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Abstract

The spectrally resolved VIRTIS-M-IR images utilized for this work (Kappel et al., 2016) are listed in Appendix A.1.
Appendix A.2 presents the mathematical background of the renormalization. Detector-related trends of the VIRTIS-
M-IR spectral registration retrieved from the measurements themselves are reported in Appendix A.3. Appendix A.4
shows figures that illustrate at 1.10 and 1.18 µm the post-processing of the retrieved maps and the MSTs and PMTs,
complementing the corresponding figures at 1.02 µm given in the main text.

A. Appendix - Supplementary material

A.1. Utilized data cubes
This appendix lists the VIRTIS-M-IR spectrally resolved images (’data cubes’) utilized for this work. Each Venus

Express orbit corresponds to 24 (Earth-)hours (when VIRTIS-M-IR still acquired data). VIRTIS-M-IR data from each
orbit are divided into a number of sessions, depending on the science objectives. For each VIRTIS-M-IR cube name, the
number preceding the underscore denotes the orbit number, the number succeeding the underscore denotes the session.
Each cube comprises a spectrally resolved (432 spectral bands uniformly dividing the approximate range 1.02–5.1 µm)
two-dimensional spatial image (here only cubes used with 256 spatial samples and a number of spatial lines). The
following 103 cubes contribute to the N0

r = 64 repetition data set. Note that the single cubes only partially cover the
target area, and more than 64 cubes are needed, therefore, to achieve 64 repetitions for each surface bin.

108_00, 112_01, 121_01, 228_01, 229_01, 331_03, 331_04, 331_05, 332_01, 332_02, 332_03, 332_04, 332_05, 333_00, 333_01, 333_02, 333_03,
333_04, 333_05, 334_01, 342_00, 343_00, 344_00, 344_01, 344_02, 345_00, 345_01, 345_03, 347_00, 347_01, 347_03, 347_05, 349_01, 349_05,
351_01, 351_05, 359_02, 365_02, 365_05, 366_00, 366_01, 366_03, 366_04, 366_06, 366_07, 367_02, 367_05, 368_00, 368_01, 368_03, 368_04,
565_05, 565_07, 565_09, 565_11, 567_05, 567_07, 567_09, 567_11, 567_13, 569_05, 569_07, 569_09, 569_11, 569_13, 569_15, 571_05, 571_07,
571_09, 571_11, 571_13, 574_03, 577_06, 579_06, 579_08, 586_01, 586_04, 588_01, 588_04, 594_01, 594_04, 594_05, 594_08, 596_05, 598_05,
599_01, 599_02, 599_05, 601_01, 601_02, 601_05, 603_02, 603_05, 607_07, 609_05, 609_06, 812_02, 812_06, 818_02, 818_06, 818_10, 824_06,
834_06

For the MSTs, the first 51 cubes (ending with 368_04) from theN0
r data set list contribute to batch 1 of theNr = 32

data set. The 50 cubes that contribute to batch 2 of the Nr = 32 data set comprise the cubes from the N0
r data set list

starting with 565_05 but excluding the last three and including 812_10. The Nr = 16 and Nr = 8 data sets evenly and
chronologically divide the repetitions from the N0

r data sets among their batches. The 45 cubes from the N0
r data set

list starting with 331_03 and ending with 368_03 contribute to the Nr = 25 data set for the PMTs.
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A.2. Mathematical model
This appendix clarifies the role of the renormalization and how it affects the retrieval errors. It motivates the error

scaling properties (so far only assumed, see Section 4.1 and Kappel et al. (2015b)) and the underlying mechanisms of
error origination. Certain simplifications are formulated that enable these discussions. Suitable comparison measures
for results from different batches of the MSTs and for scenarios of the PMTs are defined.

A.2.1. Renormalization and variance
First of all, the removal of emissivity trends with latitude and topography (i.e. the ’de-trending’) is introduced

in terms of a linear operator. For this purpose, the raw retrieved emissivities from a given scenario and at a given
wavelength index (that are momentarily not indicated here for simpler notation) are sorted into a column vector eM
with entries eM (b), where b ∈ {1, · · · , B} indicates the surface bin and the subscriptM the emissivity mean value,
M =

∑B
b=1 eM (b)/B. The multiple linear regression model of eM with respect to latitudes θ(b) (compiled into the

vector θ) and surface elevations h(b) (forming the vector h) can be written eM = β1 + β2θ+ β3h + ε, where ε is the
vector of the residuals ε(b) from the regression. The ε(b) are later regarded as deviations of the de-trended emissivities
from their emissivity mean valueM , provided β1 is such that

