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Abstract 

This paper discusses an approach to handle multi-mode 
Differential Algebraic Equation (DAE) systems 
described by continuous-time state machines where 
mode-dependent state constraints are present. The goal 
is to perform static symbolic analysis and to generate 
efficient run-time code. This technique extends the 
class of multi-mode systems that can be handled by 
Modelica tools. 
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1 Introduction 

1.1 Multi-Mode Systems 

In (Elmqvist et al., 2014) a proposal was presented to 
extend the synchronous Modelica 3.3 state machines 
(Elmqvist et al., 2012) to continuous-time state 
machines having continuous-time models as “states”. 
Every model can be a “state” of a state machine and in 
particular acausal models. These new types of models 
are called “multi-mode systems”. An example of such 
kind of system is shown in Figure 1. 

 

Figure 1. Circuit with two acausal state machines, from 
(Elmqvist et al., 2014).  

Additionally, a method was developed to map 
connections to connectors of states in a particular way. 
The resulting equations can be processed basically by 
the standard symbolic algorithms supported by 
Modelica 3.2 tools. This approach already allowed 
handling a large class of useful variable structure 
systems with dynamically changing number of 

continuous-time states.  
However, models could not be handled with this 

new method if connections between state and non-state 
components lead to constraints on continuous-time 
state variables that vary for the different state machine 
states. For example, the model in Figure 2 could not be 
handled. This circuit describes a capacitor C1 that is 
destroyed when the voltage becomes too large. The 
destroyed capacitor is modelled with a small resistor 
R1. 

 
Figure 2. Circuit that could not be handled previously due 
to different state constraints in the different state machine 
states; slightly adapted from (Elmqvist et al., 2014).  

The goal of this work is to extend the class of multi-
mode DAE systems that can be simulated by Modelica 
tools and prototype the technique in Dymola (Dassault 

Systèmes, 2015). 
In the EU research project RealSim, algorithms had 

been developed to symbolically process variable 
structure DAE systems and simulate the generated 
code (Mattsson et al., 2001). In particular, also a 
certain class of DAEs could be treated where Dirac 
impulses occur when switching the structure. These 
developments had not been incorporated into the 
release version of Dymola, because they had not been 
mature enough for a production software. Some ideas 
from the developments in the RealSim project are now 
being transferred to multi-mode systems. 
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1.2 Other Approaches 

There are also other approaches to handle variable 
structure, varying index systems. For example 
(Zimmer, 2010) uses a run-time interpreter that 
processes the DAE equations at run-time, when the 
structure and/or the index is changing. The benefit is 
that a very large class of DAEs with varying index can 
be handled, at least in principal. The drawback is that 
the run-time efficiency is one or more orders of 
magnitude reduced with respect to an approach 
advocated by this article. Dynamically changing the 
structural analysis at run-time is also performed by 
(Höger, 2014). Describing variable structure systems 
with causal state machines is discussed by (Pepper et 

al., 2011). 
(Benveniste et al., 2014) is tackling the problem 

from a fundamental point of view: The underlying, 
precise mathematical description is based on non-
standard analysis for discrete-time and hybrid 
continuous-time/discrete-time multi-mode systems. 
This approach looks promising. However, it is not yet 
clear how to utilize this theory practically in a 
Modelica simulation environment. 

2 Prerequisites 

In this section several equations and properties are 
collected together that are prerequisites of the 
developed methodology, which is introduced in 
sections 3 and 4. 

2.1 Connection equations 

In (Elmqvist et al., 2014) it was shown how to map 
physical, acausal connections from components outside 
of a state machine to components on a state machine. 
An example is shown in Figure 2 where the 
components R2 and C2 are connected to the 
components R1 and C1 that form a continuous-time 

state machine. 
Assume a connector �� present on a state � is defined 

by one potential variable �� and one flow variable �� 
and that � of these connectors from the same state 
machine are connected to m connectors ��,� outside of 
(that is external to) this state machine. Therefore, the 
following connect statements will be present (for 
simplicity it is assumed that exactly one of the 
external connectors, ��,1, is connected to all the state 
machine connectors; if this would not be the case, 
one could always automatically re-arrange the 
connect statements): 

connect(��,1, �1) 
   ... 
connect(��,1, ��) 
connect(��,1, ��,2) 
   … 
connect(��,1, ��,�) 

These connect statements are replaced by the 
following equations, where � characterizes the active 
state of the state machine: 

