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Abstract We present a numerical analysis of a variant of Lorentz force velocimetry (LFV) termed electromagnetic
Lorentz force velocimetry (EM–LFV). Both LFV and EM–LFV are techniques for the non-contact measurement
of liquid metal flows in metallurgical applications that rely on the measurement of a force acting upon a magnetic
system interacting with the liquid metal. Whereas LFV relies on permanent-magnet systems, EM–LFV is based
upon electromagnets. We formulate and analyse a simple model of EM–LFV which consists of a single circular
coil interacting with a moving solid cylinder. We compute the Lorentz force acting on the coil as a function
of the two geometry parameters characterizing the problem and compare the numerical results with analytical
approximations for three limiting cases. Our numerical results serve as a verification and validation tool for future
full-scale simulations of EM–LFV involving realistic complex electromagnets and three-dimensional turbulent flow
geometries.

Keywords Computational magneto-hydrodynamics · Lorentz force velocimetry · Electromagnet

1 Introduction

Velocity measurement techniques constitute a challenging field for the industry of metal manufacturing because
of the aggressive environment which accompanies their melting process, which always occurs at high tempera-
tures. Several techniques are detailed in [1]. As can be easily understood, conventional techniques which require
contact between the sensors and the liquid are not suitable to measure the velocity of a liquid metal. Therefore,
non-contact flow measurement techniques represent a challenging and interesting field with obvious applications.
Measurement techniques, including non-contact methods, for liquid metals can be found in the literature, but they
remain commercially unavailable. One of the first works in the theory of flow measurement using a magnetic field
was established in the early 1960s by Shercliff [2], who developed the theory of the magnetic flywheel, followed
by an analysis of flowmeters based on a multi-coil system presented by Feng et al. [3].

More recent works are also available classified under either flowmeter [4,5] or Lorentz force velocimetry (LFV).
The LFV method has been widely investigated during the last decade: physical principles [6,7], numerical simu-
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lations [8,9], experiments at the laboratory scale [10–12] and validation at the industrial scale [13]. Most of these
studies were carried out for cases where a localized magnetic field is created by permanent magnets or a magnetic
dipole. This measurement system may be more expensive for wide and complex industrial installations. In partic-
ular, attention may be drawn to the work of Kirpo et al. [8] who conducted investigations similar to the one we are
performing here, computing the electromagnetic drag force and torque due to the motion of a solid bar, but in the
case where the magnetic field is created by a magnetic dipole.

The so-called electromagnetic Lorentz force velocimetry (EM–LFV) is proposed here as an alternative; it creates
magnetic fields by means of electromagnets. Similar works using coils exist in the literature. For instance Feng et
al. investigated and optimized some arrangements of multi-coil flowmeters [3] creating an AC magnetic field. The
difference with the LFV method is the use of a coil as a steady magnetic field source instead of a permanent magnet
or magnetic dipole.

Our interest in electromagnets as the source of a magnetic field in this study is motivated by the eventuality of an
increase in the LFV process cost in large-scale industrial uses. Indeed, the geometries used in the industry cover a
scale varying from the centimetre to meter range, and subsequently much greater Lorentz force flowmeter may be
required to measure velocity and mass flux under such conditions. The cost of a permanent magnet increases with its
size, which leads to higher process costs for the Lorentz force flowmeter. In such a case, the use of an electromagnet
consisting of a simple copper coil will ensure a reasonable process cost in industrial-scale applications. In addition,
the magnetic field created by an electromagnet can be switched off if needed during the process, which is an
advantage over magnet systems.

The present work aims to determine analytically the Lorentz force resulting in the motion of an electrically
conducting solid body under a steady magnetic field created by a coil through the coefficient of sensitivity of the
flowmeter. This non-dimensional coefficient is a term that appears in the analytical formulation of the Lorentz force
as a function of different geometrical parameters: the radius of the inducting coil, the radius of the electrically
conducting solid body, and the distance between the coil and the conducting solid body, which are summarized
under two dimensionless parametersm C1 and C2, whose variations make it possible to investigate all geometries
which can be theoretically or practically achieved. The Lorentz force and the coefficient of sensitivity are then
computed numerically and compared to the analytical solutions.

