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Running title: Chemical convergence in methanogens from Siberian permafrost 23 

Abstract 24 

Methanogenic archaea are widespread anaerobic microorganisms responsible for the 25 

production of biogenic methane. Several new species of psychrotolerant methanogenic 26 

archaea were recently isolated from a permafrost-affected soil in the Lena delta (Siberia, 27 

Russia), showing an exceptional resistance against desiccation, osmotic stress, low 28 

temperatures, starvation, UV and ionizing radiation when compared to methanogens from 29 

non-permafrost environments. To gain a deeper insight into the differences observed in their 30 

resistance, we described the chemical composition of methanogenic strains from permafrost 31 

and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is 32 

a powerful tool for microbial identification and provides fingerprint-like information about 33 

the chemical composition of the cells. Our results show that the chemical composition of 34 

methanogens from permafrost-affected soils presents a high homology and is remarkably 35 

different from strains inhabiting non-permafrost environments. In addition, we performed a 36 

phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove 37 

the different evolutionary relationship of the permafrost strains. We conclude that the 38 

permafrost methanogenic strains show a convergent chemical composition regardless of their 39 

genotype. This fact is likely to be the consequence of a complex adaptive process to the 40 

Siberian permafrost environment and might be the reason underlying their resistant nature. 41 

 42 

Introduction 43 

Methanogenic archaea are strictly anaerobic microorganisms that belong to the phylum 44 

Euryarchaeota and produce methane as an obligate catabolic end-product (Ferry, 1993). 45 

About 85 % of the annual global methane formation is mediated by methanogenic archaea 46 
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(Thauer et al., 2008). Once released, methane can either be oxidized in biotic and abiotic 47 

processes or accumulate in the Earth’s atmosphere as a greenhouse gas, where it will slowly 48 

oxidize by means of photochemical reactions. The atmospheric methane concentration has 49 

increased more than twofold in the last 200 years (Hedderich & Whitman, 2006), 50 

contributing to the increase in the Earth’s temperature over the last decades.  51 

Terrestrial permafrost predominantly occurs in the northern hemisphere and covers 52 

approximately 24 % of Earth’s land surface. It represents a significant natural source of 53 

methane, largely of biological origin (Fung et al., 1991, Wagner et al., 2003). Arctic tundra 54 

soils in Siberia are permanently frozen throughout the year with the exception of the thin 55 

active layer, subjected to seasonal freeze-thaw cycles with in situ temperatures ranging from 56 

-45⁰C to 25⁰C (Wagner et al., 2005). Several novel strains of psychrotolerant methanogenic 57 

archaea were recently isolated from the active layer of a permafrost-affected soil in the Lena 58 

Delta (Siberia, Russia). Unlike psychrophiles, psychrotolerant methanogens show a broad 59 

adaptive potential to the fluctuating environmental conditions, including a wide temperature 60 

range and the subsequent geochemical gradients (Simankova et al., 2003) as it can be 61 

observed in the active layer of the permafrost environment. Previous experiments in our labs 62 

have demonstrated the remarkable resistance of Siberian permafrost methanogenic strains 63 

against desiccation, osmotic stress, low temperatures and starvation when compared to 64 

methanogenic archaea from non-permafrost environments (Morozova & Wagner, 2007, 65 

Wagner et al., 2013). They also exhibit a high level of resistance to monochromatic and 66 

polychromatic UV and ionizing radiation (D. Wagner, unpublished data), comparable to that 67 

of Deinococcus radiodurans (Brooks & Murray, 1981). In addition, methanogens from 68 

Siberian permafrost environments are able to survive simulated Martian thermo-physical 69 

conditions (Morozova et al., 2007) and simulated Martian subsurface analog conditions 70 

(Schirmack et al., 2013), in contrast to other psychrophilic methanogens from non-71 
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permafrost habitats such as Methanogenium frigidum (Franzmann et al., 1997) from Ace 72 

Lake, Antarctica, which cannot resist these conditions (Morozova et al., 2007). Among the 73 

Siberian permafrost isolates, the genera Methanosarcina and Methanobacterium are broadly 74 

represented. Methanosarcina can metabolize a broad spectrum of substrates, including 75 

hydrogen, methanol and acetate (Liu & Whitman, 2008). Methanobacterium species present 76 

a hydrogenotrophic metabolism, growing on H2+CO2 or formate (Ferry, 1993).  77 

The reasons why psychrotolerant methanogens from Siberian permafrost environments are 78 

more resistant to a broad range of extreme parameters than their relatives from psychrophilic 79 

and mesophilic non-permafrost habitats remains unknown. We hypothesize that this 80 

difference might depend on specific adaptations reflected in their biomolecules. In order to 81 

investigate the chemical composition of methanogens from Siberian permafrost and non-82 

permafrost habitats, we used a Raman spectroscopy setup. Raman spectroscopy is a 83 

vibrational spectroscopic technique that provides fingerprint-like information about the 84 

overall chemical composition of the cell and requires a minimal sample preparation, 85 

allowing a rapid nondestructive investigation (Rösch et al., 2005, Harz et al., 2009). The 86 

strains in this study were previously investigated by Fourier-transformed Raman 87 

spectroscopy in an attempt to perform a bulk analysis of their chemical composition. 88 