Connection equations 

(1) 

� = {�1,�2,⋯ ,��}; � = {�1, �2,⋯ , ��}; 

 � = activeState(); 

�� = ���,1,��,2,⋯ ,��,��; �� = {��,1, ��,2,⋯ , ��,�}; ��,1 = ��;                    // potential equations ��,1 = ��,2:� 

0 = �� + ∑ ��,���=1        // flow equation 

for � in 1:� − 1 

       � = mod(� + � − 1,�) + 1 

       0 = h�(�� ,��)       // dummy equations 

end for 

Note, the for-loop generates � − 1 dummy equations, 
0 = h�(… ). These dummy equations are only present 
in order that the equations of the non-active states form 
a regular system. The exact form of these equations is 
irrelevant because they are only used during symbolic 
analysis and are not present in the generated code. For 
more explanations, see (Elmqvist et al., 2014).  

For connections of two external connectors to two 
states of a state machine, the connector equations of 
(1) simplify to: 

Connection equations for the connection of  
two external connectors ce1, ce2 with  
two state machine connectors c1, c2: 

 

  // Equations for potential variables 
  ce1.p = if activeState(state1) then c1.p else c2.p; 
  ce1.p = ce2.p 
 
  // Equation for flow variables 
  0 = ce1.f + ce2.f +   
        (if activeState(state1) then c1.f else c2.f); 
 
  // Dummy equation for not connected state 
  0 = if activeState(state1) then  
               h1(c2.p, c2.f) else h2(c1.p, c1.f); 

(2) 

The function activeState(name) is the Modelica 3.3 built-
in function to inquire whether the instance name is the 
current active state of a state machine or not. Equations 
(2) are used in all following examples to map 
connections to state machines in to equations.  

Input/output connections to states of a state machine 
can also be handled. Due to the known causality, this 
results in a much simpler approach as with acausal, 
physical connectors, and is not discussed in this paper. 

2.2 Sinks and sources 

The dummy equations (see last equation of (2)) have 
the drawback that they introduce algebraic loops 
between the states of a state machine and therefore 
make the analysis more difficult and the generated 
code less efficient (due to larger algebraic systems of 
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equations). These equations can be removed if either 
one external potential variable or all external flow 
variables are constants or known functions of time, in 
other words if the state machine states are connected to 
sink or source components. In such cases, equations (2) 
can be rewritten to: 

Connection equations if one external potential variable 
ce1.p is a constant or a known time function:  

  // Equations for potential variables 
  ce2.p := ce1.p 
  c1.p := if activeState(state1) then ce1.p else last(c1.p) 
  c2.p := if activeState(state2) then ce1.p else last(c2.p) 
 
  // Equation for flow variables 
  0 = ce1.f + ce2.f +   
        (if activeState(state1) then c1.f else c2.f); 

(3) 

or to 

Connection equations if all external flow variables 
ce1.f, ce2.f are constants or known time functions:  

  // Equations for potential variables 
  ce1.p = if activeState(state1) then c1.p else c2.p; 
  ce1.p = ce2.p 
 
  // Equation for flow variables 
  c1.f := if activeState(state1) then ce1.f + ce2.f 
                                                else last(c1.f) 
  c2.f := if activeState(state2) then ce1.f + ce2.f 
                                                else last(c2.f) 

(4) 

Here last(v) is a conceptual function (only used during 
symbolic analysis) to indicate the value of variable v 
from the last time instant where the corresponding state 
was active. For the symbolic analysis, last(v) is a 
known value. The “:=” operator in the equations 
indicates the computational causality (= the left hand 
side is computed from the right hand side). 

The proof of equations (3) is straightforward (a 
proof of equations (4) can be performed in a similar 
way): Start from (2) and recognize that the dummy 
equations of the not connected states, h1(..) and h2(..), 
can be arbitrarily selected, as long as the equations of 
the not connected states together with these dummy 
equations are structurally consistent

1. In (3) it is 
implicitly assumed that state_i together with the rest of 
the system is structurally consistent if the state is 
active. If state_i is not active, one can assume that 
keeping the causality of the connector (= identical to 
the case where the state is active) will still keep this 
non-active state together with its other dummy 
equations structurally consistent. In other words, under 
the assumption that ce1.p is a constant or a known 
function of time, the last equation of (2) can be 
replaced by: 

1 A DAE is “structurally inconsistent”, if a unique solution 
cannot exist, or stated differently, if the Pantelides algorithm 
does not converge. (Pantelides, 1988) provides an algorithm to 
test for this property. 

