
High Performance Conflict Detection and
Resolution for

Multi-Dimensional Objects

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades
Doktor der Naturwissenschaften

Dr. rer. nat.
genehmigte Dissertation von

Dipl.-Inform. Alexander Kuenz
geboren am 08.09.1974 in Bad Harzburg

2015

1. Referent . Prof. Dr. Franz-Erich Wolter
2. Referent . Prof. Dr. Dirk Kügler
3. Referent . Prof. Dr. Gabriel Zachmann
Tag der Promotion . 20.07.2015

Preliminary Publications

Some ideas and figures have appeared previously in the following
publications:

Patents

Kuenz, A. and N. Peinecke (2011, February). Effiziente 4D-Konflikt-
Erkennung für großräumige Szenarien, Verfahren zur Ermittlung
einer potenziellen Konfliktsituation. Patent (EP 2 457 224 A2).
Kuenz, A. and N. Peinecke (2012, June). Method for determining a
potential conflict situation. Patent (US 20120158278).

Publications

Kuenz, A. (2014). Increasing the margins - more freedom in
trajectory-based operations. In Proc. IEEE/AIAA 33rd Digital
Avionics Systems Conf. DASC 2014. (Best Paper of Session)
Kuenz, A., G. Schwoch, and F.-E. Wolter (2013, October). Indi-
vidualism in global airspace - user preferred trajectories in future
ATM. In Proc. IEEE/AIAA 32nd Digital Avionics Systems Conf.
DASC 2013. (Best Paper of Track)
Kuenz, A. and G. Schwoch (2012, October). Global time-based
conflict solution: towards the overall optimum. In Proc. IEEE/AIAA
31st Digital Avionics Systems Conf. DASC 2012.
Kuenz, A. (2012, June). Optimizing tomorrows ATM using 4D-
trajectory-based operations. In ODAS 2012.
Kuenz, A. (2011, October). A global airspace model for 4D-trajec-
tory-based operations. In Proc. IEEE/AIAA 30th Digital Avionics
Systems Conf. DASC 2011. (Best Paper of Session)
Kuenz, A. and N. Peinecke (2009, October). Tiling the world -
efficient 4D conflict detection for large scale scenarios. In Proc.
IEEE/AIAA 28th Digital Avionics Systems Conf. DASC 2009.

Abstract

4D-trajectory based operations is one of the big enabler for fu-
ture high-capacity, efficient and environmentally friendly air traffic
management. Every aircraft is scheduled to fly along a predicted
4D path that can be calculated from gate to gate pre-flight. 4D-
trajectories are optimized individually for aircraft taking into ac-
count performance models, routes, weather conditions and airline
preferences. However, individual calculation of trajectories does
not ensure conflict-freeness with surrounding traffic. This work
describes an efficient algorithm detecting conflicts for large traffic
scenarios. Conflict detection is performed between aircraft trajecto-
ries, also taking into account environmental constraints like severe
weather zones and restricted areas. Basic idea is an N -dimensional
bisection of airspace allowing a significant reduction of complexity.
Thus, potential conflicts are identified very fast. A slower high
precision conflict check is performed on potential conflicts only.
On average, conflicts of one 4D-trajectory can be detected in a
European traffic sample holding more than 33 000 flights in less
than 2.5 ms on standard PC hardware.
Fast detection times are predestined for trial-and-error conflict
resolution. Different conflict resolution methods are illustrated,
taking into account the major key performance areas in air traf-
fic management, e. g., safety, efficiency, and predictability. As an
example, deconfliction is performed on an optimized version of
aforementioned European traffic sample holding 33 000 flights.