This paper is organized as follows. The studied cases and the main geometrical parameters are introduced in
Sect. 2. Then the analytical formulation for the Lorentz force and the coefficient of sensitivity are defined in Sect. 3.
Section 4 presents the computation results and their comparison with the analysis. Finally, concluding remarks are
made in Sect. 5.

2 Methodology

We are interested in a simple geometry (Fig. 1). It consists of an electrically conducting solid body (referred to as a
cylinder) and a coil which creates the steady magnetic field when subjected to a steady current. The coil is centred
regarding the cylinder and is placed at the position z = 0, where z is the axial coordinate. The radius of the cylinder
is denoted by Rcyl, Rcoil is the thickness of the coil and R is the curvature radius of the coil.

Two dimensionless geometrical parameters were defined related to that configuration in order to have a complete
description of all situations which can theoretically emerge. These parameters are respectively C1 and C2, defined
as

C1 = Rcyl

R
(1)

and

C2 = Rcoil

R
, (2)
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Fig. 1 Geometry of solid
body of radius Rcyl and coil
of radius Rcoil. R is the
curvature radius of the coil
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where C1 is the ratio of the radius of the cylinder to the curvature radius of the coil (1) and C2 is the ratio of the
radius of the coil to the curvature radius of the coil (2).

The aim is to compute the Lorentz force acting upon the coil in the vertical direction (z) as a function of C1

and C2 as well as the current I , the conductivity of the coil σ and the radius of the cylinder when the cylinder
moves in the z-direction at velocity V0. A broad range of points of investigation (Fig. 2) was defined based on these
dimensionless numbers. As presented in Fig. 1, the radii Rcyl and Rcoil must satisfy the inequality (3):

R ≥ Rcyl + Rcoil. (3)

Using (1) and (2) with (3), this implies

C1 + C2 ≤ 1. (4)

These points vary in a range of between 0 and 1 since C1 and C2 must satisfy relation (4). This relation is
illustrated by the diagonal line drawn in Fig. 2, where it can be easily seen that C1 = 0 corresponds to C2 = 1 and
vice versa. For cases where C1 +C2 = 1 the computation point is localized on the diagonal line. When C1 +C2 < 1,
the computation point is localized under the diagonal line. Therefore, the corresponding values of C1 and C2 lead
to a set of points which form a triangle having three vertices localized at respectively C1 = C2 = 0, C1 = 1 and
C2 = 1. These points correspond to three asymptotic situations which cannot be reached in practice. Thus, three
cases which approach these asymptotic situations were studied and defined as follows: when C1 and C2 → 0, the
investigated point tends towards the first vertex localized at (0, 0). When C1 → 1 and C2 → 0, the studied case
tends towards the second vertex at (1, 0). Finally, when C1 → 0 and C2 → 1, we approach the third vertex at (0, 1).

Figure 3 shows an illustration of these limiting cases. A situation where the radius of the cylinder Rcyl is much
smaller compared with the curvature radius of the coil R is shown in Fig. 3a. This case was previously investigated
and published in [7].

The second case presented in Fig. 3b corresponds to a situation where the thickness of the coil is infinitesimally
small and when it is wrapped around the moving cylinder, leaving no gap. Although this case is far from representing
a realistic situation, it is conceptually important because it provides an upper bound on the Lorentz force.

The last situation is illustrated in Fig. 3c: a thick coil is wrapped around an infinitesimally thin cylinder, leaving
no gap in order to have R very close to Rcoil.
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Fig. 2 Investigation domain defined by geometrical parameters
C1 and C2, which vary in a range of 0 to 1. The diagonal line and
the three vertices define the limits of that domain

Fig. 3 Sketch of three limiting cases: a the radii of both the
cylinder and the coil are small compared to R: Rcyl = εR, Rcoil =
εR or C1 = ε, C2 = ε; b the radius of the coil is much smaller
than the radius of the cylinder: Rcoil = εRcyl or C2 = ε, ε � 1;
c the radius of the cylinder is much smaller than the radius of the
coil: Rcyl = εRcoil or C1 = ε, ε � 1

3 Analytical approximations

Theoretical investigations were made for the kinematic–solid body motion problem (where the velocity is imple-
mented in calculations as a constant) based on the principles of electromagnetism. An analysis of the three limiting
cases introduced previously is presented in this section.

