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ABSTRACT

A future APNT-System will be composed of ground
based ranging sources and other sensors (e.g. barometric
altimeter, IMU). The vertical Dilution of Precision for a
system of ground stations can be significantly higher than

for GNSS, therefore the integration of altitude measure-
ments is especially important. We propose two different
algorithms to integrate an altitude measurement: an iter-
ative position solution with an additional equation for the
altitude and a direct position solution which introduces a
quadratic constraint for the altitude measurement to a least
squares problem using Lagrange multipliers.

INTRODUCTION

Global navigation satellite systems (GNSS) have been
selected to be the primary means of navigation in aeronau-
tics. They open up a lot of new possibilities e.g. increase
of capacity and cost efficiency. However, especially the
inherent low signal strength creates the need for a backup
system with sufficient accuracy, availability, continuity and
integrity to compensate for major outages or degradation of
GNSS. This need shall be covered by a future Alternative
Positioning, Navigation and Timing (APNT) System that
will use (pseudo-)ranging with ground stations amongst
other sensors. This setup rises new challenges concerning
ranging as well as positioning.

In an APNT Setup the geometrical constellation of the
ranging sources generally leads to a high vertical Dilution
of Precision (VDOP) (see [5]) because of their position on
the ground. Because of the high VDOP the vertical compo-
nent of the position needs to be obtained by other means.

Since air data systems are installed in most aircraft types
the barometric altimeter is the obvious source of informa-
tion that can and should be used to compensate in case
of difficult geometric constellations. Similar to 2D GNSS
PVT solutions, it is possible to use barometric altitude mea-
surements in different ways. If only three pseudorange
measurements are available additional information e.g. an
altitude measurement is necessary to obtain a position so-
lution. Then the position can be obtained as an intersection
of the surface at the measured altitude above the Earth’s el-
lipsoid and two confocal hyperboloids of two sheets. These
hyperboloids consist of the positions in space that have the



same range difference to two ranging sources at a time (see
e.g. [2]). In the very unlikely situation of all pseudoranges
being equal this algorithm will become singular and thus
needs special treatment, which also has been addressed in
[2].

When four or more range measurements are available a
three dimensional position solution is generally possible by
either using a direct method (e.g. [1] or [4]) or an iterative
method, like the Newton-Raphson algorithm, or a combina-
tion of both algorithms (see [5]). But they do not make use
of additional altitude information and hence lead to subop-
timal results in geometries with high VDOP.

In the following we will describe an iterative and a di-
rect positioning algorithm for four or more pseudorange
measurements and an altitude measurement. Then we will
compare the two algorithms with each other in simulations.

THE ALGORITHMS

Iterative Method: Gauss-Newton

For comparison we will introduce an iterative method
based on the Gauss-Newton algorithm, to integrate altitude
measurements. To introduce an equation for the altitude
measurement h we use

A(h) := diag
(

1

(α+ h)2
,

1

(α+ h)2
,

1

(β + h)2

)
with α and β for the semi-major and semi-minor axis of the
WGS84 ellipsoid and h the altitude above the ellipsoid. So
all points x satisfying

xTA(h)x− 1 = 0 (1)

are located on an ellipsoid with semi-major and semi-minor
axis extended by the amount of h. It is known that the sur-
face described by (1) does not represent the surface consist-
ing of the local normal vectors of length h of the WGS84
ellipsoid - so a the surface is not fully ”parallel”. However
(1) is close to this surface on centimeter level for altitudes
h up to 10km (see [6]). Which is sufficiently close for this
application. In addition to the altitude measurement we use
k pseudorange measurements. For the ith ground station
the pseudorange equation reads as follows:

ρi = ‖si − x‖+ b

Pseudoranges and altitude measurements together define a
function F on which we want to apply the Gauss-Newton
algorithm to compute the zeros:

F(x, b) :=


ρ1 − (‖ s1 − x ‖ +b)

...
ρk − (‖ sk − x ‖ +b)

xTA(h)x− 1



So we need to compute Jacobian matrix of F :

G(x) :=


1

‖s1−x‖ (s1 − x)T −1
...

...
1

‖sk−x‖ (sk − x)T −1

2xTA(h) 0

 .