  // Dummy equation for not connected state 
  0 = if activeState(state1) then  
            c2.p - last(c2.p) else c1.p - last(c1.p); 

(5) 

Rearranging the other equations of (2) together with 
(5) results in (3). 

As a concrete example, lets analyze the circuit of 
Figure 2: At node 2 the state machine connectors C1.n, 
R1.n and the external connectors C2.n, voltage.n, and 
ground.p are connected together: 

  connect(ground.p, R1.n) 
  connect(ground.p, C1.n) 
  connect(ground.p, C2.n) 
  connect(ground.p, voltage.n) 

(6) 

Since the potential of the ground component is given, 
ground.p = 0, one external potential variable of the 
connection set is a constant and therefore equations (3) 
can be utilized resulting in the following equations that 
are equivalent to (6): 

Connection equations at node 2 of Figure 2:  

  // Equations for potential variables 
  R1.n.v = 0 
  C1.n.v = 0 
  C2.n.v = 0 
  voltage.n.v = 0 
 
  // Equation for flow variables 
  0 = ground.p.i + voltage.n.i + C2.i + 
          (if activeState(R1) then R1.n.i else C1.n.i); 

(7) 

2.3 Differentiating dummy equations 

When equations must be differentiated using a 
generalized form of the Pantelides algorithm 
(Pantelides, 1988), see section 3 and 4, dummy 
equations of non-connected states might need to be 
differentiated as well. For example assume that the 
equation for flow variables in (2) needs to be 
differentiated. When this equation is differentiated, the 
time derivatives of ce1.f, ce2.f, c1.f, c2.f are introduced. 
This in turn means that also the dummy equation in (2) 
needs to be differentiated. Differentiating this dummy 
equation would utilize the newly introduced 
derivatives of the flow variables, but would also 
introduce new derivatives of the potential variables c1.p 
and c2.p. This in turn might trigger other (unnecessary) 
differentiations. 

We are rather free to select the dummy equations. 
They are only used to keep the equation sets of non-
connected states structurally consistent. To avoid 
unnecessary state constraints of the dummy equations, 
and in turn unnecessary differentiations of equations, 
the dummy equations are actually defined in such a 
way that they provide a relationship between the 
actually occurring highest derivatives of the potential 
and flow variables. 

For example, when the flow equation in (2) needs to 
be differentiated and the time derivatives of ce1.f, ce2.f, 
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c1.f, c2.f are introduced, then the dummy equation is 
changed to: 

  // Dummy equation for not connected state 
  0 = if activeState(state1) then  
            h1(c2.p, der(c2.f)) else h2(c1.p, der(c1.f)); 

(8) 

Therefore, they provide a relationship between the 
differentiated flow variables and the non-differentiated 
potential variables. 

2.4 Standard Pantelides and BLT algorithms 

The Pantelides algorithm (Pantelides, 1988) is the key 
algorithm in this paper and will be generalized for 
multi-mode systems2. It is summarized here for 
Modelica 3.2 DAEs, that is hybrid DAEs but without 
(discrete or continuous-time) state machines: 

The flattened equations of a Modelica 3.2 model are 
described by the following equations: 

Flattened equations of a Modelica 3.2 model  

(a)   � = {�̇, �, �, �,�,�−} 
(b)    � = �(�, relation(�)) 
(c)   � = �(�, relation(�)) 

(9) 

where � The independent (real) variable �(�) Variables of type Real, appearing 
differentiated �(�) Variables of type Real, appearing not 
differentiated (= algebraic variables) �(���) Variables of type discrete Real, Boolean, 
Integer. They change their values only at 
event instants ���. At an event instant, �− 
is the value of � at the previous event 
iteration at this time instant. During 
continuous integration, that is between 
events, � is fixed (does not change) and �− ≔ � 

relation(�)  All the relations in the model, for  
 example �2 > �5. During continuous 

integration all relations are fixed (do not 
change). 

If (directly or indirectly) constraints between variables � are present, the Jacobian of (9b) with respect to the 
unknowns of type Real is singular: 

det(������̇� �������) = 0 (10) 

This means that (9b) cannot be algebraically solved for 
the unknowns �̇ and �. When using an explicit 
integration method to solve (9b) between events, these 
unknowns must be computed. Consequently, if (10) 

2 Most likely, the alternative formulation from (Pryce, 2001) can 
be used instead of the Pantelides algorithm as well. 

holds, explicit integration methods cannot be used and 
initialization is problematic3. 