∑B
b=1 ε(b) = 0. Using the matrixX := (1,θ,h) and the

vector β := (β1, β2, β3)T , this can be arranged into the equation eM = Xβ+ε, where 1 is theB-dimensional column
vector with all entries 1. The regression coefficients (β1 is the intercept) can be found by minimizing the residual sum
of squares εTε = (eM −Xβ)T (eM −Xβ). The best estimate of β reads β̂ = (XTX)−1XTeM , which follows from
zeroing the derivative of εTε with respect to β. This gives rise to the ’residual matrix’ R := 1 −X(XTX)−1XT

that allows for the computation of the residual of the regression ε̂ := eM −Xβ̂ = ReM , a vector with entries ε̂(b). It
can be immediately verified that the linear operator R is an orthogonal projector, i.e. R2 = R and RT = R, and that
RX = 0. See also Hogben (2006, Section 52.4) for a summary of multiple linear regression using the residual matrix.
It now follows that XT ε̂ = XTReM = (RX)TeM = 0, which implies

∑B
b=1 ε̂(b) = 0 (since first entry of vector

XT ε̂ equals zero), and thus that the mean value of the residuals ε̂(b) over the bins is zero. The de-trended emissivities
are therefore written as rM (b) = (ReM )(b) +M , or short ReM (b) +M . rM has the mean valueM (as indicated by
the subscript) and does not exhibit a trend with latitude and topography anymore. A de-trending of rM yields rM again,
since R is a projector. Note that de-trending does not introduce topography features for constant raw emissivity maps.
Moreover, raw emissivity maps that are perfectly correlated with topography do not exhibit topography features after
de-trending, since RX = 0.

As it was discussed in Section 2.3 and quantified in Section 4.5, the de-trended emissivities spatially fluctuate
around their mean valueM with a higher amplitude for cases with higherM . A linear transformation was given that
refers a de-trended map rM to another, defined mean value called ’reference emissivity’ eref , here mostly 0.5. In the
appendix, this linear transformation shall be defined also for not de-trended maps eM . In the notation of Section 4.5, it
can then be written eeref = λM→eref · (eM −M) + eref . Obviously, eeref has the mean value eref . It is called the ’raw
emissivity map referred to the reference emissivity eref ’.

The de-trended emissivitymap referred to eref can bewritten reref = λM→eref ·(rM−M)+eref . It has themean value
eref . Since R is a projector, reref is indeed a de-trended map, because Rreref = λM→erefRrM = λM→erefReM =
λM→eref (rM −M) = reref − eref . Moreover, de-trending and transforming to another reference emissivity can be
interchanged, sinceR

(
λM→eref (eM −M)+eref

)
+eref = reref . The vector reref is called the ’renormalized emissivity

map referred to reference emissivity eref ’. Note that an additional renormalization of renormalized emissivities has no
effect. R can act not only on emissivities but also on the parameters the emissivities depend on (it just acts by a matrix
multiplication). To avoid an additional denotation, the results are also called ’renormalized’ in the latter case, even if
there is no referring to a reference emissivity involved.

In the following, eref is always 0.5, and all maps are referred to 0.5. The subscripts of eeref and reref are dropped for
convenience, such that e0.5 =: e and r0.5 =: r, and a new subscript utilization can be employed. Now, the raw retrieved
maps from retrieval scenario s (referred to the reference emissivity 0.5) are denoted by es. The renormalized map
reads rs = Res + 0.5, since de-trending and transforming to another reference emissivity can be interchanged. Each
scenario is characterized by a selection of measurements that Nr times cover the specified surface target of B surface
bins, the retrieval pipeline, assumptions on interfering forward model parameters, the choice of the initial emissivity,
data calibration and preprocessing, etc. Note thatR does not depend on scenario s sinceX does not. This neglects that
the topography of a surface bin can slightly vary for the binned measurements as a result of motion blurring (Kappel
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et al., 2012) and because it is a weighted average that respects the surface areas the unbinned measurements actually
cover, which can differ for different measurement repetitions. This does not change results of the present discussion.
It is also assumed that there are no uncertainties in latitude and topography of each bin, such that R is the proper
renormalization operator also for true emissivities. There are two cases (’Topo. 30/65 km’) where h indeed differs to
allow for the exploration of topography uncertainties. They are excluded here and evaluated separately.

