
Multi-Mode DAE Systems with Varying Index

Sven Erik Mattsson1, Martin Otter2, Hilding Elmqvist1
1Dassault Systèmes, Sweden, {SvenErik.Mattsson, Hilding.Elmqvist}@3ds.com

2Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de

Abstract

This paper discusses an approach to handle multi-mode
Differential Algebraic Equation (DAE) systems
described by continuous-time state machines where
mode-dependent state constraints are present. The goal
is to perform static symbolic analysis and to generate
efficient run-time code. This technique extends the
class of multi-mode systems that can be handled by
Modelica tools.

Keywords: Multi-mode, DAE, varying index,

continuous-time state machine, variable structure

system, symbolic transformation.

1 Introduction

1.1 Multi-Mode Systems

In (Elmqvist et al., 2014) a proposal was presented to
extend the synchronous Modelica 3.3 state machines
(Elmqvist et al., 2012) to continuous-time state
machines having continuous-time models as “states”.
Every model can be a “state” of a state machine and in
particular acausal models. These new types of models
are called “multi-mode systems”. An example of such
kind of system is shown in Figure 1.

Figure 1. Circuit with two acausal state machines, from
(Elmqvist et al., 2014).

Additionally, a method was developed to map
connections to connectors of states in a particular way.
The resulting equations can be processed basically by
the standard symbolic algorithms supported by
Modelica 3.2 tools. This approach already allowed
handling a large class of useful variable structure
systems with dynamically changing number of

continuous-time states.
However, models could not be handled with this

new method if connections between state and non-state
components lead to constraints on continuous-time
state variables that vary for the different state machine
states. For example, the model in Figure 2 could not be
handled. This circuit describes a capacitor C1 that is
destroyed when the voltage becomes too large. The
destroyed capacitor is modelled with a small resistor
R1.

Figure 2. Circuit that could not be handled previously due
to different state constraints in the different state machine
states; slightly adapted from (Elmqvist et al., 2014).

The goal of this work is to extend the class of multi-
mode DAE systems that can be simulated by Modelica
tools and prototype the technique in Dymola (Dassault

Systèmes, 2015).
In the EU research project RealSim, algorithms had

been developed to symbolically process variable
structure DAE systems and simulate the generated
code (Mattsson et al., 2001). In particular, also a
certain class of DAEs could be treated where Dirac
impulses occur when switching the structure. These
developments had not been incorporated into the
release version of Dymola, because they had not been
mature enough for a production software. Some ideas
from the developments in the RealSim project are now
being transferred to multi-mode systems.

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

89

1.2 Other Approaches

There are also other approaches to handle variable
structure, varying index systems. For example
(Zimmer, 2010) uses a run-time interpreter that
processes the DAE equations at run-time, when the
structure and/or the index is changing. The benefit is
that a very large class of DAEs with varying index can
be handled, at least in principal. The drawback is that
the run-time efficiency is one or more orders of
magnitude reduced with respect to an approach
advocated by this article. Dynamically changing the
structural analysis at run-time is also performed by
(Höger, 2014). Describing variable structure systems
with causal state machines is discussed by (Pepper et

al., 2011).
(Benveniste et al., 2014) is tackling the problem

from a fundamental point of view: The underlying,
precise mathematical description is based on non-
standard analysis for discrete-time and hybrid
continuous-time/discrete-time multi-mode systems.
This approach looks promising. However, it is not yet
clear how to utilize this theory practically in a
Modelica simulation environment.

2 Prerequisites

In this section several equations and properties are
collected together that are prerequisites of the
developed methodology, which is introduced in
sections 3 and 4.

2.1 Connection equations

In (Elmqvist et al., 2014) it was shown how to map
physical, acausal connections from components outside
of a state machine to components on a state machine.
An example is shown in Figure 2 where the
components R2 and C2 are connected to the
components R1 and C1 that form a continuous-time

state machine.
Assume a connector �� present on a state � is defined

by one potential variable �� and one flow variable ��
and that � of these connectors from the same state
machine are connected to m connectors ��,� outside of
(that is external to) this state machine. Therefore, the
following connect statements will be present (for
simplicity it is assumed that exactly one of the
external connectors, ��,1, is connected to all the state
machine connectors; if this would not be the case,
one could always automatically re-arrange the
connect statements):

connect(��,1, �1)
 ...
connect(��,1, ��)
connect(��,1, ��,2)
 …
connect(��,1, ��,�)

These connect statements are replaced by the
following equations, where � characterizes the active
state of the state machine:

Connection equations

(1)