The Pantelides algorithm solves this problem by 
differentiating singular subsets of equations. Since only 
equations are under consideration that are integrated, 
the starting point of the algorithm is equation (9b) 
where the discrete variables �,�−, relation(�) are 
kept constant (because they do not change during 
continuous integration) and therefore their 
dependencies are ignored: � = �(�̇, �, �, �) (11) 

In particular this means that all when-clauses are 
removed and the dependency of the equations from 
conditions of if-clauses is ignored. The variable and 
equation structure of (11) is described in the following 
way: 

• All variables appearing in (11) are collected in 
vector � = {�̇, �, �}, � ∈ ℝ�� and (11) are ��0 = �� + �� equations: � = �(�, �) 

• The variable association list V is an Integer vector 
that defines if a variable �� is the derivative of a 

variable i: �� = �, if 
����� = ��. If no derivative of 

variable �� is present, then �� = 0 (i.e., these 
variables have the highest occurring derivatives). 

• The equation association list F is an Integer vector 
that defines if equation �� is the derivative of an 

equation i: �� = �, if 
����� = ��. If no derivative of 

equation �� is present, then �� = 0 (i.e., these 
equations have the highest occurring derivatives). 

After termination of the Pantelides algorithm the 
following two sets of equations are present: 

0 = ��(�, �),    �� = 0,  
������  structurally regular 

                                                   for  �� = 0, 
(12) 

and 

0 = ��(�, �),    �� > 0,     �� > 0  (13) 

In other words, (12) are ��0 equations (the highest 
derivative equations) in ��0 unknowns (the highest 
derivative variables), and the highest derivative 
variables can be computed from the highest derivative 
equations (provided the Jacobian is not only 
structurally regular but also regular). 
(13) are �� − ��0 equations describing the constraint 
equations between the potential states x. They are also 
called invariants. The highest derivatives of the 
variables, �� with �� = 0, do not appear in these 
equations. These constraint equations can either be 
used to compute appropriate dummy derivatives with 
the Dummy Derivative method of (Mattsson and 

3 see (Pantelides, 1988) 
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Söderlind, 1993), or these equations can be used to 
project the solution of (12) to the invariants (13) when 
the drift becomes too large. 

For the new algorithm, the highest derivative 
equations (12) must be sorted to determine the 
execution order to compute the highest derivative 
unknowns. This includes determining the algebraic 
loops of this equation system. This is a standard 
algorithm for Modelica models and will be abbreviated 
as BLT (Block Lower Triangular) as it is usually done. 

3 Basic Idea 

In this section the basic idea to symbolically process 
multi-mode systems with varying state constraints (and 
therefore varying DAE index) is sketched at hand of 
the circuit of Figure 2. In the follow-up section 4 this 
idea is generalized and described in more detail. 

Intuitively, when activeState(C1) is true, there are two 
capacitors in parallel, C1 and C2, and this results in a 
state constraint between the potential states C1.v and 
C2.v. The constraint equation must be differentiated, 
which means that the potential variables of the node 1 
connection set, such as C2.p.v, must be differentiated 
as well. 

When activeState(R1) is true, there is a capacitor C2 
and a resistor R1 in parallel, and no state constraint is 
present. Therefore, the potential variables of the node 1 
connection set, such as C2.p.v, need not to be 

differentiated. Since variables of external connectors to 
a state variable must be differentiated in one mode, and 
need not to be differentiated in the other mode, it is 
unlikely that it is possible to build one common 
equation system for all modes. 

Such types of systems can be handled by an obvious 
brute force method: For every possible mode the 
equations of the complete system are generated for this 
particular mode and during simulation the model is 
switched between these equation sets. In the case of the 
circuit in Figure 2 there would be two equation sets. 
For small systems with only a few possible modes, this 
approach might be feasible. However, for large 
systems with many state machines and several states 
per state machine, the number of equation sets would 
be growing exponentially and the generated code 
would quickly become unmanageable. So this brute 
force method is not practical for the general case. 

