Omis-
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sion and commission errors of that class are very low, resulting in very high producer’s and 

user’s accuracies (see Appendix 10 – a). It is particularly striking that a share of around 70% of 

the total amount of square objects belongs to that class, explaining the high overall accuracy 

of the D2H2 classification on square object level. Nevertheless, omission and commission 

errors of the remaining classes of the D2H2 classification scheme on square object level are 

considerably larger. These are ranging from 0.53 up to 0.99 respectively 0.34 up to 0.72 (see 

Appendix 10 – a). Particularly the omission error of the ‘High Density/High Height’ class, is 

with 0.53 on square object level clearly higher than that of 0.17 (see Appendix 10 – a and Ta-

ble 13 – a) on Urban Atlas level. With the exception of the square reference units, the same 

datasets applied on Urban Atlas level were used on square object level for classification pur-

pose, too. Therefore, the shortcomings in terms of spatial precision – especially of the ‘High 

Density/High Height’ class – are clearly an outcome of the selection of square objects as ref-

erence units.  

The overall accuracies of the outcomes of the H3 and H2 classification schemes are identical 

among square object and Urban Atlas level. However, the Kappa values of 0.56 and 0.65 on 

square object level are poorer than that of 0.62 and 0.75 on Urban Atlas level (see Table 15). 

With regard to the interpretation of those values, the H3 classification outcome on square 

object level can only be ranked moderate and is therefore worse than the substantial result on 

Urban Atlas level. The results of the H2 classification on square object and Urban Atlas level 

are both substantial. The per-class accuracies of the H2 and H3 classification results on square 

object and Urban Atlas level are relatively similar with the exception of ‘High Height’ classes 

(see Appendix 10 – b/c and Table 12 – b/c). With 0.38 and 0.39 the respective omission er-

rors on square object level are considerably higher than that on Urban Atlas level, amounting 

only 0.22 and 0.24. Again, as already identified above, clearly an outcome of the choice of 

square objects as reference units.  

Figure 19 exemplarily shows a visual comparison of reference classification and prediction 

result of the H3 classification on square object level. In general, the classification result mainly 

agrees with the reference data. However, the shortcomings in terms of the per-class spatial 

precision are visible. The ‘Medium Height’ and the ‘High Height’ classes are partially un-

derrepresented in the classification outcome.  
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Figure 19: H3 classification of London on square object level:  a) reference data and b) classification result 
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Summarizing, the classification outcomes on square object level are poorer in comparison to 

that achieved on Urban Atlas building block level. This is particularly the result of the inferior 

per-class spatial precision caused by the coarser spatial scale of the square objects and the arti-

ficial location of the square units often including a mixture of classes within the spatial extent.  

However, the still moderate and substantial rankings of the classification results confirm that 

the methodology is transferable to square objects. This allows to overcome spatial limitations 

and to derive information on urban structures independently from additional spatial data 

sources, on continental and even global scale. Nevertheless, precision limitations on square 

object level are more pronounced.  

4.4 Cross-City Structural Analysis 

One aim of this study was to compare the urban morphology of two European megacities – 

namely Paris, France and London, England. The morphological characteristics of London and 

Paris were derived on Urban Atlas building block level depending on the distance to the re-

spective city center. In this context, the urban morphology was quantified by the physical pa-

rameters building density, floor space density and mean height. The results are displayed for 

each parameter and each of the considered cities utilizing boxplots within Figure 20. Based on 

these outcomes differences and analogies of the morphological characteristics between Lon-

don and Paris are going to be identified.  

The results reveal that Paris is denser und building heights are higher towards the city center 

compared to London. The absolute values of the considered physical parameters are on aver-

age higher than those of London (see Figure 20). The majority of the considered building 

blocks in Paris exhibit high building/floor space density and mean height values. The building 

blocks in London on the contrary feature a mixture of high and low values of the considered 

parameters in the city center respectively nearby. 

Furthermore, the variability of the physical parameters on block level differs between London 

and Paris depending on the distance to the city center. The variability reaches their maximum 

within London in the city center respectively nearby up to a distance of 3km. Further outward, 

variances decrease constantly and the building blocks become more homogeneous, in order 

that the value ranges of the considered parameters decline. The variability of building/floor 

space densities and mean heights on building block level in Paris is lower close to the city cen-

ter up to a distance of 3km compared to London. Nevertheless, it constantly increases begin-
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ning from 3 to 4km distance until it starts dropping again at 6km respectively 7km from the 

city center. Therefore, building blocks within Paris are more homogeneous in the city center 

respectively nearby. In a distance of around 4km to 6km the building blocks become very het-

erogeneous in terms of the value ranges of the considered physical parameters. Starting from a 

distance of around 6 to 7km the homogeneity increases again. On the contrary, building 

blocks within London are very heterogeneous at the city center respectively nearby and be-

come more homogeneous with increasing distance from the city center.  