� = {�1,�2,⋯ ,��}; � = {�1, �2,⋯ , ��};

 � = activeState();

�� = ���,1,��,2,⋯ ,��,��; �� = {��,1, ��,2,⋯ , ��,�}; ��,1 = ��; // potential equations ��,1 = ��,2:�

0 = �� + ∑ ��,���=1 // flow equation

for � in 1:� − 1

 � = mod(� + � − 1,�) + 1

 0 = h�(�� ,��) // dummy equations

end for

Note, the for-loop generates � − 1 dummy equations,
0 = h�(…). These dummy equations are only present
in order that the equations of the non-active states form
a regular system. The exact form of these equations is
irrelevant because they are only used during symbolic
analysis and are not present in the generated code. For
more explanations, see (Elmqvist et al., 2014).

For connections of two external connectors to two
states of a state machine, the connector equations of
(1) simplify to:

Connection equations for the connection of
two external connectors ce1, ce2 with
two state machine connectors c1, c2:

 // Equations for potential variables
 ce1.p = if activeState(state1) then c1.p else c2.p;
 ce1.p = ce2.p

 // Equation for flow variables
 0 = ce1.f + ce2.f +
 (if activeState(state1) then c1.f else c2.f);

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 h1(c2.p, c2.f) else h2(c1.p, c1.f);

(2)

The function activeState(name) is the Modelica 3.3 built-
in function to inquire whether the instance name is the
current active state of a state machine or not. Equations
(2) are used in all following examples to map
connections to state machines in to equations.

Input/output connections to states of a state machine
can also be handled. Due to the known causality, this
results in a much simpler approach as with acausal,
physical connectors, and is not discussed in this paper.

2.2 Sinks and sources

The dummy equations (see last equation of (2)) have
the drawback that they introduce algebraic loops
between the states of a state machine and therefore
make the analysis more difficult and the generated
code less efficient (due to larger algebraic systems of

Multi-Mode DAE Systems with Varying Index

90 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

equations). These equations can be removed if either
one external potential variable or all external flow
variables are constants or known functions of time, in
other words if the state machine states are connected to
sink or source components. In such cases, equations (2)
can be rewritten to:

Connection equations if one external potential variable
ce1.p is a constant or a known time function:

 // Equations for potential variables
 ce2.p := ce1.p
 c1.p := if activeState(state1) then ce1.p else last(c1.p)
 c2.p := if activeState(state2) then ce1.p else last(c2.p)

 // Equation for flow variables
 0 = ce1.f + ce2.f +
 (if activeState(state1) then c1.f else c2.f);

(3)

or to

Connection equations if all external flow variables
ce1.f, ce2.f are constants or known time functions:

 // Equations for potential variables
 ce1.p = if activeState(state1) then c1.p else c2.p;
 ce1.p = ce2.p

 // Equation for flow variables
 c1.f := if activeState(state1) then ce1.f + ce2.f
 else last(c1.f)
 c2.f := if activeState(state2) then ce1.f + ce2.f
 else last(c2.f)

(4)

Here last(v) is a conceptual function (only used during
symbolic analysis) to indicate the value of variable v
from the last time instant where the corresponding state
was active. For the symbolic analysis, last(v) is a
known value. The “:=” operator in the equations
indicates the computational causality (= the left hand
side is computed from the right hand side).

The proof of equations (3) is straightforward (a
proof of equations (4) can be performed in a similar
way): Start from (2) and recognize that the dummy
equations of the not connected states, h1(..) and h2(..),
can be arbitrarily selected, as long as the equations of
the not connected states together with these dummy
equations are structurally consistent

1. In (3) it is
implicitly assumed that state_i together with the rest of
the system is structurally consistent if the state is
active. If state_i is not active, one can assume that
keeping the causality of the connector (= identical to
the case where the state is active) will still keep this
non-active state together with its other dummy
equations structurally consistent. In other words, under
the assumption that ce1.p is a constant or a known
function of time, the last equation of (2) can be
replaced by:

1 A DAE is “structurally inconsistent”, if a unique solution
cannot exist, or stated differently, if the Pantelides algorithm
does not converge. (Pantelides, 1988) provides an algorithm to
test for this property.

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 c2.p - last(c2.p) else c1.p - last(c1.p);

(5)

Rearranging the other equations of (2) together with
(5) results in (3).