However, due to the nature of the cells and the presence of metabolic byproducts (Serrano et 89 

al., 2013), confocal Raman microspectroscopy (CRM) proved to be the optimal method. 90 

CRM combines a dispersive Raman setup with a high-numerical aperture confocal 91 

microscope, enabling the study of the chemical structure and composition of individual cells 92 

under diffraction-limited conditions (Krause et al., 2008, Hermelink et al., 2009). This 93 

technique has allowed the characterization of the chemotaxonomic features in multiple 94 

microorganisms to the species and even strain level (Maquelin et al., 2002).  95 
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Additionally, a phylogenetic reconstruction based on the gene mcrA was performed to 96 

investigate the phylogenetic relationships among the strains in this study. Microbial 97 

phylogenetics is often based on the 16S rRNA molecule, although other important molecular 98 

markers for classification are known. In methanogenic archaea, the functional gene mcrA 99 

codes for the α subunit of the methyl coenzyme-M reductase (MCR), which catalyzes the last 100 

step of the methanogenesis (Ferry, 2010). MCR is thought to be unique to methanogens and, 101 

since it retains a common function, sequence comparisons are considered to provide valid 102 

phylogenetic data (Reeve, 1992). The gene mcrA has also proven to be an alternative to 16S 103 

rRNA in the phylogenetic analysis of methanogen populations (Luton et al., 2002). 104 

In this study, we describe the overall chemical composition of three strains of methanogens 105 

from Siberian permafrost and two strains of methanogens from non-permafrost habitats by 106 

means of CRM in an attempt to gain insights into their different resistance to extreme and 107 

fluctuating environmental parameters. In addition, we give a phylogenetic overview of the 108 

studied strains and their evolutionary relationship based on the functional gene mcrA. 109 

Finally, we discuss the differences in the chemical nature in relation to the reconstructed 110 

phylogeny. 111 

 112 

Materials and Methods 113 

Archaeal cultures 114 

The three psychrotolerant methanogenic strains from Siberian permafrost environments used 115 

for this study were Methanosarcina soligelidi SMA-21 (Wagner et al., 2013), SMA-17 and 116 

SMA-27. They were isolated from the active layer of permafrost-affected soils in the Lena 117 

Delta, Siberia (Russia). In nature, they thrive in temperatures ranging from -45ºC to +25ºC 118 

and even if they can grow at temperatures down to 0°C, the optimal growth temperature of 119 
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the isolates is 28ºC. Ms. soligelidi SMA-21 (DSM 26065
T
) and SMA-17 appear as irregular 120 

cocci, ~1µm in diameter and cell aggregation is often observed. They show 99.9 % 121 

homology on the 16S rRNA sequence with Methanosarcina mazei (Mah, 1980). SMA-27 122 

cells are elongated rods, ~3-4 µm long.  Their closest relative according to the 16S rRNA 123 

molecule is Methanobacterium congolense (Cuzin et al., 2001) (96.4 % homology. Wagner, 124 

unpublished). Additionally, two mesophilic strains from non-permafrost habitats were used 125 

as reference strains. Ms. barkeri DSM 8687 originates from a peat bog in northern Germany 126 

(Maestrojuan et al., 1992) and Ms. mazei DSM 2053 was isolated from a mesophilic sewage 127 

sludge plant in California, USA. Both strains were obtained from the German Culture 128 

Collection of Microorganisms and Cells (DSMZ, Braunschweig, Germany), appear as 129 

irregular cocci, ~1µm in diameter, grow in colonies and are found in diverse environments. 130 

Both show an empirical optimal growth at the temperature of 28ºC. 131 

 132 

Growth conditions of methanogenic strains 133 

For an accurate comparison of the spectra, the Raman measurements were performed in 134 

living cells from pure cultures grown at optimal conditions at 28⁰C and at their stationary 135 

phase of growth (approximately 3 weeks after innoculating the cultures). The permafrost 136 

strains were not grown at simulated permafrost conditions for the following reasons: 1) 137 

permafrost conditions are extremely difficult to simulate, considering the yearly long term 138 

freezing and thawing cycles, that consequently cause changes in the salinity and the 139 

geochemical gradients, very difficult to accurately simulate in culture conditions. 2) The 140 

freezing and thawing cycles that would partly recreate permafrost conditions would cause 141 

environmental stress on the cells due to the changing parameters. Therefore, the permafrost 142 

populations would contain less viable healthy cells and the quality of the cultures between 143 

fresh non-permafrost cultures and aged permafrost cultures exposed to environmental stress 144 

would not allow a fair comparison of the chemical composition.  145 
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Pure cultures were grown in sealed bottles that contained 50 mL of MW medium [(L
-1

): 146 

NH4Cl 0.25 G, MgCl2 x 6H20, 0.4 G, CaCl2 x 2H2O 0.1 G, KCl, 0.5 G, KH2PO4, 0.2 G, Na 147 