 

 

Figure 20: Boxplots displaying alteration of a/b) building density, c/d) floor space density and e/f) mean height 

in London and in Paris depending on the distance to the city center 
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Furthermore, building density, floor space density and mean height in London have their peak 

directly in the city center and are constantly decreasing beginning from that point. Paris on the 

contrary features several peaks. Building/floor space densities exhibit a slight decrease until 

1km distance to the city center. Besides, the mean height values on building block level even 

increase up to a distance of 4km from the city center, before they start decreasing. Therefore, 

the physical parameters under consideration increase directly beginning from the city center in 

London while they exhibit a slight increase before they start dropping in Paris.  

Differences between London and Paris are further noticeable with regard to the saturation 

points of the parameters. The saturation level in London – regardless of the physical parame-

ter – is reached at 4km distance from the city center. Values of the considered parameters 

remain relatively similar and decrease only slightly starting from that distance. On the contrary, 

the saturation level in Paris is reached at a larger distance from the city center, at 6km in terms 

of the mean height and at 7km with regard to building/floor space density. The decrease of 

the parameters in Paris becomes therefore just slighter in a larger distance from the city center 

compared to London.  

In the light of the foregoing considerations, analogies in the urban morphology of London 

and Paris can only be identified in the outskirts, starting from a distance of around 6 up to 

7km from the city center. From then onwards, the physical parameters are relatively similar, 

with regard to their quantity, their decrease rate and variability, across the two cities.  

A direct comparison of the normalized average building density, floor space density and mean 

height on building block level of London and Paris depending on the distance to the city cen-

ter is displayed within Figure 21. The comparison displays the previously identified differences 

and analogies between the urban morphology of the two cities in a distinct and simplified 

manner. The course of the lines of London and Paris is considerably different in a distance of 

1km up to approximately 7km from the city center. The line of Paris displays a clear curvature 

resulting from the increase of the physical parameters under consideration. On the contrary, 

the line of London reveals a concave shaping being a consequence of the decrease of the 

physical parameters. Only further outwards, in a distance of approximately 7km from the city 

center, the morphologies of London and Paris start to resemble and hence, reveal analogies. 

This is clearly identifiable by the converging lines of the two cities beginning from the consid-

ered distance.  
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Figure 21: Direct comparison between normalized average a) building density, b) floor space density and c) 

mean height of London and Paris depending on the distance to the city center 

4.5 Results in the Context of the Research Objectives 

In the following, the results gained in the scope of this study are summarized briefly in the 

view of the research questions posed under the different research objectives. 

1) Validation of Urban Atlas Classification Scheme 

1.1) Are the density ranges of the Urban Atlas ‘Discontinuous’ and ‘Continuous Urban Fabric’ Classes 

accurate?  

The accuracy of the ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes in the European 

Urban Atlas can only be considered partially correct. A right tendency in terms of agreement 

between the Urban Atlas degree of sealing and the aggregated building density derived from a 

3D building model can be identified. Nevertheless, no clear differentiation between the classes 

- as indicated by the Urban Atlas class descriptions – is possible due to low between-class var-

iability of the building densities. Furthermore, the class “Discontinuous <10%” does nearly 

not correspond with the class description given in the Urban Atlas. Concluding, the ‘Discon-

tinuous’ and ‘Continuous Urban Fabric’ classes do not hold distinct information on the build-
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ing density and thus, do not allow for drawing conclusion on the underlying building struc-

tures.  

1.2) Do the Urban Atlas classes feature information on urban structures? 

The ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes exhibit – with the exception of 

the ‘Discontinuous <10%’ class – an increase of the physical parameters in accordance with 

the respective class description and do therefore contain structural information. However, 

only with regard to building density, floor space density and mean height. This characteristic is 

not visible in terms of the mean volume. Nevertheless, clear separability between the ‘Discon-

tinuous’ and ‘Continuous Urban Fabric’ classes is not possible regardless of the physical pa-

rameter. This is caused by an insufficient between-class variability which leads to overlaps of 

the upper and lower class limits. The remaining classes do not reveal distinct structural infor-

mation in terms of the physical parameters under consideration. Although some of them can 

be assembled into groups of similar structural characteristics and therefore differentiated on 

group level, per-class delineation based on structural information is hardly possible.  

