Synthesis and Characterization of Highly Active IrO\textsubscript{x}-Ir Nanoparticles for Oxygen Evolution Reaction in Acid Media

P. Lettenmeiera,* , S. S. Hosseinya , L. Wanga , A. S. Gagoa , K. A. Friedricha,b

a Institute of Engineering Thermodynamics, German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
b Institute of Energy Storage, University of Stuttgart, Keplerstraße 7, Stuttgart 70174, Germany
*Corresponding author email address: philipp.lettenmeier@dlr.de

Introduction
For the water splitting in PEM electrolyzers the choice of the oxygen evolution reaction (OER) catalyst employed at the anode has a profound impact on costs, lifetime, and efficiency of the device.[1;2] We have developed a highly active and stable nanostructured Ir catalyst for (OER) in acidic medium, synthesized by an environmental friendly, water free synthesis at room temperature.[3]

Method
All measurements were done for IrO\textsubscript{x}-Ir and Ir-black from Umicore, the most active, commercially available OER catalyst. IrO\textsubscript{x}-Ir shows an up to five-fold higher current density at an overpotential of 250mV, measured on an RDE at 25°C in Ar-saturated 0.5 M. H\textsubscript{2}SO\textsubscript{4} solution.

XPS
• highly metallic materials
• thin layer of oxide

XRD
• crystalline structure and size.

Transmission electron microscopy
• Particle size: 2nm
• High surface area:
 - BET IrO\textsubscript{x}-Ir: 60 m2 g-1
 - BET Ir-black: 18 m2 g-1
• Similar cristallin structure

Electrochemical characterization
• High exchange current density
• Five fold higher activity in A g-1
• 6.8 time less active sites
• 13 time higher activity in A mmol-1

 PEM electrolyzer test
A MEA with 1mg catalyst loading on the Anode site was produced on Nafion 212 by wet spraying and performed in a PEM electrolyzer test stand of 25 cm2 active area, combined with EIS measurements as an in situ characterization method. The catalyst is stable for more than 100h and shows stable performance up to 4 A cm-2.

Acknowledgements
We acknowledge the German BMWi for financial support in the project No. 0325440A. We thank as well N. A. Cañas, P. Gazdzicki, I. Plock, U. Golla-Schindler for the XRD, XPS, SEM and TEM characterization, respectively; and M. Handl and R. Hiesgen for the AFM analysis.

Knowledge for Tomorrow
Wissen für Morgen