HCO3, 2.7 G, Cysteine, 0.3 G, Na2S, 0.2 G; trace element solution (Balch et al., 1979), 148 

10mL; vitamin solution (Bryant et al., 1971), 10mL] in Methanosarcina strains and CS 149 

medium [(L
-1

): NH4Cl, 0.3 G, MgCl2 x 6H2O, 0.4 G, CaCl2 x 2H2O, 0.16 G, NaCl, 1.0 G, 150 

KCl, 0.5 G, K2HPO4 0.25 G, Na HCO3, 2.7 G, Na-Acetate, 0.25 G, Na2S2O4, 0.1 G, Na2S, 151 

0.25 G; trace element solution (Imhoff-Stuckle & Pfennig, 1983), 1mL; vitamin solution 152 

(Bryant et al., 1971), 1mL] in the case of SMA-27 (since the growth of SMA-27 in MW 153 

medium was suboptimal). Both media contain 2 mL resazurin (7-Hydroxy-3H-phenoxazin-154 

3-on-10-oxide). The bottles were flushed and pressurized to one atmosphere with H2/CO2 155 

(80:20 v/v). For sample preparation, 200 mL from four sets of pure cultures in the stationary 156 

phase of growth were centrifuged at 7900 g for 40 min and 4℃ and washed twice in 200 mL 157 

of distilled water at 4600 g for 30 min and 4℃. 7 μL of the cell suspensions were air-dried 158 

onto a CaF2 slide, previously diluted 1:10 and 1:100 for a better observation of the single 159 

cells. 160 

 161 

Raman microspectroscopy 162 

Raman spectra were captured using a WITec (Ulm, Germany) Model alpha 300R confocal 163 

Raman microspectroscope (CRM), calibrated according to the manufacturer's instructions 164 

with an Ar/Hg spectral lamp. The CRM contained an ultra-high throughput spectrometer 165 

(UHTS300) and used a back-illuminated EMCCD camera (Andor Technology PLC, Belfast, 166 

Northern Ireland) as detector. All the measurements presented in this article were performed 167 

with an apochromatic Nikon E Plan (100x/0.95) objective (Tokyo, Japan) and a working 168 

distance of 0.230 mm at an excitation wavelength of 532 nm (frequency doubled Nd-YAG 169 

laser; 35mW laser power). A minimum of 20 individual cells were measured, each of them 170 
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with 5s of accumulation time under full pixel binning and without gaining at the camera. 171 

Further technical details about the Raman equipment and measurements were reported in 172 

detail in Serrano et al. (2014).  173 

For hierarchical clustering of the CRM spectra, a cosmic ray removal procedure was first 174 

performed on the spectra, followed by the individual export of each spectrum via an ASCII 175 

interface into OPUS 5.5 (Bruker Optik GmbH, Rheinstetten, Germany). As part of the pre-176 

processing, we carried out a quality test in order to assess the signal-to-noise ratio and a pre-177 

selection of the cell-based spectra that contains the principal components of the spectrum. 178 

The first derivative with Savitzky-Golay smoothing/ derivative filter was applied using 9 179 

smoothing points and normalized vectors. Spectral distances between pairs of individual 180 

spectra were obtained based on the data from the 796-1854 and 2746-3205 cm
-1

 spectral 181 

regions as D-values (Naumann, 2000) derived from normalized Pearson’s product 182 

momentum correlation coefficient. The normalization allows a variation between D-value=0 183 

(r=1: high correlated data/identity), D-value=1000 (r=0: uncorrelated data) and D-184 

value=2000 (r=-1:anti-correlated spectra) and prevents negative values (Helm et al., 1991). 185 

Average linkage was used as the clustering method. For the cluster analysis in Figure 4A, the 186 

same method was applied to the average spectra obtained from averaging the individual 187 

spectra of each strain shown in Fig. 2, including the outlying spectra. 188 

The individual Raman intensities of all strains within the regions of 850 - 1850 and 2750 - 189 

3200 cm
-1

 were treated as statistical variables and subjected to a rigid rotation via a Principal 190 

Component Analysis (PCA) using the commercial software package MATLAB R2014a (The 191 

Mathworks Inc, Natick, MA). This allows for the reduction of the original variables into 192 

fewer, independent variables and to visualize and compare spectra between permafrost and 193 

non-permafrost methanogenic strains. 194 

 195 
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Phylogenetic analysis 196 

For phylogenetic analysis based on the mcrA sequence, the DNA was extracted from pure 197 

cultures of the five mentioned strains following the user manual of the UltraClean® DNA 198 

purification kit. The mcrA gene (Bokranz et al., 1988) was amplified with the primers ME1 199 

(forward: gCMATgCARATHggWATgTC) and ME2 (reverse: 200 

TCATKgCTAgTTDggRTAgT). The PCR consisted in 32 cycles of 1min at 94ºC 201 

(denaturation) followed by 1 min at 55ºC (annealing) and 1 min at 72ºC (elongation). A 202 

previous denaturation stage (10min, 95ºC) and a final elongation (10min, 72ºC) were 203 

performed, resulting in a 710 base pairs gene product. Sequencing was performed by GATC 204 