Hypothesis: The Urban Atlas classes do only partially contain information on the horizontal and vertical 

structure of cities. 

The outcomes of the validation of the Urban Atlas classification scheme support the central 

hypothesis of this study. The classes under consideration do only partially contain structural 

information by means of the ‘Discontinuous’ and ‘Continuous Urban Fabric’ classes. The re-

maining classes under consideration do not contain distinct structural information, at least not 

on class level.  

2) Urban Structure Classification utilizing Cartosat-1 nDSM Data 

2.1) Is it possible to automatically derive information on urban structures from Cartosat-1 nDSM datasets? 

In the scope of this study a classification methodology to automatically derive information on 

urban structures based on Cartosat-1 nDSM data has been developed. The classification mod-

els enable to automatically derive height information achieving substantial results. However, 

the performance of extracting information on building density is significantly poorer. The 

results remain thoroughly on a mediocre level never exceeding fair rankings. As a consequence 

of the poor differentiation ability of building densities, the outcomes of the urban structure 

type classifications remain on a mediocre level, too. The best but only moderately ranked re-
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sult could be achieved for only one urban structure type classification scheme. Nevertheless, 

spatial precision and accuracy of some classes of the urban structure type classification scheme 

are very poor. Therefore, it is possible to automatically derive urban structure information 

from Cartosat-1 nDSM data but in varying quality. While substantial results are achievable 

when extracting height information, only mediocre classification outcomes can be attained 

with regard to building density and urban structure classification. Concluding, Cartosat-1 

nDSMs reveal to be a substantial Earth observation dataset for classification of building 

heights but fail to add information on the building density. 

2.2) Which features have the highest explanatory power for classification of urban structures? 

The relative feature importance for classification has been assessed for the three best-ranked 

classification outcomes. With regard to the considered classification schemes, the five features 

having the highest explanatory power for urban structure classification are namely ‘Mean Vol-

ume’, ‘Standard Deviation Height’ ‘Mean Height’, ‘Volume’ and ‘GLCM Entropy’. Excluding 

these features would lead to a decrease of classification accuracy ranging from 30 up to 55%. 

Nevertheless, the highest decrease would be caused when omitting ‘Mean Volume’ – ranging 

from 50 up to 55% – which is therefore the feature with the highest explanatory power for all 

classification schemes under consideration. Besides, although not all spatial features used for 

classification contribute equivalently to the process, spatial features clearly have a higher ex-

planatory power for urban structure classification than textural features. 

3) Transferability Evaluation of Urban Structure Classification 

3.1) Is the developed urban structure classification methodology transferable…? 

a) …to another city context? 

In order to review the transferability of the urban structure classification to another city con-

text, the classification results on Urban Atlas block level of Paris were compared with that on 

Urban Atlas block level of London. The overall accuracies as well as the Kappa values of the 

classification outcomes constantly remain on an equal level across Paris and London. Fur-

thermore, the per-class spatial precisions and accuracies of the different classification schemes 

are very similar across the two cities, too. Concluding, the consistent quality of classification 

outcomes across London and Paris confirms the transferability of the methodology to a dif-

ferent city context.  
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b) …to an independent spatial unit of square objects? 

Transferability of the urban structure classification to an independent spatial unit of square 

objects has been evaluated by comparing the classification outcomes on square object level of 

London with that on Urban Atlas building block level of London. The classification results on 

square object level are poorer in comparison to that achieved on Urban Atlas building block 

level. However, the outcomes are still ranked moderately respectively even substantial. Thus, 

the results confirm that the methodology is transferable to square objects, too. This allows to 

overcome spatial limitations and to derive information on urban structures independently 

from additional spatial data sources, on continental and even global scale. Nevertheless, limita-

tions in terms of the per-class spatial precision and accuracy on square object level are more 

pronounced caused by the coarser spatial scale of the square units. 

4) Cross-City Structural Analysis 

4.1) Are there differences and/or analogies between the urban morphology – by means of the horizontal and 

vertical urban structure – of London, England and Paris, France? 

Differences and analogies of the urban morphology exist between London and Paris and were 

identified depending on the distance to the respective city center. Within this context it was 

found, that the building morphology of Paris is denser und higher towards the city center 

compared to London. The buildings in Paris are more homogeneous within the building 

blocks close to the center and become more heterogeneous with increasing distance. On the 

contrary, building blocks in London are very heterogeneous with regard to building structures 

close to the center and become more homogeneous with increasing distance from the center. 