Keywords: Conflict Detection and Resolution, 4D-Trajectory-
Based Operations, N -dimensional Bisection

Zusammenfassung

Ein wichtiger Bestandteil kapazitätserhöhender, effizienter und
umweltfreundlicher Zukunftskonzepte im Luftverkehrsmanagement
sind 4D-Trajektorien. Jedes Luftfahrzeug fliegt in einem derarti-
gen Szenario entlang einer 4D-Flugbahn, die bereits vor dem Start
für den gesamten Flugweg berechnet werden kann. Diese Flugbah-
nen werden von Fluggesellschaften individuell für Flugzeugmuster,
Routen und Wetterbedingungen optimiert. In einem gemeinsamen
Luftraum sind individuell berechnete Trajektorien jedoch in der
Regel nicht konfliktfrei. Diese Arbeit beschreibt einen effizienten
Algorithmus zur Erkennung von Konflikten in sehr großen Szena-
rien. Die Konfliktidentifizierung erkennt Annäherungen zwischen
Verkehrsteilnehmern sowie Verletzungen von Beschränkungsgebie-
ten wie Schlechtwetter- und Flugverbotszonen. Die Grundidee ist
eine N -dimensionale Bisektion des Luftraums zur signifikanten Re-
duktion der Gesamtkomplexität. Durch dieses Verfahren werden
potenzielle Konflikte sehr schnell identifiziert. Ein präziser und lang-
samerer Algorithmus zur finalen Entscheidung wird lediglich auf den
zuvor identifizierten potenziellen Konflikten durchgeführt. In einem
Europäischen Verkehrsszenario mit mehr als 33 000 Flugzeugen kön-
nen mit Hilfe des Algorithmus alle Konflikte einer 4D-Trajektorie im
Mittel in weniger als 2.5 ms auf Standard-PC-Hardware identifiziert
werden.
Die geringen Antwortzeiten erlauben, dass über intelligente Versuch-
und-Irrtum-Verfahren effizient Konfliktlösungsstrategien umgesetzt
werden können. Für den 4D-Flugverkehr werden Lösungsstrategien
aufgezeigt, die neben der Konfliktfreiheit noch andere Faktoren wie
Effizienz, Emissionsvermeidung und Planbarkeit berücksichtigen.
Beispielhaft werden Lösungsalgorithmen auf eine optimierte Varian-
te des zuvorgenannten Europäischen Verkehrsszenarios mit 33 000
Flügen angewendet.

Schlagworte: Konflikterkennung und -lösung, 4D-trajektorienba-
sierte Konzepte, N -dimensionale Bisektion

Acknowledgements

This work would not have been possible without the support of
several people, to whom I am greatly indebted.

First of all, I like to thank Prof. Dr. Franz-Erich Wolter for
accepting to supervise my thesis. He always gave me good advice
and support.

I am also grateful to my head of institute Prof. Dr. Dirk Kügler
for taking over co-advisorship. Furthermore, he and my head of
department, Dr. Bernd Korn, provided me with a great working
environment at DLR’s Institute of Flight Guidance and tolerated my
research on conflict detection and avoidance even without directly
feeding into a project from the beginning.

I also would like to thank Prof. Dr. Gabriel Zachmann for his
kind willingness to be third accessor.

At DLR, I had (and still have) very nice fellows supporting the
completion of my thesis. Without claim to be complete, I thank
Dr. Niklas Peinecke for co-authoring my patent on conflict detection
and initiating the link to my supervisor, Christiane Edinger for
developing the highly sophisticated Advanced Flight Management
System I used as trajectory prediction engine, Gunnar Schwoch
for preparing optimized traffic scenarios, and Ralf Kohrs and Uwe
Teegen for proof-reading. More generally, I thank all participants
of the coffee breaks of department FL23 for endless, all-embracing,

and very fruitful discussions on many details of this work. I am
grateful to everyone using the NDMap-implementation, extending
the field of application, pointing me to problems, and requesting
interesting new features.

Last but not least, my thanks go to my wife Anja and my
children Leonard and Annelie for accepting countless working hours
in the evenings and weekends for writing this thesis.