As a concrete example, lets analyze the circuit of
Figure 2: At node 2 the state machine connectors C1.n,
R1.n and the external connectors C2.n, voltage.n, and
ground.p are connected together:

 connect(ground.p, R1.n)
 connect(ground.p, C1.n)
 connect(ground.p, C2.n)
 connect(ground.p, voltage.n)

(6)

Since the potential of the ground component is given,
ground.p = 0, one external potential variable of the
connection set is a constant and therefore equations (3)
can be utilized resulting in the following equations that
are equivalent to (6):

Connection equations at node 2 of Figure 2:

 // Equations for potential variables
 R1.n.v = 0
 C1.n.v = 0
 C2.n.v = 0
 voltage.n.v = 0

 // Equation for flow variables
 0 = ground.p.i + voltage.n.i + C2.i +
 (if activeState(R1) then R1.n.i else C1.n.i);

(7)

2.3 Differentiating dummy equations

When equations must be differentiated using a
generalized form of the Pantelides algorithm
(Pantelides, 1988), see section 3 and 4, dummy
equations of non-connected states might need to be
differentiated as well. For example assume that the
equation for flow variables in (2) needs to be
differentiated. When this equation is differentiated, the
time derivatives of ce1.f, ce2.f, c1.f, c2.f are introduced.
This in turn means that also the dummy equation in (2)
needs to be differentiated. Differentiating this dummy
equation would utilize the newly introduced
derivatives of the flow variables, but would also
introduce new derivatives of the potential variables c1.p
and c2.p. This in turn might trigger other (unnecessary)
differentiations.

We are rather free to select the dummy equations.
They are only used to keep the equation sets of non-
connected states structurally consistent. To avoid
unnecessary state constraints of the dummy equations,
and in turn unnecessary differentiations of equations,
the dummy equations are actually defined in such a
way that they provide a relationship between the
actually occurring highest derivatives of the potential
and flow variables.

For example, when the flow equation in (2) needs to
be differentiated and the time derivatives of ce1.f, ce2.f,

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

91

c1.f, c2.f are introduced, then the dummy equation is
changed to:

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 h1(c2.p, der(c2.f)) else h2(c1.p, der(c1.f));

(8)

Therefore, they provide a relationship between the
differentiated flow variables and the non-differentiated
potential variables.

2.4 Standard Pantelides and BLT algorithms

The Pantelides algorithm (Pantelides, 1988) is the key
algorithm in this paper and will be generalized for
multi-mode systems2. It is summarized here for
Modelica 3.2 DAEs, that is hybrid DAEs but without
(discrete or continuous-time) state machines:

The flattened equations of a Modelica 3.2 model are
described by the following equations:

Flattened equations of a Modelica 3.2 model

(a) � = {�̇, �, �, �,�,�−}
(b) � = �(�, relation(�))
(c) � = �(�, relation(�))

(9)

where � The independent (real) variable �(�) Variables of type Real, appearing
differentiated �(�) Variables of type Real, appearing not
differentiated (= algebraic variables) �(���) Variables of type discrete Real, Boolean,
Integer. They change their values only at
event instants ���. At an event instant, �−
is the value of � at the previous event
iteration at this time instant. During
continuous integration, that is between
events, � is fixed (does not change) and �− ≔ �

relation(�) All the relations in the model, for
 example �2 > �5. During continuous

integration all relations are fixed (do not
change).

If (directly or indirectly) constraints between variables � are present, the Jacobian of (9b) with respect to the
unknowns of type Real is singular:

det(������̇� �������) = 0 (10)

This means that (9b) cannot be algebraically solved for
the unknowns �̇ and �. When using an explicit
integration method to solve (9b) between events, these
unknowns must be computed. Consequently, if (10)

2 Most likely, the alternative formulation from (Pryce, 2001) can
be used instead of the Pantelides algorithm as well.

holds, explicit integration methods cannot be used and
initialization is problematic3.

The Pantelides algorithm solves this problem by
differentiating singular subsets of equations. Since only
equations are under consideration that are integrated,
the starting point of the algorithm is equation (9b)
where the discrete variables �,�−, relation(�) are
kept constant (because they do not change during
continuous integration) and therefore their
dependencies are ignored: � = �(�̇, �, �, �) (11)

In particular this means that all when-clauses are
removed and the dependency of the equations from
conditions of if-clauses is ignored. The variable and
equation structure of (11) is described in the following
way:

• All variables appearing in (11) are collected in
vector � = {�̇, �, �}, � ∈ ℝ�� and (11) are ��0 = �� + �� equations: � = �(�, �)

• The variable association list V is an Integer vector
that defines if a variable �� is the derivative of a

variable i: �� = �, if
����� = ��. If no derivative of

variable �� is present, then �� = 0 (i.e., these
variables have the highest occurring derivatives).