Furthermore, the physical parameters under consideration decrease directly beginning from 

the city center in London while they exhibit a slight increase before they start dropping in Par-

is. Within London, the saturation level of the decrease of the physical parameters is reached in 

a closer distance to the city center compared to Paris. Analogies in terms of the urban mor-

phology between London and Paris can only be identified in the outskirts. Quantity, decrease 

rate and variability of the parameters are relatively similar there across the two cities. 
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4.6 Discussion 

With the results at hand, the research questions were answered and the central hypothesis of 

this study was proved. Nevertheless, the outcomes need to be discussed with regard to re-

straints of the used data and of the applied methodology.  

Validation of Urban Atlas Classification Scheme: In order to validate the Urban Atlas classification, 

physical parameters were aggregated based on the building parameters of the UKMap building 

inventory on Urban Atlas building block level. However, the UKMap dataset itself was not 

fully consistent and required some preprocessing steps. Firstly, data cleansing was necessary to 

remove polygons not representing building structures. Within this context, correction was 

done manually and thus, it cannot be guaranteed that falsely classified polygons have been 

removed completely. Some of these might have been missed during the cleansing process, 

leading to an overestimation of building densities of the concerned building blocks in return. 

However, the 3D model represents the urban morphology of London in the best and most 

complete way known and published. 

Furthermore, floor counts and missing height values of the building footprints were modelled 

by linear regression. For the model purpose, correlations between floor counts and building 

height as well as between building height and building area have been utilized. The strength of 

the correlation between the considered variables, and therefore the potential to model the 

missing values, has been assessed using the coefficient of determination r². The correlation 

between floor counts and building height can be considered fairly robust with r²=0.77. On the 

contrary, the correlation between building height and building area is sparsely solid with 

r²=0.21. Performance and results of the regression analysis are therefore considerably better in 

terms of the floor counts than with regard to building height. Nevertheless, the applied regres-

sion was the only possibility to derive missing height values. Although not perfect, this ap-

proach is preferable to neglecting the missing values completely. With regard to the conducted 

preprocessing steps, it is assumable that the UKMap building inventory does not fulfill the 

claim of being 100% accurate. Nevertheless, using the different methods it was tried to gener-

ate a preferably realistic representation of the urban structure in London, suitable to validate 

the European Urban Atlas.  

The accuracy of the Urban Atlas ‘Continuous’ and ‘Discontinuous Urban Fabric’ classes was 

assessed by comparing the degree of sealing ranges given in the respective class description 
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with the aggregated building densities on Urban Atlas building block level. In this context, it 

should be noted that the building density values are averagely smaller than the respective de-

gree of sealing values given in the Urban Atlas class descriptions. The Urban Atlas sealing 

degrees were derived using a soil sealing layer (EEA 2010c: 2) which measures the proportion-

al area of a building block which is sealed, considering buildings, streets and other artificial 

objects. The building density on the contrary was aggregated – as the name already indicates – 

solely on the basis of buildings using the UKMap building inventory. Although building densi-

ty and Urban Atlas sealing degree values might display deviations due to differing calculation 

inputs, they yet allowed for evaluating the accuracy by tendency. Furthermore, they enabled to 

reveal that the European Urban Atlas is not suited to conduct analyses on the basis of building 

densities which is one of the most important urban parameters (Fina et al. 2014). Thus, the 

employment of the two differing parameters (building density and degree of sealing) can be 

considered sufficient for the purpose this study.  

Another fact to discuss in terms of the accuracy assessment is the temporal difference of the 

acquisition dates of the Urban Atlas dataset and the UKMap building inventory. The Urban 

Atlas provides information on landuse/landcover in London of the year 2006. On the contra-

ry, building footprints of the UKMap building inventory were acquired at a later time, namely 

in 2012. This temporal difference might have resulted in variations between the building den-

sities aggregated on the basis of UKMap building information and the degree of sealing values 

given in the Urban Atlas class description. Particularly in terms of the accuracy assessment, 

variations between Urban Atlas sealing degree and aggregated building density were judged as 

failure of the Urban Atlas dataset. Nevertheless, some of these might have been simply an 

outcome of differences between the built-up structures at 2006 and 2012. However, 3D build-

ing datasets covering entire city areas are seldom and thus, it is pragmatically to utilize those 

despite of temporal uncertainties. 