For this reason another approach is used that is 
inspired by (Mattsson et al., 2001). It is based on the 
property that differentiated equations contain the 
solution set of the non-differentiated equations. In the 
circuit of Figure 2 the potential variables of node 1 
need to be differentiated when in state C1. We can 
accept this fact and use these differentiated potential 
variables also when in state R1. As a consequence, the 
potential equation R1.p.v = C2.p.v is an invariant that 
must hold during simulation of its differentiated form. 
The benefit is that only one equation set can be 

constructed for all modes. Lets’ analyze this approach 
in more detail for the circuit in Figure 2: 

The connection equations at node 2 are given by (7). 
The connection equations at node 1 are: 

Connection equations at node 1 of Figure 2:  

  // Equations for potential variables 
  C2.p.v = if activeState(R1) then R1.p.v else C1.p.v 
  R2.n.v = C2.p.v 
 
  // Equation for flow variables 
  0 = C2.p.i + R2.n.i +   
        (if activeState(R1) then R1.p.i else C1.p.i) 
 
  // Dummy equation for not connected state 
  0 = if activeState(R1) then  
            h1(C1.p.v, C1.p.i) else h2(R1.p.v,  R1.p.i); 

(14) 

Collecting all equations together and applying the 
Pantelides algorithm shows that no equation must be 
differentiated. The reason is that the if-clauses in (14) 
hide the state constraint between the two capacitors 
from the structural algorithm. BLT partitioning of the 
equations, taking into account the zeros in (7) and alias 
elimination, results in: 

Sorted equations of Figure 2:  

inputs = {C1.v, C2.v}  // continuous-time states 
 

R2.v = voltage.V-C2.v 
R2.v = R2.R*voltage.i 

 
algebraicLoop 
    unknowns = {R1.p.v, R1.p.i, C1.i} 
    
    // Local equations of R1 
    if activeState(R1) then  
       R1.p.v = R1.R*R1.p.i 
    end if; 

 
    // Potential connections to the state machine  
    C2.v = if activeState(R1) then R1.p.v else C1.v 

 
    // Dummy equations for inactive states 
    0 = if activeState(R1) then  
             h1(C1.v, C1.i) else h2(R1.p.v,  R1.p.i) 
end algebraicLoop 

 
// Flow connection to the state machine  
C2.i+voltage.i =  
          -(if activeState(R1) then R1.p.i else C1.i) 
C2.i = C2.C*der(C2.v) 
 
if activeState(C1) then  
    C1.i = C1.C*der(C1.v) 
end if; 
 
// Flow connection to the state machine 
ground.p.i-C2.i-voltage.i =   
                (if activeState(R1) then R1.p.i else -C1.i) 

(15) 
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For BLT blocks with one variable and one equation, 
the equation with the variable to solve for is type-set in 
bold. In this example there is first a sequence of two 
such equations. After them there is an algebraic loop 
with 3 unknowns. The equations to use include local 
equations from the two states and external connection 
equations to them.  

Every algebraic loop that contains connection 
equations to a state of a state machine must be 
analyzed whether it is (structurally) non-singular in all 
modes. For this, it is tried to make an assignment for 
every particular mode that can occur in the algebraic 
loop at hand. The algebraic loop in (15) gives rise to 
two modes: activeState(R1) is true or false. In both cases 
the relevant equations need to be extracted and the 
unknowns not present in this mode need to be 
removed: 

Algebraic loop of (15) for activeState(R1) == true:  

inputs = {C2.v}  // continuous-time states 
 
algebraicLoop 
    unknowns = {R1.p.v, R1.p.i} 
 
    R1.p.v = R1.R*R1.p.i 

 
    // Potential connections to the state machine  
    C2.v = R1.p.v 
end algebraicLoop 

(16) 

The algebraic loop in this mode consists of two 
equations in two unknowns. An assignment is possible, 
because R1.p.v can be assigned in the second equation 
and R1.p.i in the first equation. Therefore this set of 
equations is structurally regular. 

Algebraic loop of (15) for activeState(R1) == false:  

inputs = {C1.v, C2.v}  // continuous-time states 
 
algebraicLoop 
    unknowns = {C1.i} 
 
    // Potential connections to the state machine  
    C2.v = C1.v 
end algebraicLoop 

(17) 

The algebraic loop in this mode consist of one equation 
in one unknown. Since the unknown C1.i does not 
appear in this equation, the algebraic loop is 
structurally singular. 

The approach of Pantelides is to differentiate 
equations if the smallest possible set of equations has 
more equations as unknowns. In the new method we 
differentiate additionally the potential or flow 
connector equations from external connectors to 
connectors on a state of a continuous-time state 
machine if 

these connector equations belong to an algebraic 
loop and in one mode this algebraic loops is (a) 

singular and (b) the connector equation is present in 
this singular case. 