3.1 Thin cylinder–thin coil

A geometry consisting of a thin cylinder and a thin coil reflects the condition where both C1 and C2 are infinitesimally
small (Fig. 3a). Indeed, since Rcyl = εR and Rcoil = εR, it happens, according to Eqs. (1) and (2) respectively, that
C1 = ε and C2 = ε, which also confirm Eq. (4).

The condition C1 = ε can also be written as C1 � 1. Here, we refer to a previous work of Thess et al. [7],
where this case was investigated. The analytical solution of the Lorentz force F1 was formulated in the case of an
electrically conducting material (being either a solid body or a melt) moving at a velocity V0 in a localized region
where a steady magnetic field exists. This solution is given by the following relation (derived in [7]):

F1 = −45π2

256

σ V0 B2
0 R4

cylS1

R
. (5)

Here, B0 is the maximum value reached by the magnetic flux density at the centre of the cylinder, σ is the
electrical conductivity of the cylinder and V0 is its moving velocity. Moreover, Rcyl and R are respectively the
radius of the cylinder and the curvature radius of the coil. The coefficient S1 is the sensitivity of the flowmeter.

This dimensionless quantity has been defined by Shercliff as a “measure of the performance or the calibration
of any induction flowmeter in which the potential difference induced between two electrodes is used to indicate
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a flow rate” [2].1 According to this primary definition, another formulation was established by Thess et al. [7],
where the coefficient of sensitivity of the flowmeter is directly related to the non-dimensional shape function of
the velocity profile. We refer to that formulation in this paper. Its value depends on the motion type, i.e. a solid
body translation or the Poiseuille flow of a liquid. Here, index 1 denotes that the coefficient is related to the Lorentz
force termed F1. This nomenclature is subsequently generalized in this paper. For the conditions C1 = ε and
C2 = ε, combined with a solid body motion under a steady magnetic field, it was established that the coefficient of
sensitivity S1(C1, C2) = S1 is a constant equal to 1/4 [7]. The dependency of S1 on C1 and C2 appears once the
non-dimensional numbers are no longer negligible.

We reformulate this equation to underscore the dependency of the Lorentz force on the current instead of the
magnetic field, replacing B0 with μ0 I/(2R), which leads to

F1 = −45π2

256

σ V0μ
2
0 I 2 R4

cylS1

4R3 . (6)

where F1 is the axial component of the Lorentz force. We notice that the radius of the coil does not appear in Eqs. (5)
and (6), and then C2 has no effect on the Lorentz force for a given value of the inductor’s current. The Lorentz
force increases with Rcyl due to its dependency on R4

cyl and increases when R decreases because the distance to the
coil decreases, leading to a higher level of exposition of the cylinder to the magnetic field. The magnitude of that
analytical Lorentz force calculated for Rcyl = 0.001 m, σ = 106 S/m, V0 = 10 m/s is typically of 1.71 × 10−12 N
when R = 1 m and 7.93 × 10−12 N when R = 0.6 m. This non-realistic numerical example only illustrates how
weak the Lorentz force is for large radii of a coil.

3.2 Thick cylinder–thin coil

This situation is related to that in Fig. 3b, where the radius of the coil is negligible compared with the radius of the
cylinder: Rcoil = εRcyl, with ε � 1.

Therefore,

R = Rcyl + Rcoil = Rcyl(1 + ε) (7)

and

C1 � 1 − ε, (8)

C2 � ε. (9)

When ε � 1, Rcyl is close to R, which tends towards infinity. Therefore, Rcoil is so small compared to
Rcyl that the situation is equivalent to a wire coil creating a magnetic field in a semi-infinite plane (Fig. 4) (the
plane is infinite along the axial z-direction and semi-infinite along the radial r -direction). The expression for the
Lorentz force F2 is obtained after a change of reference from a cylindrical coordinate to a Cartesian coordinate
system.

