Study of Detailed Degradation Behavior of Solid Oxide Electrolyzer Cells (SOEC)

Günter Schiller¹, Michael Hörlein¹, Frank Tietz², K.A. Friedrich¹

¹German Aerospace Center (DLR),
Institute of Engineering Thermodynamics, Stuttgart, Germany

²Forschungszentrum Jülich (JÜLICH)
Institute for Energy and Climate Research
Materials Synthesis and Processing (IEK-1)
Outline

• Introduction: Need for energy storage
 Principle of solid oxide electrolysis
• Cell manufacturing
• Cell characterization
• Degradation measurements
• Conclusion and Outlook
Storage of Electricity from Renewable Energy Sources

- Need for energy storage
 - Increasingly fluctuating power generation
 - Mobile applications

- Electrical energy difficult to store
 - Conversion to chemical energy

- Water electrolysis: \(\text{H}_2\text{O} + W_{\text{el}} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \)

- Solid oxide electrolysis is one possible conversion technology
Hydrogen as Storage Option

Source: LBST
Principle of Solid Oxide Electrolysis

Advantages:

• High temperature (600 - 900° C)
 • Fast reaction kinetics
 • Low overvoltage
 • High efficiency & high current densities
• No noble metals as catalysts
• Fuel versatility: CO₂ electrolysis
 → Co-electrolysis of H₂O/CO₂ possible
 → Syn-gas production
 → External (or internal) hydrocarbon formation

Problem:
Low longevity - Degradation
Present Work – Motivation and Concept

Systematic study: operating parameter → degradation

- Temperature (T)
- Fuel gas humidity (AH)
- Current density (i)

Experimental concept:

- Degradation experiments for 1000 h
- Test rig – quadruple cell measurement
 - Identical temperature, gas supply (and also incidents)
 - Four different current densities simultaneously
- Fuel electrode supported cells from FZ Jülich and CeramTec
 - Ni-8YSZ support | Ni-8YSZ | 8YSZ | CGO | LSCF
Objectives

- To gain fundamental understanding of degradation processes
 - Distinguish between degradation processes
 - Identify degradation mechanisms
 - Correlate them with operating parameters

- To optimise cells for electrolysis operation

- To adapt operating parameters for low degradation
Manufacturing Steps of SOFC Anode-Supported Cells

Substrate
- Warm pressing with Coat Mix® powder or tape casting
- Solid oxide fuel cell

Anode
- Screen printing

Electrolyte
- Cofiring of anode and electrolyte
- Transparent electrolyte

Cathode
- Current collector
- PVD-CGO
- Laser-cutting to dimensions up to 200 x 200 mm²

1200°C → 1100°C → 1400°C
Solid Oxide Electrolyser Cells: Planar Design

Materials

Anode: \((\text{La}, \text{Sr})(\text{Fe}, \text{Co})\text{O}_3\)

Diffusion barrier: CGO – 1-5 µm

Electrolyte: 8YSZ – 5-10 µm

Cathode: Ni/YSZ

Cathode Substrate: Ni/YSZ
I-V Curves at 750 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)
I-V Curves at 800 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)
Degradation Experiment and Impedance Data Interpretation

- 4 cells measured simultaneously at different current densities
- Linear degradation after initial phase
- Be careful with interpretation of voltage degradation rate
Degradation Experiment and Impedance Data Interpretation

- Degradation rate at 1.5 A/cm² only 13% higher than at 1.0 A/cm²
- Degradation rate at 0.5 A/cm² significantly lower
- ASR degradation rate about 30% compared to 3% voltage degradation (per 1000 h @ 0.5 A/cm²)
Degradation Experiment and In-situ Data Interpretation

Equivalent circuit model

- L_1: High frequency induction
- P_0: Ohmic resistance ($> 10^5$ Hz)
- P_1: Fuel electrode process A ($\sim 10^4$ Hz)
- P_2: Fuel electrode process B ($\sim 10^3$ Hz)
- P_3: Oxygen electrode process ($\sim 10^2$ Hz)
- P_4: Fuel electrode mass transport ($\sim 10^1$ Hz)
Influence of Current Density on Degradation

- Ohmic resistance contributes more than 50% of total ASR.
- Degradation of ohmic resistance is most severe.
- Oxygen electrode has small ASR but high contribution to degradation.
- Fuel electrode process 1 degrades while process 2 improves performance.
Influence of Current Density on Degradation

P_0: Ohmic resistance
- Obvious correlation with current density
- Linear degradation with time
Influence of Current Density on Degradation

Degradation after 1000 h
- Ohmic resistance: strong dependence on current density
 Dependence possibly exponential
Influence of Current Density on Degradation

Degradation after 1000 h
- Fuel electrode process 1: clear linear dependence on current density
- Other three processes: no current dependency
Humidification

Ohmic resistance (R_0):
- Dependent on current density

Fuel electrode polarization (R_{1+2}):
- Lower degradation rate at higher humidities…
- … but higher degradation dependence on current density
Humidification

Oxygen electrode polarization (R_3):
- Humidity has very little influence

Fuel electrode polarization (R_4):
- Generally small degradation
- Lower at higher humidities
- No obvious trend
Post-mortem Analysis – Electrolyte

Reference 1000 h @ OCV 1000 h @ 1.5 A/cm²

Ohmic resistance:
- Weakening of YSZ|CGO|LSCF interface → probably formation of cracks
- Visible cracks probably formed during sample preparation along weakened microstructure
Post-mortem Analysis – Oxygen Electrode

- Probably Sr-segregation
 - High resolution XPS
- Contamination?
- Possibly some sintering

Reference 1000 h @ OCV
1000 h @ 1.5 A/cm²
Summary

- Correlation between degradation and current density has been investigated
- Ohmic resistance dominates degradation and increases with current density
- Oxygen electrode contributes significantly to degradation and is independent of current density
- Higher frequency fuel electrode process significant for degradation and dependent on current density
- Lower frequency fuel electrode process is stable after initial activation independent of current density
- No degradation in mass transport limitation
Acknowledgment

I'd like to thank my PhD student Michael Hörlein for his scientific work and strong effort and Frank Tietz and his co-workers from Forschungszentrum Jülich for manufacturing and providing cathode-supported cells for electrolysis operation.

Financial support from Helmholtz Association in the frame of the Helmholtz Energy Alliance „Stationary electrochemical solid state storage and conversion“ is gratefully acknowledged.

Thank you for your attention