In the above example, only equation 

C2.v = if activeState(R1) then R1.p.v else C1.v (18) 

fulfills these requirements (it is a potential connector 
equation present in an algebraic loop, in mode 
activeState(R1) == false this loop is singular, and the 
equation is part of this singular loop). We differentiate 
this equation and adapt the corresponding dummy 
equation: 

    der(C2.v) = if activeState(R1) then  
                           der(R1.p.v) else der(C1.v) 
    0 = if activeState(R1) then  
               h1(der(C1.v), C1.i) else  
               h2(der(R1.p.v),  R1.p.i) 

(19) 

We take the original equations (15), remove (18) and 
its corresponding dummy equation and add (19). The 
(standard) Pandelides algorithm is performed on the 
resulting system. In this case the algorithm 
differentiates equations and variables. After 
termination, the highest derivative equations are 
structurally regular. Performing BLT partitioning on 
this structurally regular subset results in the following 
equations: 

Sorted equations of highest derivative equations  

inputs = {C1.v, C2.v, R1.p.v}  
               // continuous-time states + dummy states 
 

R2.v = voltage.V-C2.v 
R2.v =  R2.R*voltage.i 
R1.p.v = R1.R*R1.p.i 

 
algebraicLoop 
    unknowns = { der(C1.v), der(C2.v), der(R1.p.v),  
                            C1.i, C2.i} 
     
    C1.i = C1.C*der(C1.v) 
    C2.i = C2.C*der(C2.v) 
    der(C2.v) = if activeState(R1) then der(R1.p.v) 
                                                      else der(C1.v) 
    C2.i – R2.i = -if activeState(R1) then R1.p.i  
                                                         else C1.i 
    0 = if activeState(R1) then  
               h1(der(C1.v), C1.i) else  
               h2(der(R1.p.v),  R1.p.i) 
end algebraicLoop 
 
ground.p.i = C2.i-R2.i+ (if activeState(R1) then 
                                             R1.p.i else C1.i) 

(20) 

Analyzing the newly occurring algebraic loop reveals 
that this loop is structurally regular in all modes (if this 
would not be the case, again potential or flow 
equations in the loop would be differentiated). 
Therefore, the overall algorithm can be terminated. The 
final equations have the property that the highest 
derivative equations are structurally regular in all 
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modes. The further processing and code generation is 
performed nearly in the same way as for Modelica 3.2 
models. Especially, the dummy derivative method is 
applied (Mattsson and Söderlind, 1993) and a BLT of 
all highest derivative equations together with all 
discrete equations (9c) is performed as function of all 
unknowns. During code generation one has to add-
itionally take into account that equations need to be de-
activated when their corresponding state is not active. 

Simulation results with the Dymola prototype are 
shown in the next figure: 

 

Figure 3. Simulation results of the circuit of Figure 2. 

Since variable values of non-active states can have non 
meaningful values, Dymola only displays them in the 
time period, where the corresponding state is active. 
Therefore, C1.v is displayed only in the time range [0s, 
0.33s] and R1.v is displayed only in the time range 
[0.33s, 0.6s]. 

4 Multi-Mode Pantelides Algorithm 

The approach sketched in the previous section is more 
formally defined: 

Starting point is a Modelica 3.2 model with one or 
more continuous-time state machines. As in section 2.4 
all discrete equations and discrete variables are ignored 
during the following analysis. This also means that all 
transition conditions, such as C1.v > 8 in Figure 2, are 
ignored in this phase and the symbolic analysis is 
performed on equation (11). This equation is seen as a 
function of all (continuous-time) variables of type Real 
that appear in all states of all state machines and in all 
equations outside of all state machines. 

Multi-Mode Pantelides Algorithm 

1. Perform the standard Pantelides algorithm on (11) 
until convergence. 

2. Perform BLT partitioning on the highest derivative 
equations (12) with respect to the highest derivative 
unknowns. 

3. Analyze the algebraic loops detected in 2., that have 
at least one potential or flow connection equation 
(2) in the loop. For every such loop perform an 
assignment for every mode present in this loop (for 
the assignment ignore all variables and equations not 

active in the particular mode).  