Statistical properties of a random variable X are often described in terms of mean value µ and standard deviation
σ. Given only these characteristics, the probability distribution on R (the real numbers) that has the least information
content (i.e. requires no further parameters for description) is a Gaussian. Usage of the standard deviation has some
disadvantages. Most importantly, it is not additive for uncorrelated random variables. This can be overcome by using
the variance σ2 for the characterization of a probability distribution. When µ and σ2 are not known, they have to be
estimated from S random samples xs of the random variable X . Unbiased estimates of µ and σ2, respectively, are the
sample mean value x :=

∑S
s=1 xs/S and the sample variance Vars[xs] :=

∑S
s=1(xs − x)2/(S − 1) (DeGroot and

Schervish, 2012, Section 8.7). The denominator S − 1 for Vars[xs] is used instead of S, since the mean value is not
known and has to be estimated itself. An estimate is unbiased when its statistical expectation value coincides with the
true value, in this case when the averages of the x and the Vars[xs], respectively, computed from many repetitions
with always S samples approach µ and σ2. Note that the sample standard deviation

√
Vars[xs] is a biased estimate of

σ (Shao, 2003, for a correction factor in case of Gaussians see Example 3.4). Therefore, only after averaging (over
bins), variances are expressed as double standard deviations in percent of the reference emissivity, and then also scaled
to Nr = 64 repetitions to enable direct comparison to results in Section 3. The variance of the sample mean x is
σ2/S (DeGroot and Schervish, 2012, Theorem 6.2.3) and can be estimated by Vars[xs]/S. The standard deviation
of Vars[xs]− σ2 in case of Gaussians is

√
2/(S − 1)σ2 (DeGroot and Schervish, 2012, Eq. 8.7.8). When averaging

over B repetitions of computing Vars[xs] with different choices of samples (i.e. over B bins), the standard deviation
of
(√
〈Vars[xs]〉 − σ

)(√
〈Vars[xs]〉+ σ

)
≈
(√
〈Vars[xs]〉 − σ

)
· 2σ follows as σ2

√
2/
√
BS −B, where the angular

brackets denote the averaging over the B repetitions. The double standard deviation relative error for the estimate of σ
by
√
〈Vars[xs]〉 can thus be estimated as about ∆ :=

√
2/
√
BS −B. Note that the inverse of the square root exists for

S ≥ 2. Finally, the variance of the sum of uncorrelated random variables is the sum of the variances (DeGroot and
Schervish, 2012, Theorem 4.6.6), and Vars[ζxs] = ζ2Vars[xs] and Vars[xs + a] = Vars[xs] for constants ζ and a.

A.2.2. First order model
Recall that at a given surface window, the retrieved emissivity map es of the target is referred to the reference

emissivity 0.5. The true emissivity map ê is also to be understood as being referred to 0.5 (according to the mentioned
transformation). To enable the following analysis of the error sources and the approximate statistical scaling properties,
a number of simplifications are required. At bin b, es(b) is written in terms of deviations from the true emissivity ê(b)
that originate in the failure to exactly know the true quantities that led to the radiances recorded by VIRTIS-M-IR. The
’hat’ accent is used in the following to indicate those true quantities.

es(b) ≈ ê(b) +

Nr∑
k=1

Pt∑
p=1

∂ê(b)

∂t̂ps,k(b)

(
tps,k(b)− t̂ps,k(b)

)
+

Pl∑
p=1

∂ê(b)

∂ l̂
p
(b)

(
lps(b)− l̂

p
(b)
)

+

Pc∑
p=1

∂ê(b)

∂ĉps

(
cps − ĉp

)
(A.1)

The ’≈’ shall indicate that only a first order model is used here, which also neglects the impacts of noise, subsidiary
retrieval solutions, numerical repeatability under slightly altered conditions, etc. There are Pt parameters t̂ps,k(b) like
the cloud bottom altitude or H2O abundance that can vary with time (and location), where k denotes, which value this
parameter has at the k-th of the Nr repetitions that form scenario s. The Pl parameters l̂

p
(b) (e.g. parameterization of

offset to true deep atmospheric temperature field) can only vary with location (and thus do not depend on k or s). The
Pc parameters ĉp are spatially and temporally constant (e.g. continuum parameters, initial emissivity) and therefore do
neither depend on bin b nor on k nor s. The corresponding parameters without ’hat’ denote the values that are assumed
during the forward model simulations. To allow for the exploration of responses to modifications of certain parameters
in the frame of the PMTs, lps(b) and cps can also depend on s. The retrieved parameters except for the emissivities
themselves are all assumed to attain their true values, such that only the interfering parameters are considered as error
contributors in this first order model. Even though there exist spatial-temporal correlations between the true parameters,
all statistical correlations whatsoever are assumed to be negligibly small for this appendix. The renormalized true
t-parameters are assumed to be normally distributed around their renormalized assumed counterparts, with estimated
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variances (either with respect to location or to time) that can be approximated by their underlying (long-term) variances
that are assumed to not depend on time, location, or retrieval scenario s. Furthermore, underlying variances over time at
fixed location and variances over space at fixed time shall coincide with the underlying variance over time and location
of the respective parameter. Finally, the partial derivatives ∂ê(b)/∂t̂ps,k(b) etc. are approximated to not depend on the
values the parameters attain and to coincide with the simulated emissivity derivatives (without ’hat’). They are thus
written as 1/Nr · ∂e/∂tp, ∂e/∂lp, and ∂e/∂cp, respectively. Note that modification of tps,k(b) at just the k-th of theNr

repetitions only slightly affects es(b) (notice absence of index k compared to tps,k(b)) and ever less so with increasing
Nr, whereas modification of temporally constant parameters concerns allNr repetitions and has a larger effect on es(b)
in the same magnitude as a single-spectrum derivative. This can be described by the factor 1/Nr in front of ∂e/∂tp.
Then Eq. (A.1) implies