Contents

Acronyms 7

Symbols 11

1 Introduction 23

2 Related Work 27
2.1 Mathematics and Algorithms 27

2.1.1 Bisection . 28
2.1.2 Binary Tree 28
2.1.3 Binary Space Partitioning Tree 28
2.1.4 k-dimensional Tree 30
2.1.5 R-Tree . 30

2.2 Conflict Detection Mechanisms 32
2.2.1 Multiple Phases for Complex Scenarios . . . 33
2.2.2 Discrete and Continuous Motion 33
2.2.3 Convex Polygon Intersection 34
2.2.4 Simple Polygon Intersection 35

1

2 CONTENTS

2.2.5 Plane Sweep Algorithms 36
2.2.6 Intersection and Range Searching 37
2.2.7 Bounding Volume Hierarchy 38
2.2.8 Kinetic Data Structures 41
2.2.9 Sweep and Prune 43
2.2.10 Broad Phase Based on Delaunay Triangulation 44
2.2.11 Spatial Subdivision 44
2.2.12 Spatial Hashing 44

2.3 4D Trajectory Prediction 46
2.3.1 The Advanced Flight Management System . 48

2.4 Conflict Detection in Aviation 58
2.4.1 Conflict Situations in Aviation 59

2.4.1.1 Sector Load and Flow Control Con-
flicts 60

2.4.1.2 Trajectory Based Conflicts 60
2.4.1.3 Medium-Term Conflict Detection . . 61
2.4.1.4 Short-Term Conflict Alert 61
2.4.1.5 Airborne Collision Avoidance System 61

2.4.2 Trajectory-Based Conflict Detection 62
2.4.3 Subdivision of Airspace 63
2.4.4 Conflict Detection Considering Uncertainty . 65

2.5 Conflict Resolution in Aviation 67
2.5.1 Conflict Resolution using Trial-and-Error . . 69
2.5.2 Conflict Resolution using Genetic Algorithm 70
2.5.3 Conflict Resolution based on Potential Fields 71
2.5.4 Conflict Resolution based on Light Propagation 72
2.5.5 Conflict Avoidance in Crowd Simulation . . . 72
2.5.6 Extended Flight Rules 73

2.6 Geodetic Earth Systems 73

CONTENTS 3

2.6.1 Distances on Earth 76
2.6.2 Map Projection 77

2.6.2.1 Sinusoidal Projection 77
2.6.2.2 Mercator Projection 77
2.6.2.3 Transverse Mercator Projection . . 78

3 Conflict Detection 81
3.1 Definitions . 83
3.2 N-Dimensional Conflict 87

3.2.1 Conflicts without Time Reference 88
3.2.2 Conflicts with Time Reference 88

3.3 N-Dimensional Tiling Algorithm 89
3.3.1 Affected Tiles 92
3.3.2 Check for Penetration 93
3.3.3 Check for Vicinity 95
3.3.4 Symmetric Simplification 97
3.3.5 Full Containment 98
3.3.6 Bounding Boxes 99
3.3.7 Building the Tree 101
3.3.8 Monotonic Dimensions 102
3.3.9 Balancing the Tree 102
3.3.10 Broad Phase vs. Narrow Phase 104
3.3.11 Memory Limitation 105
3.3.12 Tile Knowledge 105

3.4 Supported Objects 106
3.4.1 N-Dimensional Trajectories 106
3.4.2 N-Dimensional Volumes 107
3.4.3 N-Dimensional Moving Volumes 109

3.5 N-Dimensional Conflict Detection 113

4 CONTENTS

3.5.1 Conflict between Trajectories 116
3.5.1.1 Trajectory Conflict including Time

Reference 116
3.5.1.2 Trajectory Conflict without Time

Reference 117
3.5.2 Conflict between Trajectory and Volume . . . 118

3.5.2.1 Trajectory/Volume Conflict includ-
ing Time Reference 118

3.5.2.2 Trajectory/Volume Conflict with-
out Time Reference 118

3.5.3 Conflict Merging 118
3.5.4 Output Format 119

3.6 Objects in Focus . 121
3.7 Software Implementation 121

4 CD in 4D-Airspace 125
4.1 Topological Isomorphism of Earth 126

4.1.1 The Earth-Mode 126
4.1.2 Great Circle Connections 129
4.1.3 Singularity and Discontinuity of Longitudes . 131
4.1.4 Alternative Earth Mapping 134