Urban Structure Classification utilizing Cartosat-1 nDSM Data: In the scope of this study, a meth-

odology to automatically derive urban structures from Cartosat-1 nDSM data has been devel-

oped. For that purpose, reference classification schemes containing distinct information on 

the classes were derived in advance. Within this context, delineation of urban structures has 

solely been based on physical parameters. Therefore, it is not possible to draw conclusion on 

the underlying landuse. With regard to the Urban Atlas classification scheme it is the other 

way around. The classes mainly contain information on landuse/landcover and, as proved 
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during this study, only partially information on urban structures. However, a classification 

scheme considering both, structural and landuse information is desirable since those infor-

mation provide the basis for an effective city management (Voltersen et al. 2014: 200). For 

that purpose, the exclusive utilization of nDSM data is not sufficient but requires additional 

socioeconomic information. Such data was not available within the scope of this study and 

therefore poses a limitation in terms of the developed methodology.  

Furthermore, limitations of the utilized Cartosat-1 nDSM datasets need to be discussed with 

regard to the developed classification methodology. Firstly, Cartosat-1 DSMs respectively the 

thereof derived nDSMs are not suited to detect single buildings (Sirmacek et al. 2012: 7; dAn-

gelo et al. 2008: 1341). Thus, as suggested by Taubenböck et al. (2013: 395), pixels exceeding a 

height of 0m were selected as building substitutes. Nevertheless, these are only a generalized 

representation of the built-up reality and therefore cause information loss (Klotz 2012: 64). 

Within this context, particularly the 5m geometrical resolution has been to coarse for the pur-

pose of building density extraction with substantial accuracies. This might have been a reason 

for the inferior classifier performance and the mediocre classification outcomes in terms of 

the building density and urban structure type classification schemes.  

Another limitation poses the spatially differing quality of the DSMs (Klotz 2012: 16) which 

were used for nDSM derivation. On the one hand, no height information is available for im-

age areas covered by clouds. Hence, resulting gaps were filled with data from the Shuttle Ra-

dar Topography Mission (SRTM) with the delta fill algorithm introduced by Groham et al. 

(2006). However, with a geometrical resolution of 30m the SRTM data is considerably coarser 

compared to the 5m resolution of the Cartosat-1 DSMs. On the other hand, image resolution 

is impaired by induced artefacts causing building borders to be blurry (Sirmacek et al. 

2012: 66). Both sources of error might have caused spatially varying performance of the classi-

fiers.  

Furthermore, Cartosat-1 DSMs generally underrate building heights (Wurm et al. 2014: 2). 

Within the scope of this study, physical parameters for urban structure delineation were de-

rived on the basis of Cartosat-1 nDSM height information. This was done in order to guaran-

tee transferability of the classification schemes to another city context, namely Paris. The Car-

tosat-1 nDSMs were the only source of height information available for both cities, London 

and Paris, within the scope of this study. Nevertheless, using the Cartosat-1 heights already for 

the purpose of delineation might have caused overall classification accuracies to be artificially 
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improved. In case of a delineation based on, for instance LIDAR-derived height information, 

the underrating of building heights by Cartosat-1data might have influenced the classification 

and most probably resulted in lower classification accuracies.   

The DTMs used for nDSM generation within the scope of this study were derived using a 

morphological filtering approach with a kernel window of 10x10 pixel. With regard to this 

dataset, quality limitations are also present. Klotz (2012: 64), who assessed the accuracy of the 

DTMs, has identified height deviations ranging from -14m up to 12m resulting in a Root 

Mean Square Error (RMSE) of 2.81. Nevertheless, although not perfect, too, he rated the data 

sufficient enough for the representation of the building volume.  

Concluding, the data limitations presented above might have caused the mediocre perfor-

mance in extracting building density and urban structure type information. However, Cartosat-

1 data are a valuable data source to extract urban structure information of large city regions 

due to their large aerial coverage, despite the fact that the quality of the classification out-

comes is varying.  

Transferability Evaluation of Urban Structure Classification: The urban structure classification meth-

odology was applied on Urban Atlas level in Paris achieving results with equal quality than 

gained for London. Thus, it was proved that the methodology is transferable to another city 

context. Nevertheless, the urban fabric of Paris is very similar to that of London. This in turn 

means that the physical face of cities located in other cultural backgrounds might be complete-

ly different. Therefore, the methodology can only considered transferable to other cities fea-

turing similar urban structures than London. In order to generate a statement concerning the 

universal transferability to other cities, the methodology needs to be tested in urban environ-

ments of different cultural backgrounds.  

With regard to the square reference units, the classification methodology is yet transferable 

but with inferior results than achievable on Urban Atlas building block level. The artificial 

reference units are not particularly suited to render the urban structure caused by the uniform 

size and the unnatural shape. However, with regard to availability of data, square units pose 

the only possibility to derive urban structures independently without relying on other datasets 

such as the Urban Atlas.  