• The equation association list F is an Integer vector
that defines if equation �� is the derivative of an

equation i: �� = �, if
����� = ��. If no derivative of

equation �� is present, then �� = 0 (i.e., these
equations have the highest occurring derivatives).

After termination of the Pantelides algorithm the
following two sets of equations are present:

0 = ��(�, �), �� = 0,
������ structurally regular

 for �� = 0,
(12)

and

0 = ��(�, �), �� > 0, �� > 0 (13)

In other words, (12) are ��0 equations (the highest
derivative equations) in ��0 unknowns (the highest
derivative variables), and the highest derivative
variables can be computed from the highest derivative
equations (provided the Jacobian is not only
structurally regular but also regular).
(13) are �� − ��0 equations describing the constraint
equations between the potential states x. They are also
called invariants. The highest derivatives of the
variables, �� with �� = 0, do not appear in these
equations. These constraint equations can either be
used to compute appropriate dummy derivatives with
the Dummy Derivative method of (Mattsson and

3 see (Pantelides, 1988)

Multi-Mode DAE Systems with Varying Index

92 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

Söderlind, 1993), or these equations can be used to
project the solution of (12) to the invariants (13) when
the drift becomes too large.

For the new algorithm, the highest derivative
equations (12) must be sorted to determine the
execution order to compute the highest derivative
unknowns. This includes determining the algebraic
loops of this equation system. This is a standard
algorithm for Modelica models and will be abbreviated
as BLT (Block Lower Triangular) as it is usually done.

3 Basic Idea

In this section the basic idea to symbolically process
multi-mode systems with varying state constraints (and
therefore varying DAE index) is sketched at hand of
the circuit of Figure 2. In the follow-up section 4 this
idea is generalized and described in more detail.

Intuitively, when activeState(C1) is true, there are two
capacitors in parallel, C1 and C2, and this results in a
state constraint between the potential states C1.v and
C2.v. The constraint equation must be differentiated,
which means that the potential variables of the node 1
connection set, such as C2.p.v, must be differentiated
as well.

When activeState(R1) is true, there is a capacitor C2
and a resistor R1 in parallel, and no state constraint is
present. Therefore, the potential variables of the node 1
connection set, such as C2.p.v, need not to be

differentiated. Since variables of external connectors to
a state variable must be differentiated in one mode, and
need not to be differentiated in the other mode, it is
unlikely that it is possible to build one common
equation system for all modes.

Such types of systems can be handled by an obvious
brute force method: For every possible mode the
equations of the complete system are generated for this
particular mode and during simulation the model is
switched between these equation sets. In the case of the
circuit in Figure 2 there would be two equation sets.
For small systems with only a few possible modes, this
approach might be feasible. However, for large
systems with many state machines and several states
per state machine, the number of equation sets would
be growing exponentially and the generated code
would quickly become unmanageable. So this brute
force method is not practical for the general case.

For this reason another approach is used that is
inspired by (Mattsson et al., 2001). It is based on the
property that differentiated equations contain the
solution set of the non-differentiated equations. In the
circuit of Figure 2 the potential variables of node 1
need to be differentiated when in state C1. We can
accept this fact and use these differentiated potential
variables also when in state R1. As a consequence, the
potential equation R1.p.v = C2.p.v is an invariant that
must hold during simulation of its differentiated form.
The benefit is that only one equation set can be

constructed for all modes. Lets’ analyze this approach
in more detail for the circuit in Figure 2:

The connection equations at node 2 are given by (7).
The connection equations at node 1 are:

Connection equations at node 1 of Figure 2:

 // Equations for potential variables
 C2.p.v = if activeState(R1) then R1.p.v else C1.p.v
 R2.n.v = C2.p.v

 // Equation for flow variables
 0 = C2.p.i + R2.n.i +
 (if activeState(R1) then R1.p.i else C1.p.i)

 // Dummy equation for not connected state
 0 = if activeState(R1) then
 h1(C1.p.v, C1.p.i) else h2(R1.p.v, R1.p.i);

(14)

Collecting all equations together and applying the
Pantelides algorithm shows that no equation must be
differentiated. The reason is that the if-clauses in (14)
hide the state constraint between the two capacitors
from the structural algorithm. BLT partitioning of the
equations, taking into account the zeros in (7) and alias
elimination, results in:

Sorted equations of Figure 2:

inputs = {C1.v, C2.v} // continuous-time states

R2.v = voltage.V-C2.v
R2.v = R2.R*voltage.i

algebraicLoop
 unknowns = {R1.p.v, R1.p.i, C1.i}

 // Local equations of R1
 if activeState(R1) then
 R1.p.v = R1.R*R1.p.i
 end if;