Res(b) ≈ Rê(b) +

Pt∑
p=1

∂e

∂tp
1

Nr

Nr∑
k=1

R
(
tps,k(b)− t̂ps,k(b)

)
. (A.2)

The c-terms vanish, since R applied to the b-independent c-parameters yields zero. The only true and assumed l-
parameters considered for the present analysis (topography uncertainties have been excluded for now) are spatially
slowly varying with latitude, and the spatial extension of the target has been chosen to allow for a good approximation
of this variation by a function linear with latitude, compare l0-parameters in Table 4. Hence, they are nearly annihilated
byR, and the l-terms are not considered furthermore.

The main objective of this appendix is a statistical characterization of rs(b)− r̂(b), the deviation of the renormalized
retrieved emissivities rs(b) = Res(b) + 0.5 from renormalized true emissivities r̂(b) := Rê(b) + 0.5, i.e. the
renormalized emissivity retrieval errors. The variance of rs(b)− r̂(b) over the bins is estimated by Varb[rs(b)− r̂(b)] =

Varb[Res(b)−Rê(b)] =
∑B

b=1

(
Res(b)−Rê(b)

)2
/B, since the mean over the bins ofRes(b)−Rê(b) is exactly

zero and does not need to be estimated (therefore not B − 1 but B as denominator). Note that this corresponds to the
square of RMSD[rs, r̂] :=

√∑B
b=1

(
rs(b)− r̂(b)

)2
/B, the root-mean-square-deviation (RMSD) between rs and r̂.

Then Eq. (A.2) implies

Varb[rs(b)− r̂(b)] ≈ Varb

[ Pt∑
p=1

∂e

∂tp
1

Nr

Nr∑
k=1

R
(
tps,k(b)− t̂ps,k(b)

)]

≈
Pt∑
p=1

( ∂e
∂tp

)2 1

N2
r

Nr∑
k=1

Varb
[
R
(
tps,k(b)− t̂ps,k(b)

)]
≈ 1

Nr

Pt∑
p=1

( ∂e
∂tp

)2
Var
[
R(tp − t̂p)

]
. (A.3)

The second approximation is valid, because all statistical correlations between the parameters were assumed to be
negligibly small. The last approximation applies, since Varb

[
R
(
tps,k(b)− t̂ps,k(b)

)]
≈ Var

[
R
(
tp− t̂p

)]
, where Var in

the last term indicates the underlying variance over time and location of the term in the square brackets. The latter was
assumed to have variances that are independent of time and location, and variances over time and those over location
were assumed to coincide with the variance over time and location.

Note that, according to Eq. (A.3), modifications of assumed t-parameters by a constant offset or by a trend with
latitude and topography do not change the renormalized emissivity errors in this simplified model, except for impacts
of noise, subsidiary solutions, numerical repeatability under slightly altered conditions, etc., compare for instance
T0-parameters in Table 4.

A.2.3. Measurement Selection Tests
Each MST utilizes of a series of S batches with indices s ∈ {1, · · · , S} that all have the same Nr such that

SNr = N0
r = 64, which is the measurement repetition number of the data set used for the results in Section 3. The

scatter of the renormalized emissivities rs(b) over the different batches provides a measure of their uncertainty at Nr

repetitions. In this section, this measure is determined and compared with results from Appendix A.2.2.
Focusing on a single surface bin center b and unindicated wavelength index, the rs(b) are distributed according to a

certain underlying probability distribution, here assumed to be the normal distribution. Mean value r(b) (the underlying
renormalized emissivity) and variance V(b) (the accuracy achievable for the renormalized emissivity derived from one
batch with Nr repetitions) of the underlying Gaussian are not known and have to be estimated from the rs(b). The
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latter can be regarded as (quasi-)random sample of size S of the underlying probability distribution. The sample mean
is estimated as r(b) :=

∑S
s=1 rs(b)/S, sample variance as V(b) := Vars[rs(b)] =

∑S
s=1

(
rs(b) − r(b)

)2
/(S − 1).