Biotech (Constance, Germany). The consensus sequence was obtained using the software 205 

CodonCode Aligner (Codoncode Cooperation, MA, USA). The nucleotide sequences from 206 

the Siberian permafrost strains were uploaded in GeneBank under the numbers KJ432634 207 

(mcrA Ms. soligelidi SMA-21), KJ432635 (mcrA SMA-17) and KJ432633 (mcrA SMA-27). 208 

A multiple alignment of the five mcrA sequences was performed with ClustalW (Thompson 209 

et al., 1994) through Geneious pro 5.6.6 (Biomatters Ltd.) and a maximum likelihood tree 210 

(1000 bootstraps) was built using the GTR substitution model including the methanogenic 211 

archaea Methanopyrus kandleri (Kurr et al., 1991) order Methanopyrales, (Genbank 212 

U57340) as an outgroup.  213 

 214 

Results 215 

Raman spectra of permafrost and non-permafrost methanogens  216 

The Raman spectra of the analyzed strains Ms. soligelidi SMA-21, SMA-17 and SMA-27 217 

from Siberian permafrost and Ms. barkeri and Ms. mazei from non-permafrost habitats are 218 

illustrated in Figure 1 and described Table 1. The highest Raman intensity in all spectra was 219 
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the CH2 stretching vibration around 2936 cm
-1

. The spectra from permafrost strains exhibited 220 

a shoulder at 2885 cm
-1

, which corresponds to the symmetric CH3 stretching (Socrates, 221 

2004), indicating significant differences in the aliphatic chain composition between 222 

permafrost and non-permafrost methanogenic strains. Raman modes of proteins were found 223 

at 1669 cm
-1

 (amide I) and at 1243-1275 cm
-1

 (region of amide III). Their intensities are 224 

correlated and show slightly lower values for Ms. soligelidi SMA-21 and SMA-17. The peak 225 

at 1610 cm
-1

 corresponds to the bond C=C found in aromatic amino acids phenylalanine and 226 

tyrosine and reached higher intensities in non-permafrost strains, whereas the peak at 1589 227 

cm
-1

 is associated to the ring breathing modes of ribonucleotides guanine and adenine as well 228 

as the amino acid tryptophan and was absent in permafrost strains. The intensity of the 1460 229 

cm
-1

 band, attributed to CH2 deformation, was similar in all strains investigated. The peaks at 230 

1344 cm
-1

 and 1338 cm
-1

 were both assigned to the deformation of the group CH in 231 

carbohydrates and proteins (Ivleva et al., 2009). The peak at 1344 cm
-1

 reached the highest 232 

intensity for Ms. mazei, the lowest for Ms. soligelidi SMA-21 and SMA-17 and intermediate 233 

values for SMA-27 and Ms. barkeri, whereas the one at 1338 cm
-1

 was unique to the 234 

permafrost strains SMA-21 and SMA-17. All the mentioned bands varied slightly in 235 

bandwidth, position and intensity for each strain. The peaks in the spectral region located 236 

between 1200 and 800 cm
-1

 showed relative higher intensities in permafrost strains than in 237 

non-permafrost strains, including the bands located at 1167 cm
-1

 (C-C and C-O ring 238 

breathing), 1128 cm
-1

 (characteristic of the C-O-C in the glycosidic link) and 1054 cm
-1

 (C-O 239 

and C-C from carbohydrates, and C-C and C-N in proteins, Neugebauer et al., 2007).  The 240 

band at 1008 cm
-1

 was attributed to the symmetric benzene/ pyrrole in-phase and out-of-241 

phase breathing modes of phenylalanine (Ivleva et al., 2009).  The band at 860 cm
-1 242 

corresponded to the C-C stretching modes and the C-O-C glycosidic link in polysaccharides 243 

(Pereira et al., 2004), and the peak at 835 cm
-1

 was exclusive to the permafrost strains and 244 
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was attributed to the ring breathing of the amino acid tyrosine and the group O-P-O present 245 

in nucleic acids (Ivleva et al., 2009).  246 

The cluster analysis based on the Raman spectra showed the similarities and differences in 247 

the overall chemical composition of permafrost and non-permafrost strains in stationary 248 

phase, revealing two chemically different clusters illustrated in Figure 2 (individual spectra) 249 

and 4A (average spectra). CRM spectra corresponding to individual cells of the same 250 

microbial strain clustered together, with the exception of two spectra from SMA-27 and 251 

three spectra from Ms. soligelidi SMA-21 (Fig. 2). The outlying spectra of SMA-27 were 252 

equally distant to the spectra of the SMA-27 cluster and the Ms. soligelidi SMA-21/ SMA-17 253 

cluster, separated by the distance of 104.6 and 123.1 D-value units, respectively. Three 254 

outlying spectra of Ms. soligelidi SMA-21 were separated by 70.8 D-value units from the 255 

Ms. soligelidi SMA-21/ SMA-17 cluster. Spectra from Ms. mazei, Ms. barkeri and SMA-17 256 

cells were less heterogeneous and grouped into unique clusters at the strain level.  257 