Strictly speaking, the magnetic field created in such a configuration has an infinite magnitude when R = 0. The
subsequent Lorentz force integrated in an infinite plane is infinite itself. However, this extreme approximation is
retained, which allows a change in reference from a cylindrical coordinate to a Cartesian coordinate system. The
origin is located at the centre of the coil. Thus, the magnetic flux density created by an infinite wire is given by the
Biot–Savart law as

�B = μ0 I

2πr
�eθ . (10)

1 This statement is part of the original text.
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Fig. 4 Infinitely long wire
(in z-direction) and
semi-infinite plane having
an infinite length along axial
direction z and a
semi-infinite length along
radial direction: Rcyl is
close to R, which is much
higher compared with Rcoil
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Since �eθ = cos θ �Uy − sin θ �Ux , and knowing that cos θ = x/r and sin θ = y/r , the magnetic flux density is
written in Cartesian coordinates as

�B = μ0 I

2π

x

r2
�Uy − μ0 I

2π

y

r2
�Ux . (11)

The eddy current induced in the volume of our cylinder is

�J = σ �V × �B, (12)

where �V = V0 �Uy is the moving velocity of the coil and �B = Bx �Ux + By �Uy is the magnetic field (Eq. 11).
Finally, we obtain

�J = σ V0
μ0 I

2π

y

x2 + y2
�Uz . (13)

Then the Lorentz force can be calculated as

�f = �J × �B = −Jz By �Ux + Jz Bx �Uy . (14)

We are only interested in the y component of the Lorentz force, termed F2 here. We can now revisit the cylindrical
coordinate system to integrate the Lorentz force in the volume of the cylinder. In the cylindrical coordinate system,
y remains unchanged and x becomes R − r . The y component of the volumetric Lorentz force shown in (14) is
then integrated as follows:

F2 = −σ V0

(
μ0 I

2π

)2 ∫ ∞

−∞

∫ Rcyl

0

y2

((R − r)2 + y2)2 2πrdrdy

= −σ V0

(
μ0 I

2

)2 [
R ln

(
Rcyl

Rcoil
+ 1

)
− Rcyl

]
. (15)
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Table 1 Analytical values for non-dimensional coefficient of sensitivity of flowmeter S2(C1, C2) computed as function of non-
dimensional parameters C1 and C2 (when C1 = 1 − ε and C2 = ε) and corresponding values for analytical Lorentz force |F2|
(absolute value, unit is N )

C1 C2 S2(C1, C2) |F2|
0.99 0.010 4.5952 0.1814

0.992 0.008 4.8183 0.1902

0.996 0.004 5.5115 0.2176

0.997 0.003 5.7991 0.2289

0.998 0.002 6.2046 0.2449

Using the definition of the dimensionless parameters (Eqs. 1 and 2), relation (15) leads to the following formu-
lation:

F2 = −σ V0
μ2

0 I 2

4

[
R ln

(
C1

C2
+ 1

)
− Rcyl

]
. (16)

Note that when we consider an infinite value for C1, Eq. (16) becomes infinite, which corresponds to the semi-
infinite plane situation. In the same way, considering C2 = 0, a similar analysis can be acrried out, and we find the
thin wire case.

Defining the coefficient of sensitivity as S2(C1, C2) = R ln
(

C1
C2

+ 1
)

− Rcyl (where index 2 denotes the relation

to F2), Eq. (16) becomes

F2 = −σ V0
μ2

0 I 2

4
S2(C1, C2). (17)

Table 1 summarizes the analytical values reached by S2 and F2 when C2 = ε � 1 and C1 = 1 − ε � 1. An
increase of the Lorentz force is observed with C1 (which varies from 0.99 to 0.999), while a decrease occurs with
C2 (which varies from 0.001 to 0.01). A comparison of the theoretical result to the computed one is presented later
on (Sect. 4.2).

3.3 Thin cylinder–thick coil

This situation is described by the following relation:

Rcyl = εRcoil, (18)

C1 � ε, (19)

C2 � 1 − ε. (20)

As the coil touches the cylinder here (Fig. 3c), relation (3) becomes

R = Rcoil + Rcyl. (21)

Using relation (18) in Eq. (21) yields

R = (1 + ε)Rcoil � Rcoil. (22)
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Table 2 Analytical values for non-dimensional coefficient of sensitivity of flowmeter S3(C1, C2) computed as function of non-
dimensional parameters C1 and C2 (when C1 = ε and C2 = 1 − ε) and corresponding values for analytical Lorentz force |F3|
(absolute value, unit is N )

C2 C1 S3(C1, C2) |F3|
0.99 0.010 2.58 × 10−7 1.75 × 10−6

0.992 0.008 1.32 × 10−7 8.96 × 10−7

0.996 0.004 1.65 × 10−8 1.12 × 10−7

0.997 0.003 6,96 × 10−9 4.75 × 10−8

0.998 0.002 2.06 × 10−9 1,41 × 10−8

0.999 0.001 2.58 × 10−10 1.76 × 10−9

Replacing Rcoil with R [according to (22)] in Eq. (18) leads to

Rcyl = εR. (23)