Note that it can be checked for the retrieved MST results that V(b) does not significantly change with b.
The average value of V(b) is denoted as V . 〈V 〉 :=

∑B
b=1 V(b)/B is an (unbiased) estimate of V . Note that

overlining of variables is associated with operations that involve batch indices s, whereas angular brackets involve bins
b. 〈V 〉 can be written

〈V 〉 =
1

B

B∑
b=1

1

S − 1

S∑
s=1

(
Res(b)−Re(b)

)2
=

1

S − 1

S∑
s=1

D2
s , (A.4)

where e(b) =
∑S

s=1 es(b)/S, andDs := RMSD[rs, r] = RMSD[Res,Re]. This close link between 〈V 〉 and theDs

suggests to use Ds to describe the dissimilarity of the renormalized emissivity maps rs determined from the different
batches s (in particular when observing the structural similarity to the identity Varb[rs(b)− r̂(b)] =

(
RMSD[rs, r̂]

)2,
see comment before Eq. (A.3), that measures the renormalized retrieval errors in terms of a root-mean-square-deviation).
Observation of the Ds can be used to explore the variability of the retrieval results with respect to data selection. For
a selection of MSTs (with given Nr), the Ds for each s and the three wavelength indices are listed in Table 4 in the
columns SRMSD (’scaled’ RMSD) in a scaled form, 2Ds/

√
S − 1 in percent of the reference emissivity 0.5. With

denominator
√
S instead of

√
S − 1, they would in a reasonable sense be scaled to Nr = 64 repetitions as will be

seen. But at this point it seems more natural to use denominator
√
S − 1, because then, the scaled Ds need only be

quadratically averaged to obtain 2
√
〈V 〉/

√
S in percent of the reference emissivity, a value that will be shown below to

estimate the percental double standard deviation error of the N0
r = 64-map. This scaling of Ds therefore enables a

direct comparison to the other error measures in this work. Note that the denominator
√
S − 1 relatively increases the

SRMSDs with small S (i.e. large Nr) with respect to those with large S (small Nr) in Table 4.
According to Eq. (A.2), 〈V 〉 =

∑B
b=1 Vars

[
Res(b)

]
/B can be approximated by

〈V 〉 ≈ 1

B

B∑
b=1

Vars
[ Pt∑
p=1

∂e

∂tp
1

Nr

Nr∑
k=1

R
(
tps,k(b)−t̂ps,k(b)

)]
≈ 1

B

B∑
b=1

Pt∑
p=1

( ∂e
∂tp

)2 1

N2
r

Nr∑
k=1

Vars
[
R
(
tps,k(b)−t̂ps,k(b)

)]
,

because ê(b) is independent of batch s and hence a constant with respect to variance estimation over s, and all statistical
correlations between the parameters were assumed to be negligibly small. In the same way as for Eq. (A.3), one has
Vars

[
R
(
tps,k(b) − t̂ps,k(b)

)]
≈ Var

[
R
(
tp − t̂p

)]
, which is independent of k and b. The averaging over bins can be

omitted, therefore. Note that, to obtain a more stable statistics, this averaging is still performed when estimating 〈V 〉
from the renormalized emissivity maps determined from the S batches. Finally, using Eq. (A.3),

〈V 〉 =
1

B

B∑
b=1

Vars
[
rs(b)

]
≈ 1

Nr

Pt∑
p=1

( ∂e
∂tp

)2
Var
[
R
(
tp − t̂p

)]
≈ Varb[rs0(b)− r̂(b)], (A.5)

which explicitly shows the independence of 〈V 〉 from S (as it should be).
Hence, Varb[rs0(b)−r̂(b)], the measure for the renormalized emissivity retrieval errors (at a given wavelength index)

for a certain retrieval scenario s0 withNr repetitions, can be approximately estimated by 〈V 〉 =
∑B

b=1 Vars
[
rs(b)

]
/B,

the measure for the scatter and thus the statistical uncertainty (with respect to data selection but otherwise under the
same scenario) of the renormalized emissivities determined from single batches with Nr repetitions. This is not too
surprising, given the various simplifications that led to this result. But it can serve to discuss a number of important
properties.

The error estimation for the results from Section 3 atN0
r = 64 repetitions cannot be directly performed by computing

〈V 〉 with Nr = 64, since the N0
r retrieval run cannot be repeated using one or even several additional disjoint data

sets due to lacking coverage of the target area with usable measurements as defined in Section 2.1. But the error
scaling properties with Nr should be compatible with Eq. (A.5). This can be used to estimate the N0

r -error with an
MST by dividing the N0

r data set into S disjoint sets (batches) that always cover the target N0
r /S = NMST

r times
and computing the corresponding 〈V 〉. Taking the (∂e/∂tp)2Var[R(tp − t̂p)] to be unchanged, the error for N0

r (one
standard deviation) can then be extrapolated as

√
〈V 〉 ·

√
NMST

r /N0
r =

√
〈V 〉/

√
S. Since the V(b) are averaged over
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B = 219 � 1 bins (Section 2.1) before taking the square root, the standard deviation bias nearly vanishes even for
S = 2. Note that the ’sample standard deviation of the mean’ over all S batches, referred to r(b), is an intuitive scatter
error estimation for theN0

r -result at b, because it is a measure for the scatter error of the average value over all S batches
of the renormalized emissivities. It reads