Cross-City Structural Analysis: The results gained by the cross-city structural analysis need to be 

discussed with regard the selection of the respective city center as well as the Cartosat-1 height 
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information used for deriving the physical parameters. First of all, the choice of the two city 

centers was subjective. The centers were set to a point/monument located in the historic cen-

ter of the two cities. Although, the church of Notre Dame and the St. Paul’s cathedral are ac-

cepted center points of the respective city, the choice is subjective and alternates could easily 

be found. Other characteristics which may be typical for city centers were not taken into ac-

count in terms of the choice. However, placing the centers to other points might have resulted 

in different outcomes of the structural analysis.  

Furthermore, the physical parameters for the analysis were calculated using the Cartosat-1 

nDSM heights. Within these datasets, as already mentioned above, building heights are under-

rated leading to deviations from reality of the mean height as well as of the floor space values. 

Nevertheless, the height information provided by Cartosat-1 exhibits, although underrated, a 

right tendency of height compositions and is therefore suitable for a comparison of urban 

structures between the two cities. Despite the points of criticism, it could be proved that the 

morphological composition of London and Paris exhibits both, differences and similarities. 

Thus, the accuracy of the dataset is considered sufficient for the purpose of the cross-city 

structural comparison. The added value of horizontal and structural information for urban 

analysis could be displayed within the scope of this study.   
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5. CONCLUSION & OUTLOOK 

The main objectives of this study were the validation of the European Urban Atlas classifica-

tion scheme and the development of a classification methodology towards urban structure 

delineation utilizing Cartosat-1 nDSM data. 

In the scope of the European Urban Atlas validation, it was found that the Urban Atlas clas-

ses do only partially contain distinct information on physical urban structures. The “Discon-

tinuous” and “Continuous Urban Fabric” classes are by tendency correct and exhibit an 

agreement between the considered physical parameters and the respective class description. 

However, the degree of sealing given in the class description of the considered classes is not 

consistent with the aggregated building density. Furthermore, distinct between-class discrimi-

nation is not possible regardless of the physical parameter. The remaining Urban Atlas classes 

under consideration can be assembled into groups of similar structural characteristics and 

therefore differentiated on between-group level. Nevertheless, discrimination of the single 

classes is hardly possible, too. Concluding, the European Urban Atlas classification scheme 

does not allow for drawing conclusion on the underlying building structures on class-level and 

thus, as a matter of fact, does not contain holistic information on the morphology of urban 

areas.  

The developed classification methodology enables to derive urban structure information on 

European Urban Atlas building block level from Cartosat-1 nDSM data but in varying quality. 

In this regard, substantial results are achievable when extracting height information. However, 

the performance of the classification models in extracting information on building density as 

well as simultaneously on height and building density (urban structure types) is significantly 

poorer. In this context, only mediocre classification outcomes are attainable. Hence, Cartosat-

1 nDSMs reveal to be a substantial remote sensing dataset for large area classification of build-

ing heights but fail to add information on the building density.  

The classification methodology proves transferability to another city context as well as to an 

artificial reference unit of square objects. Nevertheless, while the classification quality remains 

on an equal level when applied on Urban Atlas building block level to another city context, it 

is inferior when utilized on square object level. The latter is attributed by the coarser spatial 

scale and the artificial location of the square objects within the spatial extent often including a 

mixture of urban structures. Nevertheless, the approach works independently from other ref-
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erence units (e.g. Urban Atlas building blocks) and thus, allows for urban structure classifica-

tion on continental and even global scale without additional geodata.  

Besides the European Urban Atlas validation and the development of the urban structure clas-

sification methodology, the study at hand proves that information on the horizontal and verti-

cal structure of cities allows for detailed analysis of urban morphologies. In this context, dif-

ferences and analogies of the morphology – in terms of building density, floor space density 

and mean height on building block level – between the sample cities of London and Paris 

could be identified depending on the distance to the respective city center. The quantity, de-

crease rate and variability of the physical parameters on building block level are considerably 

different towards the city center of London and Paris. An equalization of the considered pa-

rameters and thus, analogies between the two cities, could only be identified in the outskirts. 