4.1.4.1 Spherical Coordinate System 134
4.1.4.2 Geodesic Dome 136

4.2 Traffic Samples and Conditions 137
4.2.1 German Traffic Sample 137
4.2.2 European Traffic Sample 139

4.3 Results from Conflict Detection 141
4.4 Performance Indicators 145

4.4.1 Number of Trajectories 145
4.4.2 Density of Trajectories 147

CONTENTS 5

4.4.3 Number of Trajectory Sampling Points 147

4.4.4 Length of Trajectories 148

4.4.5 Number of Potential and Real Conflicts . . . 148

4.4.6 Summary of Performance Indicators 148

4.5 Performance Optimization for CD 148

4.5.1 Lateral Tile Size Optimization 149

4.5.2 Vertical Tile Size Optimization 149

4.5.3 Time-based Tile Size Optimization 151

4.5.4 Balancing the Tree 152

4.5.5 Focus on Aircraft 156

4.5.6 Shrinking the Root Tile 157

4.6 Comparison with Octrees 159

4.7 Application in Projects 161

4.7.1 Future Air Ground Integration 161

4.7.2 Luftraummanagement 2020 163

4.7.3 Volcanic Ash Impact on the Air Transport
System . 164

4.7.4 Supercooled Large Droplets Icing 167

4.7.5 4 Dimensional-Contracts - Guidance and Con-
trol . 168

5 4D Conflict Resolution 171

5.1 Global Trial-and-Error CR 172

5.2 Lateral Resolution 175

5.3 Vertical Resolution 177

5.4 Time-Based Resolution 178

5.4.1 Moving Whole Flights in Time 179

5.4.1.1 Global Algorithm 180

5.4.1.2 Recursive Algorithm 181

6 CONTENTS

5.4.2 Flight Duration Adaptation 183
5.5 Deconflicting Optimized Traffic 183

5.5.1 Airport-Focused Conflict Resolution 187
5.5.2 Global Conflict Resolution 188
5.5.3 Resolution of En-Route Conflicts 190

6 Verification and Validation 193
6.1 Nominal Case . 194
6.2 Pseudo-Parallel Case 194
6.3 Conflict Jitter Case 198
6.4 Singularity Case . 201
6.5 Discontinuity Case 202
6.6 Polygon Volume Case 205

7 Conclusions and Outlook 209

8 Update after Disputation 215
8.1 Conflict Metric . 215
8.2 Performance . 216

Acronyms

4DCo-GC 4 Dimensional-Contracts - Guidance and Con-
trol

AABB Axes Aligned Bounding Box
ACAS Airborne Collision Avoidance System
ADS-B Automatic Dependent Surveillance-Broadcast
AFMS Advanced Flight Management System
ANS Air Navigation Service
AOC Airline Operation Center
Arr Arrival
ATC Air Traffic Control
ATCo Air Traffic Controller
ATM Air Traffic Management
ATRA Advanced Technology Research Aircraft
ATTAS Advanced Technologies Testing Aircraft System

BADA Base of Aircraft DAta
BSP Binary space partitioning
BVH Bounding Volume Hierarchy

CAS Calibrated Air Speed
CDA Continuous Descent Approach
CFMU Central Flow Management Unit

7

8 Acronyms

CGAL Computational Geometry Algorithms Library
Clb Climb
CPA Closest Point of Approach
CPU Central Processing Unit
Crs Cruise
CTAS Center-TRACON Automation System

DDR Demand Data Repository
Dep Departure
DFS DFS Deutsche Flugsicherung GmbH
DLR Deutsches Zentrum fuer Luft- und Raumfahrt

(German Aerospace Center)
dops Discrete Orientation Polytopes
Dsc Descent
DWD Deutscher Wetterdienst