Using a starting vector
(
x0

b0

)
which is sufficiently close

to the user position, we get the position solution iteratively
by:(

xn+1

bn+1

)
:=(

xn
bn

)
− (G(xn)TWG(xn))−1G(xn)TWF(xn, bn)

To get good results the weighting matrix W has to be cho-
sen appropriately to give enough weight to the last row of
G because of the way the altitude h is used here. This al-
gorithm works with three or more stations. The follow-
ing scatter plots show the performance in different geo-
metrical constellations in simulations. For the ranges a
standard deviation of σrange = 20m and for the altitude
σaltitude = 10m were used. The resulting standard devi-
ation in the position domain is less than σposition = 44m
(see Fig. 1). The arrows in the plots indicate the directions
from the user position to the ground stations. The first sce-
nario has a well distributed set of stations at the following
coordinates:

station 1 station 2 station 3
-30528m 84780m 9802m
-17062m 79002m 90012m
-2842m -3929m -3585m

Fig. 1 Horizontal position error distribution for three well
distributed ground stations

But in the second scenario the stations are all in a simi-
lar direction from the user, as it might occur adjacent to a



Fig. 2 Horizontal position error distribution for three
ground stations in one direction

cost line or to mountains, shadowing stations from the other
side. This scenario is geometrically very extreme and has
been chosen to analyze the robustness of the method. The
resulting standard deviation in the position domain is less
than σposition = 865m (see Fig. 2).

station 1 station 2 station 3
-77443m -74985m -70468m
-4134m -58806m 3405m
-3372m -3607m -3259m

Direct Method

We will start with the pseudorange equation and derive
a system of equations for spherical positioning from there
following an approach from [7]. Let ρi be the pseudorange
to the i-th ranging source located at si. x and b denote the
user position and clock error respectively.

ρi = ‖si − x‖+ b

For i 6= j we take the difference of the squared pseudor-
ange equations and get a hyperplane in space time:

⇒ ρ2i−ρ2j + 2(ρj−ρi)b = ‖si‖2−‖sj‖2 + 2(sj−si)Tx

These equations can be summarized in a linear system of
equations  (s2 − s1)T ρ1 − ρ2

...
...

(sk − s1)T ρ1 − ρk


︸ ︷︷ ︸

=:H

(
x
b

)

=
1

2

ρ
2
1 − ρ22 + ‖s2‖2 − ‖s1‖2

...
ρ21 − ρ2k + ‖sk‖2 − ‖s1‖2


︸ ︷︷ ︸

=:y

(2)

which can be solved for the position x and the user clock
bias b.
The next step will be to shape the constraint for the altitude.
We write α and β for the semi-major and semi-minor axis
of the WGS84 reference ellipsoid. With this we define:

A(h) :=


1

(α+h)2 0 0

0 1
(α+h)2 0

0 0 1
(β+h)2


for the altitude h above the reference ellipsoid. So for a
user position x at altitude h the following holds in a global
approximation:

xTA(h)x = 1.

This leads to a quadratic constraint of our least squares
problem. For a general description of least squares prob-
lems with quadratic constraints and their solutions see [3],
we will present a solution for given problem in the follow-
ing. So we can introduce the Lagrange multiplier ` to de-
fine the minimization criterium for the position solution:

argmin
(xT ,b,`)∈R5

(y−H
(
x
b

)
)T (y−H

(
x
b

)
) + `(xTAx− 1)︸ ︷︷ ︸

=:J(x,b,`)

(3)

Optionally a weighting matrix W can be introduced, but
for simplicity of the derivation we will not consider this
here. To solve the minimization problem we need to derive
J for x, b and `. To do so we first rewrite J such that we
separate x and b

J(x, b, `) = yTy − 2(yTHxx + yTHbb) + xTKxx

+ 2bKT
b x + b2k44 + `(xTAx− 1)

with

H =:
(
Hx Hb

)
HTH =: K =

(
Kx Kb

KT
b k44

)
Now the derivatives are es follows:

dJ

dx
= 2(−yTHx + xTKx + bKT

b + `xTA) = 0 (4)

dJ

db
= 2(−yTHb + KT

b x + bk44) = 0 (5)

dJ

d`
= xTAx− 1 = 0 (6)

Note that (6) is just the quadratic constraint. Now we solve
(5) for b:

b =
1

k44

(
yTHb −KT

b x
)



where k44 may not equal zero, which is only the case if
all pseudoranges have equal length (in this case we have a
singularity) and substitute this into (4)

− yTHx+xTKx+
1

k44
(yTHb−KT

b x)KT
b +`xTA = 0

⇔

xT =yT (Hx−
1

k44
HbK

T
b )︸ ︷︷ ︸

=:V

(Kx−
1

k44
KbK

T
b + `A)−1.

So we computed an expression for x which we can sub-
stitute into (6). Furthermore we want to use the principal
axis transformation instead of (Kx − 1

k44
KbK

T
b )A−1 =:

UΛU−1, which is existent due to the symmetry of the ma-
trix.

yTVT (UΛU−1A− `A)−1A

(UΛU−1A + `A)−1Vy − 1 = 0

⇔ yTVTA−1(UΛU−1 + `UU−1)−2Vy − 1 = 0

⇔ yTVTA−1U︸ ︷︷ ︸
=:pT

(Λ− `I)−2 U−1Vy︸ ︷︷ ︸
=:q

−1 = 0

Which is equivalent to

3∑
i=1

piqi
(λi + `)2

− 1 = 0 (7)

where pi and qi are the i-th entry of p and q respectively
and λi is the i-th diagonal element of Λ. Then we solve (7).
The different solutions of (7) lead to different options for ζ
that could be extremal. To check for a minimal solution we
can simply substitute each solution into the minimization
criterium (3).