As indicated in the discussion, there is still a need for improvement and enhancement of the 

urban structuring approach applied within the scope of this study. On the one hand, delinea-

tion of structures should be done considering both, structural as well as socioeconomic infor-

mation. Such an approach would be more sophisticated and thus, would meet the require-

ments to provide a sufficient database for an effective city management. A suitable database 

for the implementation of socioeconomic data is presented by the Urban Audit dataset which 

provides the desired information on the exact same boundaries as the Urban Atlas (see section 

2.2.1 European Urban Atlas). On the other hand, the implementation of another dataset – pref-

erably at low costs and with a large areal coverage – should be tested in order to overcome the 

limitations in terms of extraction of building densities as identified within the context of the 

approach solely based on Cartosat-1 nDSM data. Besides, a variety of ensemble learning clas-

sifiers for supervised classification exist to-date. Thus, it should be tested whether better re-

sults are achievable when applying other classification models. 
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Appendix 6: Confusion matrices of a) D3H3 classification, b) D3H2 classification, c) D2H3 classification, d) D3 

classification and e) D2 classification of London on Urban Atlas level 

  Reference Data  
 a) 

D3H3 
11 12 13 21 22 23 31 32 33 

Row 
Total 

P
re

d
ic

ti
o

n
 

11 6,972 850 42 3,191 1,002 29 611 310 38 13,045 

12 243 540 72 124 591 72 36 237 45 1,960 

13 8 20 32 4 30 29 1 15 17 156 

21 2,069 343 9 2,583 518 1 921 202 3 6,649 

22 573 931 115 481 1,596 121 195 807 91 4,910 

23 5 55 75 1 71 142 0 71 163 583 

31 61 11 1 93 15 1 52 13 2 249 

32 58 168 62 56 299 91 41 373 137 1,285 

33 20 77 187 3 91 440 1 144 1,910 2,873 

 Col-
umn 
Total 

10,009 2,995 595 6,536 4,213 926 1,858 2,172 2,406 31,710 

 Omis-
sion 
Error 

0.31 0.82 0.95 0.60 0.62 0.85 0.97 0.83 0.21  

 Pro-
ducer’s 
Accu-
racy 

0.69 0.18 0.05 0.40 0.38 0.15 0.03 0.17 0.79  

 Com-
mis-
sion 
Error 

0.47 0.72 0.69 0.61 0.67 0.76 0.79 0.71 0.34  

 User’s     
Accu-
racy 

0.53 0.28 0.21 0.39 0.33 0.24 0.21 0.29 0.66  
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  Reference Data  

 b) 
D3H2 

11 12 21 22 31 32 
Row 
Total 

P
re

d
ic

ti
o

n
 

11 8,080 325 4,095 395 829 156 13,880 

12 118 186 74 261 45 184 868 

21 3,160 226 4,221 316 1,621 204 9,748 

22 234 483 212 725 69 529 2,252 

31 262 23 459 41 313 33 1,131 

32 124 378 81 795 67 2,385 3,830 

 Col-
umn 
Total 

11,978 1,621 9,142 2,533 2,944 3,491 31,709 

 Omis-
sion 
Error 

0.33 0.89 0.54 0.71 0.89 0.32  

 Pro-
ducer’
s Ac-

curacy 

0.67 0.11 0.46 0.29 0.11 0.68  

 Com
mis-
sion 
Error 

0.42 0.79 0.57 0.68 0.72 0.38  

 User’s     
Accu-
racy 

0.58 0.21 0.43 0.32 0.28 0.62  
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  Reference Data  

 c) 
D2H3 

11 12 13 21 22 23 
Row 
Total 

P
re

d
ic

ti
o

n
 

11 10,498 1,535 37 3,326 1,058 36 16,490 

12 770 1,553 154 251 1,020 123 3,871 

13 5 26 58 0 27 65 181 

21 1,262 221 7 1,374 247 4 3,115 

22 504 1,331 197 380 1,853 301 4,566 

23 29 171 449 3 338 2,496 3,486 

 Col-
umn 
Total 

13,068 4,837 902 5,334 4,543 3,025 31,709 

 Omis-
sion 
Error 

0.20 0.68 0.94 0.74 0.59 0.17  

 Pro-
ducer’
s Ac-

curacy 

0.80 0.32 0.06 0.26 0.41 0.83  

 Com
mis-
sion 
Error 

0.36 0.60 0.68 0.56 0.59 0.28  

 User’s     
Accu-
racy 

0.64 0.40 0.32 0.44 0.41 0.72  
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  Reference Data  

 d) D3 1 2 3 
Row 
Total 

P
re

d
ic

ti
o

n
 

1 8,980 5,183 1,278 15,441 

2 3,992 5,353 2,485 11,830 

3 627 1,139 2,672 4,438 

 Column 
Total 

13,599 11,675 6,435 31,709 

 Omission 
Error 

0.34 0.54 0.58  

 Producer’s 
Accuracy 

0.66 0.46 0.42  

 Commis-
sion Error 

0.42 0.55 0.40  

 User’s     
Accuracy 

0.58 0.45 0.60  

 