The cluster analysis in Figure 4A shows an overview of the phenotypic resemblance in the 258 

chemical composition based on the average spectra of each strain, obtained from averaging 259 

the individual spectra, including the outliers (and therefore disregarding the intraspecific 260 

variances in the heterogeneity). Strains Ms. soligelidi SMA-21 and SMA-17 were most 261 

similar, separated by 15.6 D-values. The cluster Ms. soligelidi SMA-21/ SMA-17 was 262 

closely related to the strain SMA-27, also from Siberian permafrost, distanced by 37.8 D-263 

values. Apart from the permafrost group, the spectra from Ms. mazei and Ms. barkeri (non-264 

permafrost strains) grouped together, separated by 24.4 D-value units. The total distance 265 

between the permafrost and the non-permafrost cluster was 84.4 D-values.  266 

The PCA in Figure 3A shows the score plot of the first 3 principal components (PCs) that 267 

cumulatively captured 88.04 % of the total variance in the spectral regions of interest. It 268 

demonstrated that each strain occupies a distinct variable space, forming non-overlapping 269 
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data clouds. Additionally, PC1 can effectively separate the permafrost and the non-270 

permafrost groups (note that PCA has been carried out on normalized spectra), illustrating 271 

shared spectral features within each of the two groups and divergent spectral features 272 

between these groups. Figure 3B shows the loadings of the first three PCs. PC1 (62.72% of 273 

the variance) is dominated by strong bands at the labeled wavelengths, which correspond to 274 

the vibrational modes of proteins, carbohydrates, nucleic acids and lipids (Neugebauer et al., 275 

2007, Ivleva et al., 2009) and illustrate additional differences within the chemical 276 

composition between permafrost and non-permafrost strains. The downward peaks 277 

correspond to distinct features shared by non-permafrost methanogens, whereas the upward 278 

peaks correspond to shared features of permafrost methanogens. 279 

 280 

Phylogenetic relationships of methanogenic archaea  281 

A maximum likelihood tree (GTR substitution model, 1000 bootstraps) was built for the 282 

studied methanogens according to the mcrA nucleotide sequence, using Methanopyrus 283 

kandleri as the outgroup (Fig. 4B). All the Methanosarcina species clustered together, with 284 

Ms. soligelidi SMA-21 and SMA-17 from the Siberian permafrost showing identical mcrA 285 

sequences. The cluster Ms. soligelidi SMA-21/ SMA-17 was closely related to Ms. mazei, 286 

sharing a 98.5 % identity in their sequences. Ms. mazei and Ms. barkeri presented a 91.5 % 287 

homology. Finally, SMA-27 was the most evolutionary distant strain, sharing only 61% of 288 

the mcrA nucleotide sequence with the rest of the studied strains.  289 

 290 

Discussion 291 

Previous studies have shown that methanogenic archaea from permafrost habitats are more 292 

tolerant to different environmental stress factors compared to those from non-permafrost 293 
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areas (Morozova et al., 2007, Morozova & Wagner, 2007, Morozova et al., 2015). In this 294 

study, we have shown that Siberian permafrost and non-permafrost strains could be 295 

classified into two different groups according to their chemical composition on the basis of 296 

CRM analysis. The Siberian permafrost strains (Ms. soligelidi SMA-21, SMA-27 and SMA-297 

17) show a higher degree of similarity in their chemistry and the spectral clusters of SMA-27 298 

and Ms. soligelidi SMA-21 present outlying spectra, suggesting that their populations are 299 

more chemically heterogeneous than the other strains (Fig. 2). However, the high phenotypic 300 

heterogeneity within a cell population and diversity between different growth phases 301 

described for Ms. soligelidi SMA-21 (Serrano et al., (2014) were also observed in all the 302 

strains investigated in this study. When comparing the cluster analysis of the individual 303 

spectra (Fig. 2) with the average spectra (Fig. 4A), two puzzling facts concerning the scale, 304 

and therefore the heterogeneity, were observed: (i) The scales were different, despite 305 

referring to the same data; (ii) The heterogeneity within the SMA-27 population was larger 306 

than the overall distance in the average spectra. The explanation relies on the fact that the 307 

average spectra were obtained by averaging the single spectra from each strain, including the 308 

outliers, which considerably increased the variance of the corresponding strains (Ms. 309 

soligelidi SMA-21 and most remarkably SMA-27). The largely different variances within 310 

each strain were therefore not proportionally weighed for the cluster analysis of the average 311 

spectra and, despite this fact, the permafrost and the non-permafrost strains cluster in 312 

different groups according to their chemical composition.  313 

The clusters resulting from the PCA of the individual spectra (Fig. 3A) support the cluster 314 

analysis in Figure 2, evidencing that CRM can be used to differentiate between strains, 315 

which form non-overlapping data clouds on the plot. Furthermore, the first principal 316 

component has separated out permafrost from non-permafrost strains. However, the Raman-317 

spectroscopic differences between permafrost and non-permafrost strains (Fig. 1 and 3B) are 318 

 by guest on O
ctober 24, 2015

http://fem
sec.oxfordjournals.org/

D
ow

nloaded from
 

http://femsec.oxfordjournals.org/


 
 