4. Stop, if all algebraic loops in 3. are structurally 

regular for all modes. Otherwise, if an algebraic 
loop is structurally singular for at least one mode, 
stop the analysis of this loop after this first singular 
mode was found and goto 5. 

5. For every loop in 4. that was found to be singular, 
the potential or flow connection equations that are 
(a) present in the respective loop and (b) give a 
structural singularity in the analyzed mode, need 
(conceptually) to be differentiated. This is indirectly 
achieved by introducing the differentiated variables 
of the respective connection equations in the 
variable association list. 

6. Continue with the standard Pantelides algorithm by 
analyzing the highest derivative equations (without 
taking modes into consideration). After convergence 
is reached, goto 2. 

The standard Pantelides algorithm differentiates the 
smallest possible set of equations that has more 
equations as unknowns. The generalization above 
additionally differentiates connection equations that are 
the result of connections to states of state machines, if 
algebraic loops become structurally singular when the 
corresponding state is active. After termination of the 
multi-mode Pantelides algorithm, (12) and (13) hold 
again. The new property is that (12) is structurally 
regular with respect to the highest derivative variables 
in all modes! 

After step 2. it may happen that a connection 
equation is present outside of all algebraic loops and 
that this equation shall be solved for a potential or flow 
variable defined on one of the states. This is, for 
example, the case in the example of section 5.2: 

// Flow connection to the state machine 
 L2.i  =  if activeState(diode.open) then  
                  diode.open.p.i  else  diode.closed.p.i; 

(21) 

This equation is structurally singular when state 
diode.open is active. Therefore, such an equation must 
also be differentiated in step 5. 

The multi-mode Pantelides algorithm has a worst 
case complexity that grows exponentially with the 
number of possible modes which might be 
troublesome. However, in practice one can hope that 
this worst case complexity is usually not reached: 
Whenever state machines are present that influence 
each other not dynamically (say ideal diodes in an 
electrical circuit and friction components in the 
mechanical part of the model), then different algebraic 
loops will occur for the different state machines, the 
possible mode values in the loops will be different, and 
the analysis of the loops is decoupled.  

One question is under which conditions the multi-

mode Pantelides algorithm is converging (so stops 
after a finite number of iterations). For the standard 
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Pantelides algorithm this can be determined by 
replacing �̇ with � in (11): � = �(�, �, �, �) (22) 

and performing an assignment for � and �. If this is 
possible, the algorithm converges. If not, the DAE (11) 
is structurally inconsistent and the algorithm does not 
converge. It is not yet clear how to generalize this 
property for the multi-mode Pantelides algorithm.  

5 Examples 

In this section further examples are shown that shall 
demonstrate the multi-mode Pantelides algorithm in 
different situations.  

5.1 Varying index with inductors 

The circuit in the next figure consists of two inductors 
in series, L1 and L2, where an over-current destroys L1 
(the destroyed case is modeled with a large resistor). 

 
Figure 4. Inductors in series, where one of the inductors 
is destroyed when the current becomes too large.  

When in state L1 the two inductors are in series and 
there is a constraint between the potential states L1.i 
and L2.i. When in state R1, this constraint is no longer 
present. The multi-mode Pantelides algorithm operates 
in a similar way as for the circuit in Figure 2. 
Simulation results are shown in the next figure: 

 

Figure 5. Simulation results of the circuit in Figure 4. 

5.2 Varying index with inductor and diode 

With continuous-time state machines it is possible to 
model ideal electrical switches, and in particular ideal 
diodes: 

 

 

icon layer diagram layer 

Figure 6. Ideal diode modelled with a continuous-time 
state machine. 

The diode is modeled as a state machine where the first 
state is modeling a broken or open line and the second 
state is modeling an ideal line without resistance. For 
most situations there is no difference in using this 
diode model or the one from package Modelica 
(Modelica.Electrical.Analog.Ideal.IdealDiode) and setting 
Ron = Goff = 0. However, if varying state constraints 
occur this is different. Let us consider for example an 
inductor in series with a diode: 

 

Figure 7. Inductor in series to an ideal diode model. 

The current through the inductor, L1.i, is a state when 
the diode is in state “closed”. When the diode is in 
state “open”, the current through the diode is zero, 
which poses a state constraint forcing also the current 
though the diode, L1.i, to be zero, which means L1.i 
cannot be a state in that mode. Such circuits can now 
be handled with the multi-mode Pantelides algorithm, 
whereas using the ideal diode model from package 
Modelica would give a singular system during 
simulation. 