 // Potential connections to the state machine
 C2.v = if activeState(R1) then R1.p.v else C1.v

 // Dummy equations for inactive states
 0 = if activeState(R1) then
 h1(C1.v, C1.i) else h2(R1.p.v, R1.p.i)
end algebraicLoop

// Flow connection to the state machine
C2.i+voltage.i =
 -(if activeState(R1) then R1.p.i else C1.i)
C2.i = C2.C*der(C2.v)

if activeState(C1) then
 C1.i = C1.C*der(C1.v)
end if;

// Flow connection to the state machine
ground.p.i-C2.i-voltage.i =
 (if activeState(R1) then R1.p.i else -C1.i)

(15)

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

93

For BLT blocks with one variable and one equation,
the equation with the variable to solve for is type-set in
bold. In this example there is first a sequence of two
such equations. After them there is an algebraic loop
with 3 unknowns. The equations to use include local
equations from the two states and external connection
equations to them.

Every algebraic loop that contains connection
equations to a state of a state machine must be
analyzed whether it is (structurally) non-singular in all
modes. For this, it is tried to make an assignment for
every particular mode that can occur in the algebraic
loop at hand. The algebraic loop in (15) gives rise to
two modes: activeState(R1) is true or false. In both cases
the relevant equations need to be extracted and the
unknowns not present in this mode need to be
removed:

Algebraic loop of (15) for activeState(R1) == true:

inputs = {C2.v} // continuous-time states

algebraicLoop
 unknowns = {R1.p.v, R1.p.i}

 R1.p.v = R1.R*R1.p.i

 // Potential connections to the state machine
 C2.v = R1.p.v
end algebraicLoop

(16)

The algebraic loop in this mode consists of two
equations in two unknowns. An assignment is possible,
because R1.p.v can be assigned in the second equation
and R1.p.i in the first equation. Therefore this set of
equations is structurally regular.

Algebraic loop of (15) for activeState(R1) == false:

inputs = {C1.v, C2.v} // continuous-time states

algebraicLoop
 unknowns = {C1.i}

 // Potential connections to the state machine
 C2.v = C1.v
end algebraicLoop

(17)

The algebraic loop in this mode consist of one equation
in one unknown. Since the unknown C1.i does not
appear in this equation, the algebraic loop is
structurally singular.

The approach of Pantelides is to differentiate
equations if the smallest possible set of equations has
more equations as unknowns. In the new method we
differentiate additionally the potential or flow
connector equations from external connectors to
connectors on a state of a continuous-time state
machine if

these connector equations belong to an algebraic
loop and in one mode this algebraic loops is (a)

singular and (b) the connector equation is present in
this singular case.

In the above example, only equation

C2.v = if activeState(R1) then R1.p.v else C1.v (18)

fulfills these requirements (it is a potential connector
equation present in an algebraic loop, in mode
activeState(R1) == false this loop is singular, and the
equation is part of this singular loop). We differentiate
this equation and adapt the corresponding dummy
equation:

 der(C2.v) = if activeState(R1) then
 der(R1.p.v) else der(C1.v)
 0 = if activeState(R1) then
 h1(der(C1.v), C1.i) else
 h2(der(R1.p.v), R1.p.i)

(19)

We take the original equations (15), remove (18) and
its corresponding dummy equation and add (19). The
(standard) Pandelides algorithm is performed on the
resulting system. In this case the algorithm
differentiates equations and variables. After
termination, the highest derivative equations are
structurally regular. Performing BLT partitioning on
this structurally regular subset results in the following
equations:

Sorted equations of highest derivative equations

inputs = {C1.v, C2.v, R1.p.v}
 // continuous-time states + dummy states

R2.v = voltage.V-C2.v
R2.v = R2.R*voltage.i
R1.p.v = R1.R*R1.p.i

algebraicLoop
 unknowns = { der(C1.v), der(C2.v), der(R1.p.v),
 C1.i, C2.i}

 C1.i = C1.C*der(C1.v)
 C2.i = C2.C*der(C2.v)
 der(C2.v) = if activeState(R1) then der(R1.p.v)
 else der(C1.v)
 C2.i – R2.i = -if activeState(R1) then R1.p.i
 else C1.i
 0 = if activeState(R1) then
 h1(der(C1.v), C1.i) else
 h2(der(R1.p.v), R1.p.i)
end algebraicLoop

ground.p.i = C2.i-R2.i+ (if activeState(R1) then
 R1.p.i else C1.i)

(20)