  Reference Data  

P
re

d
ic

ti
o

n
 

e) D2 1 2 
Row 
Total 

1 15,153 6,251 21,404 

2 3,653 6,651 10,304 

 Column 
Total 

18,806 12,902 31,708 

 Omission 
Error 

0.19 0.48  

 Producer’s 
Accuracy 

0.81 0.52  

 Commis-
sion Error 

0.29 0.35  

 User’s     
Accuracy 

0.71 0.65  
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Appendix 7: Confusion matrices of a) D2H2 classification, b) H3 classification and c) H2 classification of Paris 

(London trained) on Urban Atlas level 

  Reference Data  

 a) D2H2 11 12 21 22 
Row 
Total 

P
re

d
ic

ti
o

n
 11 22,661 2,308 3,649 874 29,492 

12 660 1,714 323 1,424 4,121 

12 5,350 691 2,370 514 8,925 

22 754 3,378 531 9,750 14,413 

 Column 
Total 

29,425 8,091 6,873 12,562 56,951 

 Omission 
Error 

0.23 0.79 0.66 0.22  

 Producer’s 
Accuracy 

0.77 0.21 0.34 0.78  

 Commis-
sion Error 

0.22 0.58 0.73 0.32  

 User’s     
Accuracy 

0.78 0.42 0.27 0.68  

 

  Reference Data  

 b) H3 1 2 3 
Row 
Total 

P
re

d
ic

ti
o

n
 

1 23,796 6,133 423 30,352 

2 2,213 10,179 2,661 15,053 

3 121 1,560 9,865 11,546 

 Column 
Total 

26,130 17,872 12,949 56,951 

 Omission 
Error 

0.09 0.43 0.24  

 Producer’s 
Accuracy 

0.91 0.57 0.76  

 Commis-
sion Error 

0.22 0.32 0.15  

 User’s     
Accuracy 

0.78 0.68 0.85  
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  Reference Data  

P
re

d
ic

ti
o

n
 

c) H2 1 2 
Row 
Total 

1 33,809 4,136 37,945 

2 2,489 16,517 19,006 

 Column 
Total 

36,298 20,653 56,951 

 Omission 
Error 

0.07 0.20  

 Producer’s 
Accuracy 

0.93 0.80  

 Commis-
sion Error 

0.11 0.14  

 User’s     
Accuracy 

0.89 0.86  

 

 

 

 

 

  



APPENDIX 

 

xiii 

 

Appendix 8: D2H2 classification of Paris on Urban Atlas level: a) reference data and b) classification result 
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Appendix 9: H2 classification of Paris on Urban Atlas level: a) reference data and b) classification result 
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Appendix 10: Confusion matrices of a) D2H2 classification, b) H3 classification and c) H2 classification of Lon-

don on square object level 

  Reference Data  

 a) D2H2 11 12 21 22 
Row 
Total 

P
re

d
ic

ti
o

n
 11 15,107 1,226 1,563 223 18,119 

12 399 1,037 46 429 1,911 

12 47 2 21 4 74 

22 82 217 2 581 882 

 Column 
Total 

15,635 2,482 1,632 1,237 20,986 

 Omission 
Error 

0.03 0.58 0.99 0.53  

 Producer’s 
Accuracy 

0.97 0.42 0.01 0.47  

 Commis-
sion Error 

0.17 0.46 0.72 0.34  

 User’s     
Accuracy 

0.83 0.54 0.28 0.66  

 

  Reference Data  

 b) H3 1 2 3 
Row 
Total 

P
re

d
ic

ti
o

n
 

1 12,119 2,293 169 14,581 

2 1,293 3,472 433 5,198 

3 57 209 940 1,206 

 Column 
Total 

13,469 5,974 1,542 20,985 

 Omission 
Error 

0.10 0.42 0.39  

 Producer’s 
Accuracy 

0.90 0.58 0.61  

 Commis-
sion Error 

0.17 0.33 0.22  

 User’s     
Accuracy 

0.83 0.67 0.78  
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  Reference Data  

P
re

d
ic

ti
o

n
 

c) H2 1 2 
Row 
Total 

1 16,688 1,399 18,087 

2 579 2,320 2,899 

 Column 
Total 

17,267 3,719 20,986 

 Omission 
Error 

0.03 0.38  

 Producer’s 
Accuracy 

0.97 0.62  

 Commis-
sion Error 

0.08 0.20  

 User’s     
Accuracy 

0.92 0.80  
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Appendix 11: D2H2 classification of London on square object level: a) reference data and b) classification result 
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Appendix 12: H2 classification of London on square object level: a) reference data and b) classification result 

 