14 
 

non-conclusive when it comes to pointing to specific biomolecules that differentiate the two 319 

groups. Raman spectroscopy exclusively shows the differences in the vibrational modes and 320 

thus in the chemical composition, without revealing the biomolecule itself. For example, the 321 

band at 2885 cm
-1

 (Fig. 1) corresponds to the symmetric CH3 stretching, indicating 322 

significant differences in the aliphatic chain composition between permafrost and non-323 

permafrost methanogens, but this technique does not allow for the identification of specific 324 

phospholipids. 325 

On the other hand, the evolutionary relationships among the strains do not correspond in all 326 

cases with the topology found for the chemical composition. The phylogenetic relationship 327 

provided by the gene mcrA proves that the permafrost strains do not form a monophyletic 328 

group (Fig. 4B). The mcrA sequences of Methanosarcina strains from the Siberian 329 

permafrost (SMA-21 and SMA-17) are closely related to each other, whereas SMA-27 330 

presents only 61% of homology with the rest of the strains and aligned with the genus 331 

Methanobacterium. Sequence alignments of the 16S rRNA molecule corroborate these 332 

findings (Wagner, unpublished), evidencing that SMA-27 forms a distantly-related sister 333 

group. The non-permafrost strains, Ms. mazei and Ms. barkeri, share a remarkable degree of 334 

homology in both chemical composition and genetic information. The maximum likelihood 335 

analysis based on mcrA shows a full bootstrap support for the node that separates Ms. 336 

barkeri (Fig. 4B). Although the other two nodes within that group are not completely 337 

resolved, it is evidenced that Ms. mazei is the most closely related strain to Ms. soligelidi 338 

SMA-21 and SMA-17.  339 

This study proves that Siberian permafrost methanogenic strains share a related chemistry, 340 

regardless of their evolutionary origin. In other words, methanogens with different genotypes 341 

can exhibit an analogous phenotype in terms of chemical composition. This finding points to 342 

the evidence of the complexity of the adaptations to the environmental conditions, 343 
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suggesting that methanogenic strains from Siberian permafrost may have developed common 344 

biochemical adaptations to sub-zero temperatures, freeze-thaw cycles, osmotic stress and 345 

high levels of background radiation over geological time scales. A plausible phenomenon 346 

explaining the convergent chemical composition in permafrost strains despite their different 347 

genotype is the horizontal gene transfer (HGT) (Jain et al., 1999). HGT allows the rapid 348 

incorporation of novel functions that provide a selective advantage to the organism and there 349 

is proof of HGT in the evolution of some genes coding for enzymes involved in 350 

methanogenic pathways (Fournier, 2009). The Alien Hunter programme (Vernikos & 351 

Parkhill, 2006) predicted that between 35% and 51% of the genome of methanogenic archaea 352 

has undergone HGT, and the highest percentage corresponded to the psychrophilic archaeon 353 

Methanococcoides burtonii (Allen et al., 2009). However, the gene mcrA chosen for this 354 

study is not affected by this phenomenon. All mcr operons appear to have evolved from a 355 

common ancestor and since MCR plays a key role in the methanogenesis, it is highly 356 

conserved and provides valid phylogenetic information, independent of the 16S rRNA 357 

information (Reeve, 1992). Despite this fact, other operational genes involved in perhaps 358 

anabolic pathways may have experienced HGT with the consequent production of 359 

molecules/metabolites that might have provided a selective phenotypic advantage to the 360 

cells. That selective advantage would enable them to survive in the Siberian permafrost 361 

environment and leading to a convergent chemical phenotype of the methanogenic archaea. 362 

The specific biomolecules that are different for permafrost and non-permafrost strains and 363 

may provide the selective advantage, however, cannot be discriminated by means of CRM.  364 

CRM allows the discrimination between molecules based on their specific vibrational 365 

modes. When investigating the composition of a single cell, CRM can be used to describe 366 

only the Raman-active biomolecules such as molecules containing aromatic rings 367 

 by guest on O
ctober 24, 2015

http://fem
sec.oxfordjournals.org/

D
ow

nloaded from
 

http://femsec.oxfordjournals.org/


 
 

16 
 

(phenylalanine, tryptophan, pigments etc.), but this technology does not allow the 368 

identification of specific biomolecules (e.g. a particular protein or carbohydrate). 369 