Analyzing the newly occurring algebraic loop reveals
that this loop is structurally regular in all modes (if this
would not be the case, again potential or flow
equations in the loop would be differentiated).
Therefore, the overall algorithm can be terminated. The
final equations have the property that the highest
derivative equations are structurally regular in all

Multi-Mode DAE Systems with Varying Index

94 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

modes. The further processing and code generation is
performed nearly in the same way as for Modelica 3.2
models. Especially, the dummy derivative method is
applied (Mattsson and Söderlind, 1993) and a BLT of
all highest derivative equations together with all
discrete equations (9c) is performed as function of all
unknowns. During code generation one has to add-
itionally take into account that equations need to be de-
activated when their corresponding state is not active.

Simulation results with the Dymola prototype are
shown in the next figure:

Figure 3. Simulation results of the circuit of Figure 2.

Since variable values of non-active states can have non
meaningful values, Dymola only displays them in the
time period, where the corresponding state is active.
Therefore, C1.v is displayed only in the time range [0s,
0.33s] and R1.v is displayed only in the time range
[0.33s, 0.6s].

4 Multi-Mode Pantelides Algorithm

The approach sketched in the previous section is more
formally defined:

Starting point is a Modelica 3.2 model with one or
more continuous-time state machines. As in section 2.4
all discrete equations and discrete variables are ignored
during the following analysis. This also means that all
transition conditions, such as C1.v > 8 in Figure 2, are
ignored in this phase and the symbolic analysis is
performed on equation (11). This equation is seen as a
function of all (continuous-time) variables of type Real
that appear in all states of all state machines and in all
equations outside of all state machines.

Multi-Mode Pantelides Algorithm

1. Perform the standard Pantelides algorithm on (11)
until convergence.

2. Perform BLT partitioning on the highest derivative
equations (12) with respect to the highest derivative
unknowns.

3. Analyze the algebraic loops detected in 2., that have
at least one potential or flow connection equation
(2) in the loop. For every such loop perform an
assignment for every mode present in this loop (for
the assignment ignore all variables and equations not

active in the particular mode).

4. Stop, if all algebraic loops in 3. are structurally

regular for all modes. Otherwise, if an algebraic
loop is structurally singular for at least one mode,
stop the analysis of this loop after this first singular
mode was found and goto 5.

5. For every loop in 4. that was found to be singular,
the potential or flow connection equations that are
(a) present in the respective loop and (b) give a
structural singularity in the analyzed mode, need
(conceptually) to be differentiated. This is indirectly
achieved by introducing the differentiated variables
of the respective connection equations in the
variable association list.

6. Continue with the standard Pantelides algorithm by
analyzing the highest derivative equations (without
taking modes into consideration). After convergence
is reached, goto 2.

The standard Pantelides algorithm differentiates the
smallest possible set of equations that has more
equations as unknowns. The generalization above
additionally differentiates connection equations that are
the result of connections to states of state machines, if
algebraic loops become structurally singular when the
corresponding state is active. After termination of the
multi-mode Pantelides algorithm, (12) and (13) hold
again. The new property is that (12) is structurally
regular with respect to the highest derivative variables
in all modes!

After step 2. it may happen that a connection
equation is present outside of all algebraic loops and
that this equation shall be solved for a potential or flow
variable defined on one of the states. This is, for
example, the case in the example of section 5.2:

// Flow connection to the state machine
 L2.i = if activeState(diode.open) then
 diode.open.p.i else diode.closed.p.i;

(21)

This equation is structurally singular when state
diode.open is active. Therefore, such an equation must
also be differentiated in step 5.

The multi-mode Pantelides algorithm has a worst
case complexity that grows exponentially with the
number of possible modes which might be
troublesome. However, in practice one can hope that
this worst case complexity is usually not reached:
Whenever state machines are present that influence
each other not dynamically (say ideal diodes in an
electrical circuit and friction components in the
mechanical part of the model), then different algebraic
loops will occur for the different state machines, the
possible mode values in the loops will be different, and
the analysis of the loops is decoupled.

One question is under which conditions the multi-

mode Pantelides algorithm is converging (so stops
after a finite number of iterations). For the standard

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

95

Pantelides algorithm this can be determined by
replacing �̇ with � in (11): � = �(�, �, �, �) (22)

and performing an assignment for � and �. If this is
possible, the algorithm converges. If not, the DAE (11)
is structurally inconsistent and the algorithm does not
converge. It is not yet clear how to generalize this
property for the multi-mode Pantelides algorithm.