E-TMA Extended TMA
EFR Extended Flight Rules
ENU East-North-Up
ERAT Environmentally Responsible Air Transport
Eurocontrol European Organisation for the Safety of Air

Navigation

FACTS Future Aeronautical Communications Traffic
Simulator

FAGI Future Air Ground Integration
FL Flight Level
FMS Flight Management System
FP7 Seventh Framework Programme for Research
ft feet

Glonass Globalnaja Nawigazionnaja Sputnikowaja Sis-
tema

GPS Global Positioning System

ICAO International Civil Aviation Organization
IFR Instrument Flight Rules

k-d tree k-dimensional tree

Acronyms 9

KDS Kinetic Data Structure
KML Keyhole Markup Language
KPA Key Performance Areas
kts knots

LAnAb Leise An- und Abflüge
LDLP Low Drag Low Power
LRM2020 Luftraummanagment 2020

MTCD Medium Term Conflict Detection

NDMap N-Dimensional Map-Implementation
NextGen Next Generation
NM Nautical Miles

PHARE Programme for Harmonised Air Traffic Man-
agement Research in Eurocontrol

SCDA Segmented Continuous Descent Approach
SESAR Single European Sky ATM Research
SLD Supercooled Large Droplet
SSR Secondary Surveillance Radar
STCA Short Term Conflict Alert
SuLaDI Supercooled Large Droplets Icing

TBO Trajectory Based Operations
TMA Terminal Maneuvering Area
TOD Top Of Descent
TRACON Terminal Radar Approach Control

VFW Vereinigte Flugtechnische Werke
VLSI Very-large-scale integration
VolcATS Volcanic ash impact on the Air Transport Sys-

tem
VR Virtual Reality
VTS Vertical Tile Size

WGS84 World Geodetic System 1984

10 Acronyms

ZFB Zentrum für Flugsimulation Berlin

Symbols

A N-dimensional tile
�amax Maximum tile values for each dimension N
�amin Minimum tile values for each dimension N
a Equatorial radius of Earth ellipsoid
BO Axis aligned Bounding Box of Object O
b Polar distance from center of Earth ellipsoid
�D Number of necessary subdivisions in R

N

f Flattening of Earth ellipsoid
G Minimum gap time between two conflicts
λ Longitude
L(�p1, �p2) Line segment from �p1 to �p2
N Dimension in N

O Object. Either trajectory or volume
P 2D-Polygon
ϕ Latitude
�p Point in R

N

�S Mandatory separation in R
N

S Simplex in R
N

T Trajectory object
τ Common time
ti Trajectory instances
V Polygon Volume, implementation of volume ob-

ject

11

12 Symbols

V Volume object

List of Figures

1.1 En-Route Metrics for Airborne Conflicts 25

2.1 Quad Tree Example 29

2.2 k-d Tree Example . 31

2.3 R-Tree Example . 32

2.4 Intersection Calculation between two Convex Polygons 35

2.5 Eliminating Half of at least one Vertex Chain 36

2.6 Four Types of Intersection according to Edelsbrunner
and Maurer (1981) 38

2.7 ATTAS Cockpit allowing 3 Ways of Flying 47

2.8 DLR’s former Research Aircraft ATTAS 48

2.9 In- and Outputs of AFMS 49

2.10 Approach Types supported by AFMS 50

2.11 Calculating the TOD 51

2.12 CDA Trajectory for Airbus A330-300 52

2.13 Noise Footprint of LDLP 54

2.14 Noise Footprint of CDA 55

13

14 LIST OF FIGURES

2.15 CDA flown by ATTAS 56
2.16 CDA flown by Airbus A330-300 57
2.17 Example Grid with Conflict according to Koeners

and de Vries (2008) 64
2.18 Conflict in Octree between V1 and V2 according to

Hildum and Smith (2004) 65
2.19 Trajectory Prediction Error Ellipses according to

Erzberger et al. (1997) 66
2.20 Three Types of Conflict Resolution 68
2.21 Horizontal Resolution according to Erzberger et al.