√
V(b)/

√
S, and the average over all bins (performed in terms of variances

to avoid bias) results as
√
〈V 〉/

√
S, which coincides with the extrapolated N0

r -error. To enable direct comparison
to the other error measures in the present work, 〈V 〉 for an MST with Nr repetitions and S batches is represented in
terms of double standard deviations referred to N0

r = 64 repetitions, δNr,S := 2
√
〈V 〉/

√
S, in percent of the reference

emissivity 0.5. This discussion also justifies the scaled form of the Ds from Eq. (A.4) as 2Ds/
√
S in percent of the

reference emissivity, but recall that the denominator
√
S − 1 is used for representation in Table 4 to enable a more

direct comparison to N0
r . For the present work, δ32,2, δ16,4, and δ8,8 are determined (see Table 5), which will be used

to estimate the uncertainty of the N0
r = 64-maps shown in Fig. 3.

Retrospectively, Eq. (A.5) also justifies the assumed multi-spectrum retrieval error scaling rules proposed by Kappel
et al. (2015b) (see Section 4.1 of the present work). Namely, of the considered parameters only t-parameters contribute in
the first order to the double standard deviation renormalized emissivity retrieval errors, errors from different parameters
are quadratically added (square root of sum of squares), and errors scale with 1/

√
Nr and correspond to single-spectrum

retrieval errors for Nr = 1. It can now be clarified in which way the errors listed by these authors (determined from
single-spectrum retrievals with synthetic spectra, summarized in Table 3 of the present work) are to be understood.
They describe the spatially averaged scatter with respect to data selection and are only first order approximations under
the condition of the various assumptions formulated in Appendix A.2.2. The first order contribution from a single
parameter at Nr = 1 to the double standard deviation renormalized emissivity error is the derivative of the emissivity
with respect to this parameter, multiplied by the expected double standard deviation of the renormalized parameter
variation. This is the same as the first order emissivity variation resulting from a parameter change corresponding to
the double standard deviation of the parameter. This is exactly the way, how errors were estimated by Kappel et al.
(2015b). But note that some of the emissivity responses in that paper were already in the non-linear regime. The
reasons for disagreements between errors listed there and in the present work lie in violations of the assumptions,
in particular, the first order-assumption, the independence of the emissivity derivatives from the parameter values,
insufficient assumptions on the expected ranges of the interfering parameters, the simplified correlation and variance
properties, and the increased information content taken into account with multi-spectrum retrieval.

Eq. (A.5) also states that any errors on the parameter assumptions that are annihilated by R have no first order
impact on the renormalized emissivity maps. In particular, the renormalized emissivity maps are not affected when the
spatial distribution of the long-term average of an interfering parameter (e.g. cloud bottom altitude) exhibits a slowly
varying latitudinal trend that is not reflected in the assumed parameter values used in the retrievals. A constant offset
does also not change the renormalized emissivity maps under the assumptions stated in Appendix A.2.2. In the same
way, modifications to c-parameters (continua, initial emissivity) and latitudinal l-parameter trends (deep atmospheric
temperature profile) have no impact. However, real-world responses to such parameter modifications are non-zero even
for theoretically vanishing error contributions (c0- and l0-PMTs in Table 4; there are no t0-parameters). This is due to
higher order terms etc.

A.2.4. Parameter Modification Tests
The PMTs serve to study the impact of modifications to a number of assumed parameters and to characteristics of

retrieval pipeline, calibration, and preprocessing on the renormalized emissivity maps. To save resources, the maps are
determined from only Nr = 25 repetitions, and results are scaled to N0

r = 64. The base map r0, with respect to which
the modified maps rP are compared, is determined from scenario ’Nr = 25 base’ and denoted by the index ’0’. The
index ’P ’ runs through the other different bold-typed shortcuts used in the PMT descriptions in Section 4.4.