Figure 1 and Table 1 illustrate both the quantitative (band intensities) and qualitative (band 370 

position) chemical differences found between spectra of permafrost (psychrotolerant) and 371 

non-permafrost (mesophilic) methanogens cultured at their optimal conditions and growth 372 

temperature (28ºC). Some peaks experience a slight shift in comparison to their standard 373 

value in the literature (e.g. the symmetric benzene/ pyrrole in-phase and out-of-phase 374 

breathing modes of phenylalanine appear at 1008 cm
-1

 in contrast to Ivleva et al., 2009, with 375 

the same peak described at 1003cm
-1

). Although the calibration of the spectrometer was 376 

verified once a week, calibration errors of 3-5 wavenumber units (deviation of approximately 377 

one pixel of the 1024 x 128 CCD element) cannot be excluded. However, a systematic 378 

calibration error of the CRM measurements is expected to only exert a minor effect on the 379 

results of cluster or principal component analysis. Furthermore, the Raman peaks illustrating 380 

the differences between the permafrost and non-permafrost groups are not identical in Fig. 1 381 

and Fig. 3B, although they are focused in the same major spectral regions. For instance, the 382 

region 1571-1690 cm
-1

 in the average spectra (Fig.1) contains minor fluctuations that 383 

correlate with the peaks identified on the PCA (Fig. 3B). This spectral region corresponds to 384 

proteins (amide I, 1669cm
-1

) and aromatic amino acids, and evidences differences between 385 

permafrost and non-permafrost strains. The same fact is observed within the region 2846 - 386 

2959 cm
-1 

(Fig. 1), which corresponds to lipids: multiple additional differences in the 387 

vibrational modes of permafrost and non-permafrost methanogens are revealed within that 388 

region on the PCA (Fig. 3B).  389 

The underlying compositional differences might be correlated with convergent biochemical 390 

adaptations to the Siberian permafrost environment and could explain the resistant nature of 391 

the permafrost strains when compared to other non-permafrost methanogens. These 392 
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adaptations to the Siberian permafrost environment might be related to one or multiple 393 

adaptive mechanisms to cold, radiation, desiccation, osmotic stress, and their corresponding 394 

seasonal fluctuations. The adaptive mechanisms described for psychrotolerant methanogenic 395 

archaea include modifications in cellular components and functional machinery or proteins 396 

in order to maintain their structural flexibility and activity under cold temperatures and 397 

changing conditions (Dong & Chen, 2012). For instance, the membrane lipids show 398 

increasing levels of unsaturation of the fatty acids  (Cavicchioli et al., 2000). In Figure 1, the 399 

peak at 2936 cm
-1

 (CH2 stretching region) presents a similar intensity for all strains, pointing 400 

to the fact that the lipid content is comparable. Next to it, the peak at 2885 cm
-1

 (symmetric 401 

CH3 stretching) reveals a noticeable contrast between permafrost and non-permafrost strains, 402 

denoting qualitative differences in the aliphatic chain composition of the lipids (Socrates, 403 

2004), even when growing at mesophilic temperatures. In addition, previous studies have 404 

reported that proteins in psychryotolerant methanogens present a reduced hydrophobic core 405 

and a less charged protein surface (Reed et al., 2013), as well as cold-adaptive chaperone 406 

proteins, such as Csp, CSD and TRAM domain proteins (Giaquinto et al., 2007). This study 407 

shows that the protein levels are slightly more abundant in non-permafrost strains and SMA-408 

27, according to the amide I (1669 cm
-1

) and amide III bands (1275-1243 cm
-1

), which 409 

correspond to the peptide bond of proteins. On the other hand, the peak at 1610 cm
-1 

is 410 

unique to phenylalanine and tyrosine and it is more abundant in non-permafrost strains. 411 

However, the peak at 1008 cm
-1

, assigned to phenylalanine, is slightly higher in the 412 

permafrost methanogenic strains. The peaks at 1589 cm
-1 

and 835 cm
-1 

correspond also to 413 

aromatic amino acids, but are not unique to them. These findings are in principle compatible 414 

with the reduced hydrophobic cores of proteins in psychrotolerant methanogens found by 415 

Reed et al. (2013), since the proteins from permafrost methanogenic strains present 416 

relatively less aromatic (and hydrophobic) amino acids, with the exception of phenylalanine. 417 

Unfortunately, only the aromatic amino acids tryptophan, tyrosine and phenylalanine 418 
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produce Raman scattering, and therefore this technique does not allow further amino acid 419 

identification. 420 

Particularly interesting is the band at 860 cm
-1

, which is especially prominent in permafrost 421 

strains and was previously assigned to the C-O-C 1,4-glycosidic link present in 422 

carbohydrates and polysaccharides (Pereira et al., 2004, Ivleva et al., 2009).  This distinctive 423 

band together with the band at 1338 cm
-1

 confirms the presence of polysaccharide of similar 424 

nature in permafrost strains. Many microorganisms, including archaea, have been reported to 425 

produce exopolysaccharides (EPSs, sugar-based polymers that are secreted by 426 

microorganisms to the surrounding environment) as a strategy to survive adverse conditions 427 

(Poli et al., 2011). In fact, they have been shown to play a protective role against desiccation 428 

(Ophir & Gutnick, 1994), which might be the case of the permafrost methanogenic strains in 429 

the perennially frozen ground or frozen period of the active layer. 430 

In conclusion, this study presents proof of concept that distantly related methanogens 431 