Equation (23) can be equivalently written as Rcyl � R (or C1 � 1), which is the condition representing the case
investigated in Sect. 3.1. That allows us to adapt Eq. (6) to the situation considered here, replacing R with Rcyl/ε as

F3 = −45π2

256

σ V0μ
2
0 I 2 Rcylε

3S1

4
,

where S1 = 1/4. ε is defined from relation (18) as ε = Rcyl/Rcoil = C1/C2. The coefficient of sensitivity of the
flowmeter is defined as

S3(C1, C2) = S1ε
3 = 1

4

(
C1

C2

)3

. (24)

Henceforth, Eq. (25) is therefore a heuristic formulation to define the Lorentz force created for the thin cylinder–
thick coil situation:

F3 = −45π2

256

σ V0μ
2
0 I 2 RcylS3(C1, C2)

4
. (25)

Table 2 summarizes the coefficient of sensitivity S3(C1, C2) and the Lorentz force calculated analytically for
C1 = ε while C2 = 1 − ε. We clearly observe a decrease of the Lorentz force in the cylinder when C1 decreases
(meaning Rcyl becomes tiny).

4 Results of numerical computations

To comprehensively understand the dependence of the sensitivity of the flowmeter on the geometry parameters C1

and C2, we performed an extensive set of computations for the axisymmetric problem using commercial software
(COMSOL). The height of the translating solid body was taken to be equal to four times the curvature radius of the
coil. The radius of the cylinder was fixed at 0.01 m for all computations. The dimensionless number C2 was fixed
to a range of values varying from 0.001 to 0.9, while C1 was varied by modifying the curvature radius of the coil
from 1 m (C1 = 0.01) to a small value close to the radius of the cylinder (up to C1 � 0.99). The numerical results
for the coefficient of sensitivity of the flowmeter are used as a function of C1 and C2. The computed sensitivity of
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Fig. 5 Ratio of computed
to analytical coefficient of
sensitivity Sc1/S1 plotted
versus C1 for C2 = 0.003,
0.01, 0.1, 0.2 and 0.3
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the flowmeter denoted by Sc1, Sc2 and Sc3 are respectively deduced from the ratio between the computed Lorentz
force and the analytical one, Fc/F1, Fc/F2 and Fc/F3, as

Fc

Fi
= Sci

Si
	⇒ Sci = Fc

Fi
Si , (26)

where i = 1, 2 or 3.
The computed Lorentz force is determined by integrating the axial component of the Lorentz force in the solid

body domain.

4.1 Sensitivity of flowmeter for thin cylinder–thin coil case: C1 = ε and C2 = ε

The computed coefficient of sensitivity of the flowmeter, Sc1, is obtained from Eq. (26) when the Lorentz force
is established for the case where C1 = ε [with ε � 1, this condition describes the domain covered by Eq. (5)].
The sensitivity of the flowmeter was analysed as a function of C1, while C2 has a fixed value, as shown in Fig. 5.
The ratio of the computed to the analytical coefficient of sensitivity Sc1/S1 is plotted versus C1 for C2 = 0.003,
0.01, 0.1, 0.2 and 0.3. A zoom of Fig. 5 in the region where the ratio Sc1/S1 lies around 1 is presented in Fig. 6a:
when C2 increases, the computed coefficient of sensitivity of the flowmeter becomes smaller than the analytical
one. Thus, for C2 = 0.3, for instance, the ratio Sc1/S1 is very close to 0.95, while it is close to 1 when C2 = 0.003.
Figure 6b focuses on the values C2 = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Here, the ratio Sc1/S1 moves away from 0.95
(for C2 = 0.4) to 0.7 for C2 = 0.9. This behaviour shows the effect of the non-dimensional parameter C2 on the
coefficient of sensitivity for the case considered here: when C2 increases and approaches unity, the ratio Sc1/S1 is
no longer close to 1 because the condition C2 = ε is no longer confirmed.

Considering the behaviour along C1 in Fig. 5, there is good agreement between both the analytical and computed
coefficient of sensitivity of the flowmeter up to a range of C1 = 0.16–0.4. The dependency in R4

cyl of the Lorentz
force leads to the curvilinear shape of the graph.