5 Examples

In this section further examples are shown that shall
demonstrate the multi-mode Pantelides algorithm in
different situations.

5.1 Varying index with inductors

The circuit in the next figure consists of two inductors
in series, L1 and L2, where an over-current destroys L1
(the destroyed case is modeled with a large resistor).

Figure 4. Inductors in series, where one of the inductors
is destroyed when the current becomes too large.

When in state L1 the two inductors are in series and
there is a constraint between the potential states L1.i
and L2.i. When in state R1, this constraint is no longer
present. The multi-mode Pantelides algorithm operates
in a similar way as for the circuit in Figure 2.
Simulation results are shown in the next figure:

Figure 5. Simulation results of the circuit in Figure 4.

5.2 Varying index with inductor and diode

With continuous-time state machines it is possible to
model ideal electrical switches, and in particular ideal
diodes:

icon layer diagram layer

Figure 6. Ideal diode modelled with a continuous-time
state machine.

The diode is modeled as a state machine where the first
state is modeling a broken or open line and the second
state is modeling an ideal line without resistance. For
most situations there is no difference in using this
diode model or the one from package Modelica
(Modelica.Electrical.Analog.Ideal.IdealDiode) and setting
Ron = Goff = 0. However, if varying state constraints
occur this is different. Let us consider for example an
inductor in series with a diode:

Figure 7. Inductor in series to an ideal diode model.

The current through the inductor, L1.i, is a state when
the diode is in state “closed”. When the diode is in
state “open”, the current through the diode is zero,
which poses a state constraint forcing also the current
though the diode, L1.i, to be zero, which means L1.i
cannot be a state in that mode. Such circuits can now
be handled with the multi-mode Pantelides algorithm,
whereas using the ideal diode model from package
Modelica would give a singular system during
simulation.

Application of the standard Pantelides algorithm on
the version with the ideal diode model of Figure 7 does
not lead to differentiated equations. BLT does not lead
to algebraic loops (provided the zero potential at the
ground object is utilized). However, the sorted
equations contain equation (21), as already discussed

Multi-Mode DAE Systems with Varying Index

96 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

in section 4. Since this equation is structurally singular
when state diode.open is active, the differentiated
connector variables, der(diode.open.p.i) and
der(diode.closed.p.i) are newly introduced in the variable
association list (der(L1.i) is already present). In the next
iteration of the algorithm an algebraic loop occurs
which is structurally regular in both modes and the
algorithm terminates.

5.3 Varying index with capacitor and diode

It is also possible to simulate the case of an ideal diode
that is in parallel to a capacitor:

Figure 8. Capacitor in parallel to an ideal diode model.

When the diode is open, C1.v is a state, when it is
closed, it is no state. The multi-mode Pantelides

algorithm handles this system as well. It is
interesting to compare simulations of this ideal diode
model with the approximate ideal diode model of
package Modelica:

Figure 9. Simulation results of Figure 8.

Even for small values Ron = Goff = 10-8 and strict
relative error tolerances of 10-8 unphysical vibrations
occur that are not present with the ideal diode model
of Figure 6 giving the correct mathematical solution.

5.4 Varying index with breaking shaft

In Figure 10 a breaking shaft model is shown that
could not be handled in (Elmqvist et al., 2014): In the
beginning two inertias are rigidly connected together.
When the absolute value of the cut-torque tau =
inertia2.flange_b.tau becomes too large, the shaft breaks
and two not-connected inertias remain. This is a case
where three iterations of the multi-mode Pantelides

algorithm are needed: In the first iteration the potential
equations of the inertias (= flange angles) are
differentiated, in a second iteration these differentiated
equations are differentiated again, and in the third
iteration it is recognized that the highest derivative
equations are structurally regular for all modes. The
Dymola prototype selects variables inertia1.phi and
inertia1.w statically as states and then there are two
conditional state selections for inertia2.phi and
inertia2.w.

6 Limitations

The central result of this paper, the multi-mode

Pantelides algorithm, was tested with several simple
examples. However, much more tests especially with
large models are needed. It might still be the case that
improvements of the algorithm are needed. The
following limitations are already known:

When using continuous-time state machines it is
easy to model systems where Dirac impulses occur.
For example, replacing the diode in Figure 8 by an
electrical switch and closing this switch when the
voltage drop is not zero, will result in a Dirac impulse.
Simulation is usually successful. However, the
“propagation” of impulses is not taken into account
and therefore in many cases the simulation results will
not be correct.

Another issue are the transition conditions: When
they are functions of the state connector variables and
these variables are differentiated, then the transition
conditions might need to be differentiated as well. For
example, friction can be modeled with the state
machine of Figure 11 (the orange lines are mechanical
connections that have angular velocity and not angle as
potential variables).