(Methanosarcina and Methanobacterium) occurring in the same habitat have independently 432 

developed similarities in the chemical composition (Hoover & Pikuta, 2009). Extreme 433 

conditions such as sub-zero temperatures and osmotic stress generally affect macromolecule 434 

structures and the thermodynamics of chemical reactions, having the same impact on all 435 

microorganisms. Hence, microorganisms that inhabit in the same extreme environment have 436 

proven that the features and adaptations that unite them as a group are stronger than the 437 

variation imposed by their phylogeny (Cavicchioli, 2006). The microbial communities of 438 

permafrost environments have been often referred to as a “community of survivors” 439 

(Friedmann, 1994) that have found themselves trapped in this environment and have 440 

outcompeted those unable to withstand the given environmental conditions through a process 441 

of continuous selection that lasted millions of years (Gilichinsky et al., 1993). The Siberian 442 

 by guest on O
ctober 24, 2015

http://fem
sec.oxfordjournals.org/

D
ow

nloaded from
 

http://femsec.oxfordjournals.org/


 
 

19 
 

permafrost methanogenic strains in this study corroborate the convergence of a certain 443 

phenotype in response to the surrounding environment, independent of the genotype.  444 
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Table 1. Description of the Raman bands identified in the spectra of the methanogenic 590 

strains from Siberian permafrost (Ms. soligelidi SMA-21, SMA-17 and SMA-27) and the 591 

mesophilic methanogens (Ms. mazei and Ms. barkeri) measured with an excitation 592 

wavelenght of 532nm. The values of the bands exclusive to one or a few strains are 593 

presented in grey. + indicates the presence of a certain band, and - its absence. Qualitative 594 

differences are indicated with the symbol (+), meaning a higher intensity of the peak and 595 

therefore cellular abundance. 596 

 597 

Wavenumber 

(cm
-1

) 

Description Ms. 

mazei 

Ms. 

barkeri 

SMA-17 Ms. soligelidi 

SMA-21 

SMA-27 

2936 CH3 str and  

CH2 str 

+ + + + + 

2885 CH3 str sym - - + +(+) +(+) 

1669 

 

amide I (C=O str, 

NH2 bend, C=N str) 

+(+) +(+) + + +(+) 

1610 C=C (Phe, Tyr) + (+) + (+) + + + 

1589 G + A ring str 

(nucleic acids); Trp 

+ + - - - 

1460 δ(CH2) scis, CH2 def + + + + + 

1344 δ(CH) +(+) +(+) + + +(+) 

1338 δ(CH) - - + + - 

1275-1243 Amide III +(+) +(+) + + +(+) 

1167 C–C, C–O ring 

breath, asym 

+ + + + + 

1128 C–C str, C–O–C 

glycosidic link; ring 

breath, sym 

(carbohydrates); C–

N, C–C str (proteins); 

C–C str (lipids) 

+ + + + + 
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1054 C–O, C–C str 

(carbohydrates); C–

C; C–N (proteins) 

+ + +(+) +(+) +(+) 

1008 n(CC) aromatic ring 

(Phe) 

+ + +(+) +(+) +(+) 

860 C-C str; C-O-C 

glycosidic link 

+ + +(+) + (+) +(+) 

835 Ring breath Tyr; O–

P–O str (DNA/RNA) 

- - + + + 

 598 

  599 
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 600 
Figure Legends 601 

 602 
Figure 1. Average Raman spectra of methanogenic strains from Siberian permafrost (Ms. 603 

soligelidi SMA-21, SMA-17 and SMA-27) and non-permafrost environments (Ms. mazei 604 

and Ms. barkeri) measured with an excitation wavelength of 532nm. Note that values 605 

corresponding to the band positions specific to one or a few strains are presented in grey. 606 

  607 
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 608 
Figure 2. Cluster analysis (average linkage method) of Raman spectra from individual cells 609 

from permafrost and non-permafrost strains in stationary phase. CRM spectra from 610 

Methanosarcina mazei and Ms. barkeri (non-permafrost strains) form a cluster, which is well 611 

separated from the cluster of permafrost strains (SMA-27, Ms. soligelidi SMA-21 and SMA-612 

17).  613 

  614 
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 615 
Figure 3. Principal Component Analysis (PCA) of the individual spectra of the five 616 

methanogenic strains (A) Score plot of the first 3 principal components (PCs) of the total 617 

variance of the spectra. (B) Loadings of the first three principal components, illustrating the 618 

major spectral differences in PC1 (labeled peaks). 619 

  620 
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 621 
Figure 4. Chemical vs. phylogenetic relationships of methanogenic archaea from Siberian 622 

permafrost Methanosarcina soligelidi SMA-21, SMA-17 and SMA-27 (in blue) and the two 623 

non-permafrost strains used as reference Ms. barkeri and Ms. mazei (A) Cluster analysis of 624 

the average Raman spectra from permafrost and non-permafrost strains in stationary phase 625 

using the average linkage clustering method. (B) Maximum likelihood tree (GTR 626 

substitution model, 1000 bootstraps) according to the mcrA nucleotide sequence. 627 

Methanopyrus kandleri (Methanopyrales) was used as the outgroup. The branch support 628 

values indicated in the nodes show the robustness of the phylogenetic reconstruction. 629 

 630 
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