The sensitivity of the flowmeter was also analysed as a function of C2, with constant C1 as plotted in Fig. 7. The
ratio Sc1/S1 is close to 1 when both C1 and C2 have small values. Increasing C2 induces a decrease in the ratio
Sc1/S1, which reaches 0.65 when C2 = 0.9. Similarly, increasing C1 leads to an increase in the ratio Sc1/S1 up
to 2.2 for C1 = 0.83. Note the complementarity of the dimensionless parameters C1 and C2: when C1 = 0.1, for
instance, the computed data can vary up to 0.9. For higher values of C1 like 0.83, the data cannot exceed C2 = 0.17.

In summary, the analytical coefficient of sensitivity of the flowmeter is close to the computed one for small values
of the dimensionless parameters C1 and C2, which agrees with the assumption made in deriving Eq. (5): C1 = ε and

123



46 F. B. Santara, A. Thess

0 0.1 0.2 0.3 0.4 0.5 0.6
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

C
1

S
c1

/S
1

C
2
=0.003

C
2
=0.01

C
2
=0.1

C
2
=0.2

C
2
=0.3

0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

C
1

S
c1

/S
1

C
2
=0.4

C
2
=0.5

C
2
=0.6

C
2
=0.7

C
2
=0.8

C
2
=0.9

(a) (b)

Fig. 6 Ratio of computed to analytical coefficient of sensitivity Sc1/S1. a Plotted versus C1 for C2 = 0.003, 0.01, 0.1, 0.2 and 0.3,
focusing on region where Sc1/S1 lies between 0.9 and 1.4. b Plotted versus C1 for C2 = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, focusing on
region where Sc1/S1 lies between 0.6 and 1.3

Fig. 7 Ratio of computed
to analytical coefficient of
sensitivity Sc1/S1 plotted
versus C2 for several values
of C1 from 0.01 to 0.83
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C2 = ε. The results presented here serve to validate the computations and enable us to precisely define the domain
of validity of the formulated equation: up to C1 = 0.16 − 0.42 and C2 = 0.007,3 Eq. (5) perfectly represents the
Lorentz force. Beyond these values, we can consider that the conditions C1 = ε and C2 = ε are no longer satisfied.

4.2 Sensitivity of flowmeter for thick cylinder–thin coil case: C1 = 1 − ε and C2 = ε

As in Sect. 4.1, the coefficient of sensitivity of the flowmeter computed from the ratio Fc/F2 is analysed here. F2

is the Lorentz force calculated analytically using Eq. (16). We are interested in the case where C1 = 1 − ε and
C2 = ε, with ε � 1. The computed coefficient of sensitivity is very close to the analytical one, as shown in Table 3:
Sc/S2 = 0.989 when C1 = 0.998 and C2 = 0.002. The values were computed using Eq. (26) for the following
parameters: R = 0.01 m, C2 = 1 − C1, ε = C2/C1; Rcyl and Rcoil derive from the known parameters, and C1

varies between 0.99 and 0.998. The data summarized in Table 3 clearly allow for the conclusion that when the

2 For these values of C1, the ratio Sc1/S1 varies between 0.99 and 1.1.
3 This C2 value corresponds to a ratio of Sc1/S1 � 0.99.
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Table 3 Ratio of computed to analytical non-dimensional coefficient of sensitivity of flowmeter Sc2/S2 computed as function of
non-dimensional parameters C1 and C2 (where dimensionless parameters C1 = 1 − ε and C2 = ε)

C1 C2 Sc2/S2

0.99 0.010 0.680

0.992 0.008 0.717

0.996 0.004 0.860

0.997 0.003 0.924

0.998 0.002 0.989
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Fig. 8 Ratio of computed to analytical coefficient of sensitivity Sc3/S3 plotted versus C1 (a) and versus C2 (b)

non-dimensional parameters C1 and C2 are simultaneously increasing and decreasing respectively, we approach
the validity range of Eq. (16). Unlike the case presented in Sect. 4.1, this validity range is quite reduced and the
limiting values are C1 = 0.997 and C2 = 0.003.