Application of the standard Pantelides algorithm on 
the version with the ideal diode model of Figure 7 does 
not lead to differentiated equations. BLT does not lead 
to algebraic loops (provided the zero potential at the 
ground object is utilized). However, the sorted 
equations contain equation (21), as already discussed 
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in section 4. Since this equation is structurally singular 
when state diode.open is active, the differentiated 
connector variables, der(diode.open.p.i)  and 
der(diode.closed.p.i) are newly introduced in the variable 
association list (der(L1.i) is already present). In the next 
iteration of the algorithm an algebraic loop occurs 
which is structurally regular in both modes and the 
algorithm terminates. 

5.3 Varying index with capacitor and diode 

It is also possible to simulate the case of an ideal diode 
that is in parallel to a capacitor: 

 

Figure 8. Capacitor in parallel to an ideal diode model. 

When the diode is open, C1.v is a state, when it is 
closed, it is no state. The multi-mode Pantelides 

algorithm handles this system as well. It is 
interesting to compare simulations of this ideal diode 
model with the approximate ideal diode model of 
package Modelica: 

 

Figure 9. Simulation results of Figure 8. 

Even for small values Ron = Goff = 10-8 and strict 
relative error tolerances of 10-8 unphysical vibrations 
occur that are not present with the ideal diode model 
of Figure 6 giving the correct mathematical solution. 

5.4 Varying index with breaking shaft 

In Figure 10 a breaking shaft model is shown that 
could not be handled in (Elmqvist et al., 2014): In the 
beginning two inertias are rigidly connected together. 
When the absolute value of the cut-torque tau = 
inertia2.flange_b.tau becomes too large, the shaft breaks 
and two not-connected inertias remain. This is a case 
where three iterations of the multi-mode Pantelides 

algorithm are needed: In the first iteration the potential 
equations of the inertias (= flange angles) are 
differentiated, in a second iteration these differentiated 
equations are differentiated again, and in the third 
iteration it is recognized that the highest derivative 
equations are structurally regular for all modes. The 
Dymola prototype selects variables inertia1.phi and 
inertia1.w statically as states and then there are two 
conditional state selections for inertia2.phi and 
inertia2.w. 

6 Limitations 

The central result of this paper, the multi-mode 

Pantelides algorithm, was tested with several simple 
examples. However, much more tests especially with 
large models are needed. It might still be the case that 
improvements of the algorithm are needed. The 
following limitations are already known: 

When using continuous-time state machines it is 
easy to model systems where Dirac impulses occur. 
For example, replacing the diode in Figure 8 by an 
electrical switch and closing this switch when the 
voltage drop is not zero, will result in a Dirac impulse. 
Simulation is usually successful. However, the 
“propagation” of impulses is not taken into account 
and therefore in many cases the simulation results will 
not be correct.  

Another issue are the transition conditions: When 
they are functions of the state connector variables and 
these variables are differentiated, then the transition 
conditions might need to be differentiated as well. For 
example, friction can be modeled with the state 
machine of Figure 11 (the orange lines are mechanical 
connections that have angular velocity and not angle as 
potential variables). 

 

Figure 10.  

Shaft that breaks due to 
an overload toque 
tau > tMax or  
tau < -tMax 
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The transition conditions from sliding to Stuck mode 
are the critical part: w_rel > 0 or w_rel < 0. When in 
Stuck mode, the constraint variable, w_rel, will be zero 
or close to zero and when switching from Stuck to 
Forward or Backward mode then small numerical 
errors will give different results, especially if 
dynamically coupled friction elements are present. It is 
well-known that for this switching direction the 
derivative of w_rel has also to be taken into account. It 
is not yet clear how to deduce this with an algorithm. 

 
Figure 11. Model of a Coulomb friction element that 
cannot be handled with the approach of this paper. 

7 Conclusions and outlook 

In (Elmqvist et al., 2014) a new approach was 
developed to define variable structure systems with 
varying number of continuous-time states in a 
convenient way with acausal continuous-time state 
machines. With a rather simple technique it was 
possible to symbolically analyze and simulate such 
systems. In the current paper the limitations of the 
previous approach have been reduced by generalizing 
the Pantelides algorithm for multi-mode systems. It is 
then possible to handle continuous-time state machines 
where state constraints can vary when switching to a 
new state. There are still unresolved issues and further 
development is needed before a robust and reliable 
solution becomes available for the user.  
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