In analogy to the definition of Ds from Eq. (A.4), the dissimilarity of rP from r0 is measured as DP,0 :=

RMSD[rP , r0] =
√

Varb[rP (b)− r0(b)] (last equation in the same way as comment before Eq. (A.3)). Using Eq. (A.2),
this leads to (

DP,0

)2 ≈ Varb

[∂e
∂t

1

Nr

Nr∑
k=1

R
(
tP,k(b)− t0,k(b)

)]
≈ 1

Nr

(∂e
∂t

)2
Var
[
R(tP − t0)

]
, (A.6)

because Rê(b) and the true parameters do not differ between a PMT and the ’Nr = 25 base’-case. Since only one
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parameter is modified between each ’P ’- and the ’0’-case, the superscript ’p’ is omitted for the t-variables. (Again,
none of the considered c- or l-parameters contributes, since their differences between the ’P ’- and the ’0’-case are
annihilated by R.) Regarding the second approximation, note that the considered assumed t-parameters are either
’under control’, because they are set to constant values and have really the character of l- or c-parameters (like cloud
parameters, minor gases). Or, the difference between the ’P ’- and ’0’-parameters statistically varies in the same way
as for a true parameter (e.g. difference of residuals from different straylight removal procedures). Hence, the second
approximation applies, in the former case trivially so, because the parameters are annihilated byR, and in the second
case for reasons analogous to those given for Eq. (A.3).

Eq. (A.6) states that any modifications to the parameter assumptions that are annihilated byR have no impact on the
renormalized emissivity maps. But corresponding real-world responses are non-zero even for theoretically vanishing
error contributions (c0- and l0-PMTs in Table 4). This is due to higher order terms and other assumptions that do not
fully apply. For each PMT and the three wavelength indices, the DP,0 are listed in Table 4 in the columns SRMSD in a
scaled form,DP,0 ·F in percent of the reference emissivity 0.5. The scaling factor F is set to

√
25/64 for t-parameters

(’t’ on the right in the ’Scenario’-column) and to 1 elsewhere. The former cases profit from an increase of Nr due to
an averaging-out effect, because at fixed bin they statistically vary with time, see Eq. (A.6), the latter not. This way,
the DP,0 are in a reasonable sense scaled to N0

r = 64 repetitions. Note that they are already without a factor of 2
comparable (see Eq. (A.6) for t-parameters) to percental double standard deviation errors by way of the choice of their
perturbations’ magnitudes as expected double standard deviations, compare Kappel et al. (2015b, Table 1).

Parameter modifications (in the way of the PMTs) to the N0
r -case itself lead to additional errors to the MST error

estimate for theN0
r -map. This impact cannot be directly determined due to the huge computational resources this would

require. To still obtain a rough estimate of this effect, the squared PMT errors (DP,0)2 are scaled to N0
r repetitions

(then denoted as (DP ′,s0)2) and added to the squared MST error estimate Varb[rs0(b)− r̂(b)]. This can be motivated
by

Varb[rP ′(b)− r̂(b)] = Varb[rs0(b)− r̂(b) + rP ′(b)− rs0(b)] = Varb[rs0(b)− r̂(b)] + (DP ′,s0)2 + ξ, (A.7)

with the covariance ξ = 2 Covb[rs0(b)− r̂(b), rP ′(b)− rs0(b)] (DeGroot and Schervish, 2012, Theorem 4.6.6). rs0 is
the renormalized retrieved emissivity map for theN0

r -case and rP ′ the result from a hypothetical PMT atN0
r repetitions.

ξ is possibly not negligible, but it should be small compared to the other terms on the right hand side of Eq. (A.7). Note
that it is theoretically (according to Eq. (A.6)) zero for the PMTs where the parameters are ’under control’ as above,
since the square of the covariance does not exceed the product of the variances of its two input variables (DeGroot
and Schervish, 2012, Theorem 4.6.3). Some of the PMTs study the same parameter but in different ways (different
initial emissivities, different deep atmospheric temperature field perturbations, etc.), other PMTs have been performed
just for general interest (e.g. ’Surface haze’, ’H2SO4 alt. gradient’). Thus, only the PMT errors indicated by ’∗’ in the
’Scenario’-column of Table 4 are added to the MST error estimate, see Table 5.

A.3. Wavelength of first spectral band and spectral FWHM
This section gives additional retrieval results that are less relevant for the conclusions of the present paper but are

still interesting on their own. It is discussed in Section 2.4 that there are parameters describing the spectral registration
that are not sufficiently predictable by the current calibration pipeline and that are crucial for emissivity retrieval. The
wavelength λs1 of the first spectral band and the full-width-at-half-maximum FWHMs of the spectral instrumental
response function have to be retrieved from the spectra themselves as additional parameters. They are found to vary with
spatial sample on the detector and detector temperature. Note that the other, not detector-related, retrieved parameters
(clouds, gases) cover only a small part of the global latitude–longitude or latitude–local-time space, respectively, and
are therefore less representative of any potential global trends.