Figure 10.

Shaft that breaks due to
an overload toque
tau > tMax or
tau < -tMax

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

97

The transition conditions from sliding to Stuck mode
are the critical part: w_rel > 0 or w_rel < 0. When in
Stuck mode, the constraint variable, w_rel, will be zero
or close to zero and when switching from Stuck to
Forward or Backward mode then small numerical
errors will give different results, especially if
dynamically coupled friction elements are present. It is
well-known that for this switching direction the
derivative of w_rel has also to be taken into account. It
is not yet clear how to deduce this with an algorithm.

Figure 11. Model of a Coulomb friction element that
cannot be handled with the approach of this paper.

7 Conclusions and outlook

In (Elmqvist et al., 2014) a new approach was
developed to define variable structure systems with
varying number of continuous-time states in a
convenient way with acausal continuous-time state
machines. With a rather simple technique it was
possible to symbolically analyze and simulate such
systems. In the current paper the limitations of the
previous approach have been reduced by generalizing
the Pantelides algorithm for multi-mode systems. It is
then possible to handle continuous-time state machines
where state constraints can vary when switching to a
new state. There are still unresolved issues and further
development is needed before a robust and reliable
solution becomes available for the user.

Acknowledgements

This paper is based on research performed within the
ITEA2 project MODRIO. Partial financial support of
the Swedish VINNOVA and the German BMBF are
highly appreciated.

Additionally, inspiring discussions with Albert
Benveniste and Benoit Caillaud about their approach to
handle multi-mode systems are appreciated as well.

References

Albert Benveniste, Timothy Bourke, Benoît Caillaud, Marc
Pouzet (2014): On the index of multi-mode DAE

Systems (also called Hybrid DAE Systems). [Research
Report] RR-8630, Inria; ENS. <hal-01084069>.
Download: https://hal.inria.fr/hal-01084069/document

Dassault Systèmes (2015): Dymola 2016.
http://www.Dymola.com

Elmqvist H., Gaucher F., Mattsson S.E., Dupont F. (2012):
State Machines in Modelica. Modelica'2012 Conference,
Munich, Germany, Sept. 3-5, 2012. Download:
http://www.ep.liu.se/ecp/076/003/ecp12076003.pdf

Elmqvist H., Mattsson S.E., Otter M. (2014): Modelica

extensions for Multi-Mode DAE Systems. Proceedings
of the 10th International Modelica Conference, March 10-
12, Lund, Sweden, pp. 183-193. Download:
http://www.ep.liu.se/ecp/096/019/ecp14096019.pdf

Höger C. (2014): Dynamic Structural Analysis for DAEs.
Proceedings of the 2014 SCS Summer Simulation
Multiconference. Download:
http://dl.acm.org/ft_gateway.cfm?id=2685629&ftid=1511
015&dwn=1&CFID=532067289&CFTOKEN=59766485

Mattsson, S.E. and G. Söderlind (1993): Index reduction in

differential-algebraic equations using dummy

derivatives. SIAM Journal of Scientific and Statistical
Computing, Vol. 14, pp. 677-692.

Mattsson S.E., Olsson H., Elmqvist H. (2001): Methods and

Algorithms for Varying Structure Hybrid DAE

Simulation. EC IST Project Realsim. Contract number:
IST-1999-11979, Internal Report 2.2, Dynasim, Lund,
Sweden.

Modelica Association (2014): Modelica, A Unified Object-

Oriented Language for Systems Modeling.

Language Specification, Version 3.3, Revision 1. June
11. Download:
https://www.modelica.org/documents/ModelicaSpec33Rev
ision1.pdf

Pantelides C. (1988): The consistent initialization of

differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, 9(2), pp. 213–231.

Pepper P., Mehlhase A., Höger C., Scholz L. (2011): A

Compositional Semantics for Modelica-style Variable-

structure Modeling. 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools. ETH Zürich, Switzerland. Download:
http://www.ep.liu.se/ecp/056/006/ecp1105606.pdf

Pryce J.D. (2001): A simple structural analysis method for

DAEs. BIT Numerical Mathematics, Vol. 41, No. 2, pp.
364–394.

Zimmer D. (2010): Equation-Based Modeling of Variable-

Structure Systems. Dissertation, ETH Zürich, No.
18924. Download:
http://www.inf.ethz.ch/personal/fcellier/PhD/zimmer_p
hd.pdf

Multi-Mode DAE Systems with Varying Index

98 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