COMPARISON

The following plot shows simulation results of both the
direct and the iterative method with 10000 Monte Carlo
runs. For the ranges a standard deviation σrange = 20m
was used and for the altitude σaltitude = 10m. In the first
scenario (Figures 3-6) we use 6 stations in the directions
indicated by the arrows in the scatter plot. The coordinates
of the stations in a local ENU frame, with respect to the user
position are the following:

station 1 station 2 station 3 station 4 station 5 station 6
-30528m -64709m 84780m 7389m 9802m 22736m
-17062m -6247m 79002m 88505m 90012m 65749m
-2842m -3086m -3929m -3554m -3585m -3259m

Fig. 3 Scatter plot of horizontal position error for 6 stations
with HDOP 1.9

Fig. 4 Quantile-Quantile plot of horizontal position error
in dominant direction for 6 stations with HDOP 1.9

Without the altitude measurement these stations lead to the
following covariance matrix in ENU coordinates:

Cov(

(
δx
δb

)
) =

σ2
range


1.41 −1.16 −4.52 −0.51
−1.16 2.34 −38.37 3.14
−4.52 −38.37 1999.1 −115.09
−0.51 3.14 −115.09 7.34


and the horizontal Dilution of Precision is 1.9. The errors
in the altitude component are very similar and according to
the introduced error in the altitude measurements. For the
direct method this is due to the constraint and for the iter-
ative solution the altitude measurement was given a high
weight compared to the ranges. We can overbound the hor-
izontal position error, in the dominant direction of the error,
by 38m for the iterative solution and 41m for the direct so-
lution.



Fig. 5 Histogram of vertical position error in meters for 6
stations with HDOP 1.9

Fig. 6 Histogram of timing error in meters for 6 stations
with HDOP 1.9

The second scenario (Figures 7-10) uses different stations
with a higher horizontal Dilution of Precision (5.1) but oth-
erwise the same parameters. The stations are again in the
directions indicated by the arrows plus one additional sta-
tion approximately below the user position. The coordi-
nates of the stations in a local ENU frame, with respect to
the user position are the following:

station 1 station 2 station 3 station 4 station 5
81544m -60547m 56885m 37256m 0
73767m -10039m 29796m 33149m 0
-3706m -2954m -2932m -2866m -3000m

The coordinates above lead to the following covariance ma-
trix:

Cov(

(
δx
δb

)
) =

σ2
range


4.20 −9.04 2.34 −2.34
−9.04 21.61 −5.97 5.97
2.34 −5.97 3.08 −2.03
−2.34 5.97 −2.03 1.98



In this scenario the horizontal error is greater due to the

Fig. 7 Scatter plot of horizontal position error for 5 stations
and HDOP 5.1

Fig. 8 Quantile-Quantile plot of horizontal position error
in dominant direction for 5 stations and HDOP 5.1

increased horizontal dilution of precision and can be over-
bounded by 96m (iterative) and 128m (direct).

CONCLUSIONS

In this paper we proposed two different kinds of algo-
rithms, one iterative and one direct, to introduce an altitude
measurement to a position solution. The iterative algorithm
shows a better performance and has the advantage of re-
quiring only three pseudorange measurements. The itera-
tive solution performs a linearization, which is only valid
locally, hence a sufficiently good approximation has to be
available for a starting point. It is necessary to ensure con-
vergence, but it is not trivial to determine how close suffi-
ciently close is. It can vary due to the geometrical constel-
lation and the distance to the stations (a similar analysis as



Fig. 9 Histogram of vertical position error in meters for 5
stations and HDOP 5.1

Fig. 10 Histogram of timing error in meters for 5 stations
and HDOP 5.1

in [5] would have to be made for methods including altitude
measurements). We also see potential for improvement of
this method by bringing the altitude and the pseudorange
equations to a common frame.

The direct algorithm does not need an approximation of
the position, but leads to multiple possible position solu-
tions. One of these solutions has to be identified as the
right solution of the user position. Furthermore the direct
method suffers from a loss of information due to the spher-
ical positioning approach (see (2)). We are currently inves-
tigating how to improve the direct algorithm to prevent this
loss of information respectively its impact. Also a combi-
nation with the iterative method is to be considered.

In our view these algorithms show promising results but
further analysis and improvements of the methods are on-
going to provide a solution that can be used in an real world
APNT system.
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