The scatterplot in Fig. A.1 depicts this dependence for λs1 as retrieved from the ’N0
r = 64’ data set comprising

14,016 spectra (after binning). Note that the detector sample in the figure is the average over the sample values of the
VIRTIS-M-IR pixels contributing to the respective binned spectrum (see Section 2.1). There is a trend of lower λs1 with
higher detector temperature (order of 0.8 nm/K). This trend is not strict indicating secondary dependencies on further
parameters. For a fixed VIRTIS-M-IR frame (and hence at fixed temperature), λs1 tends to drop by about 1 nm from
sample 1 at the left edge of the detector to about sample 100 where a local minimum occurs. It then rises by about 0.5 nm
over the next 100 samples and roughly stays at this level up to sample 256 at the right edge. At average temperatures,
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Figure A.1: Dependence of wavelength λs1 of first spectral band on detector sample and temperature.

1.020 µm is a representative value for λs1 at the detector center. Measurements at higher detector temperatures are better
suited to sample the low-wavelength flank of the nightside surface window peak at 1.02 µm that is only partially covered
by VIRTIS-M-IR.
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Figure A.2: Dependence of spectral FWHM on detector sample and temperature.

Fig. A.2 depicts the dependence of FWHMs as retrieved from the same measurement data set. This time, there is a
(not strict) trend of higher FWHMs with higher detector temperature (order of 0.25 nm/K). For a fixed VIRTIS-M-IR
frame, FWHMs tends to increase by about 4 nm from the left edge of the detector to the right edge. This increase is
more pronounced for the 75 leftmost samples. At average temperatures, 17 nm is a representative value for FWHMs at
the detector center. Measurements at lower detector temperatures and on the left part of the detector are better suited to
resolve spectral features. Note that both λs1 and FWHMs are derived from the wavelength range 1.0–2.3 µm utilized for
this work and may not be valid for the remaining VIRTIS-M-IR range up to 5.1 µm.

A.4. Additional figures
This section presents figures analogous to Figs. 1 and 4 but for the 1.10 and 1.18 µm surface windows instead of the

1.02 µm window.
Fig. A.3 illustrates the de-trending at 1.10 µm. The impact of the trend with topography is larger than at 1.02 µm.

Also, the effect of the removal of the latitudinal trend is more pronounced than at 1.02 µm. In contrast, the trends at
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1.18 µm are of a much smaller magnitude, see Fig. A.4. Recall that the transformation to the reference emissivity 0.5
still has to be performed in order to obtain Figs. 3b and c.
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Figure A.3: Removal of trends with topography and latitude for the 1.10 µm emissivity map of Themis Regio retrieved from theN0
r = 64measurement

repetition data set. (a) Raw map, (b) trend with topography removed, (c) trends with topography and latitude removed, (d) utilized surface elevation
(blurred Magellan topography). Representation as in Fig. 1.

One of the main results of this work is the estimate for the reliability of the renormalized emissivity maps. It was
found that the double standard deviation uncertainties for the 1.02, 1.10, and 1.18 µmmaps derived from 64 measurement
repetitions are given by 3.3%, 8.4%, 4.0%, respectively, of the reference emissivity 0.5. Fig. A.5 illustrates that the
1.10 µm map is quite unreliable compared to the map at 1.02 µm. The PMT ’Continuum 1.74 µm’, which leads to almost
the largest SRMSD contributing to the total error at 1.10 µm (see Table 4), still yields quite similar patterns between
Figs. A.5c and d. However, the most direct and demonstrative test, the MST where maps are determined from two
disjoint data sets, shows that the spatial patterns disagree between Figs. A.5a and b. This measurement repeatability
failure of the maps corresponds to the finding that no statistically significant emissivity anomaly is found at 1.10 µm at
present Nr = 64-sensitivity. In contrast, the MST illustrated in Fig. A.6 shows a much better agreement between the
fine-structures of the patterns, although the general appearances are not nearly as similar as for the analogous maps at
1.02 µm. The PMT depicted in Figs. A.6c and d contributes the largest SRMSD to the total error at 1.18 µm.
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Figure A.4: Removal of trends with topography and latitude for the 1.18 µm emissivity map of Themis Regio retrieved from theN0
r = 64measurement

repetition data set. (a) Raw map, (b) trend with topography removed, (c) trends with topography and latitude removed, (d) utilized surface elevation
(blurred Magellan topography). Representation as in Fig. 1.
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Figure A.5: Examples for MSTs and PMTs showing renormalized 1.10 µm emissivity maps of Themis Regio referred to reference emissivity 0.5. (a)
MST ’Nr = 32, batch 1’, (b) MST ’Nr = 32, batch 2’, (c) PMT ’Nr = 25 base’, (d) PMT ’Continuum 1.74 µm’. Representation as in Fig. 4.
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Figure A.6: Examples for MSTs and PMTs showing renormalized 1.18 µm emissivity maps of Themis Regio referred to reference emissivity 0.5. (a)
MST ’Nr = 32, batch 1’, (b) MST ’Nr = 32, batch 2’, (c) PMT ’Nr = 25 base’, (d) PMT ’Continuum 1.74 µm’. Representation as in Fig. 4.
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