4.3 Sensitivity of flowmeter for thin cylinder–thick coil case: C1 = ε and C2 = 1 − ε

This third situation is the opposite of that presented in Sect. 4.2. Here, C1 = ε and C2 = 1 − ε, with ε � 1.
But, unlike Eq. (16) for the thick cylinder–thin coil case, Eq. (25) was obtained by substitution from Eq. (6) (thin
cylinder–thin coil), which leads to a approximate solution for the Lorentz force created in the thin cylinder–thick
coil situation. Considering Fig. 8, which presents the ratio Sc3/S3, it can be seen indeed that when C1 → 0.008
(and C2 → 0.991), the ratio approaches 0.62, indicating a large gap between the computed and analytical solutions,
which is closely linked to the non-accuracy of Eq. (25), even if it behaves well globally. To conclude this last case,
we can say that when C1 → ε and C2 → 1 − ε respectively, we do not have a very accurate, simple formulation
with which to efficiently compute the analytical Lorentz force and the coefficient of sensitivity of the flowmeter.
Furthermore, it is possible to obtain a semi-analytical solution by applying the Biot–Savart law to the studied
geometry to obtain the magnetic field through a complex integration and subsequently deriving the Lorentz force.
Such an expression for a magnetic field was established in [14] in the case of a thick rectangular section coil.

4.4 Comparison of three cases

Because it provides the highest value for the Lorentz force, the thick cylinder–thin coil case seems to be best suited
for a potential practical application, through some realistic geometrical considerations, such as a gap between the
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rod and the electromagnet system. Optimization of the presented arrangements has not been deeply investigated
here, but some interesting work in this area is available in the literature, for example in the case of optimizing
magnet systems for pipe flows [15].

The power requirement (Joule heating) has been computed for the three arrangements using the following
equation:

P = RI 2 = 1

σ

L

A
I 2, (27)

where R (Ohm) is the electrical resistance of the coil, σ(Ohm−1 m−1) is its electrical conductivity, L (m) and A
(m2) are the length and the cross section of the coil respectively. Considering σ = 107 Ohm−1 m−1 it appears that
the power dissipated in the case of the thin cylinder–thick coil arrangement is lowest with P = 201.6 W (computed
for C1 = 0.008 and C2 = 0.992) since thick conductors have less electrical resistance. Accordingly, the thick
cylinder–thin coil arrangement presents the highest Joule heating: P = 2.105 W for C1 = 0.99 and C2 = 0.001
(corresponding to Rcyl = 0.01 m and Rcoil = 10−5 m). An intermediate power of P = 2000 W is found for the thin
cylinder–thin coil case (for C1 = 0.01 and C2 = 0.001).

Of course, designing such extreme geometries is practically inconceivable, especially the thin coil–thick cylinder
case, where a very fine wire coil cannot support so much energy. However, this power calculation aims to show
a simple comparison of the three asymptotic cases presented in this paper, knowing that the rank order presented
here remains valid when a more realistic situation is appropriately considered for the three situations.

5 Conclusion

A theoretical analysis and numerical modelling of the Lorentz force created inside a solid body which is moving
under a steady magnetic field was performed. We determined the equations describing the Lorentz force and the
coefficient of sensitivity of the flowmeter as a function of the dimensionless numbers C1 and C2 defined for the
studied geometry. The computed coefficient of sensitivity of the flowmeter was compared with the derived analytical
expression, validating the numerical modelling in the case where the analytical expression was formulated in an
earlier study for a thin cylinder–thin coil case, corresponding to regions where C1 � 1, regardless of the value
reached by C2. We also showed the validity of computations in the thick cylinder–thin coil situation, in a restrictive
region where C1 tends towards 1 and C2 tends towards ε, with ε → 0. The computation results showed good
agreement with the analysis in that region, where the ratio Sc2/S2 (or Fc/F2) is close to 1. For the last case,
thin cylinder–thick coil, only an analytical heuristic formulation was derived for the Lorentz force created inside
the moving cylinder. The results presented here show a general behaviour for the coefficient of sensitivity of the
flowmeter from asymptotic values of the dimensionless numbers C1 and C2, leading to a better understanding of
more realistic situations. This outcome produces interesting graphs of the coefficient of sensitivity of the flowmeter
according to C1 and C2, making it possible to determine quickly the Lorentz force regardless of the geometry
considered. The computations also allowed us to define the domain of validity of the thin cylinder–thin coil and the
thick cylinder–thin coil cases, which could not be found analytically. Our future full-scale EM–LFV simulations
can thus refer to these initial results.
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