(2010) . 69
2.22 Vertical Resolution according to Erzberger et al. (2010) 69
2.23 Time-Based Resolution according to Erzberger et al.

(2010) . 70
2.24 Point P with Latitude ϕ and Longitude λ 75
2.25 Sinusoidal Projection 78
2.26 Mercator Projection 78
2.27 Transverse Mercator Projection 79

3.1 Lateral Separation between 4D-Trajectories 84
3.2 Vertical Separation between 4D-Trajectories 84
3.3 Time-based Separation between 4D-Trajectories . . . 84
3.4 4D-Hypercube (Tesseract) 84
3.5 Bisection for 1-3 Dimensions 91
3.6 First Level Bisection of Tesseract with 16 Children . 91
3.7 Objects in Different Tiles having a Lateral Conflict . 93
3.8 Trajectory in Fly-Through and Fly-By Zone 96
3.9 No Conflict without Fly-Through Object in Center

Tile . 97
3.10 Two Trajectories in Conflict with the Volume German

Airspace . 99

LIST OF FIGURES 15

3.11 Axis Aligned vs. Object Oriented Bounding Box . . 100
3.12 Shape Generated by Moving Polygon 111
3.13 Shape Generated by Less Symmetric Polygon 111
3.14 3D-Corridor for Moving Polygon 112
3.15 Generation of Vertical Corridor 113
3.16 Intersection between Moving Polygon and Tile Plane

marked with Red Sphere 114
3.17 Two Non-conflicting Objects in same Tile 115
3.18 Calculation of Start and End of Conflict 117
3.19 Discretization of Time prevents Gap Jump 119
3.20 12 Objects and their Conflicts 122
3.21 Focus on Objects 10-12 122

4.1 Latitudes and Longitudes on Earth 126
4.2 Spherical and Corresponding Cartesian Model . . . 127
4.3 Cartesian vs. Great Circle Connection 129
4.4 Influence of Distance and Latitude on Great Circle-

Cartesian Distance 130
4.5 Douglas-Peucker for Polygonal Approximation 131
4.6 Shortest Connection on Spherical and Cartesian Rep-

resentation . 132
4.7 Passing the Date Line in Cartesian Coordinates . . . 133
4.8 Alternate Earth Mapping 134
4.9 Icosahedron with 4 Triangle Subdivision 136
4.10 Airborne Aircraft in German Traffic Sample 138
4.11 German Air Traffic Sample 138
4.12 Optimized European Air Traffic Sample 138
4.13 Airborne Aircraft in European Traffic Sample 139
4.14 Four Points in Worst Case for a Flyable Route Layout141
4.15 Detection Times for German Sample Baseline 142

16 LIST OF FIGURES

4.16 Detection Times for German Sample Advanced Baseline142

4.17 Detection Times for German Sample with Tiling
Algorithm . 144

4.18 Detection Times for European Sample with Tiling
Algorithm . 145

4.19 Detection Times for Quadrupled German Scenario . 146

4.20 Detection Times for Increased Number of Sampling
Points . 147

4.21 Variation of Tile Size 150

4.22 Variation of Altitude 151

4.23 Variation of Time . 152

4.24 Results for 80 Seconds Tile Duration (Germany) . . 153

4.25 Results for 80 Seconds Tile Duration (Europe) . . . 153

4.26 Results from Automatically Balanced Tree 154

4.27 Results from Modified Balancing Algorithm 155

4.28 Algorithm’s Performance for Different Numbers of
Selected Aircraft . 156

4.29 Results from Shrunk Root Tile 157

4.30 3D-Octree Latitude/Longitude/Altitude 160

4.31 3D-Octree Latitude/Longitude/Time 160

4.32 The FAGI Concept 163

4.33 Conflicts between Air Traffic and Volcanic Ash Cloud165

4.34 Vertical and Lateral De-Confliction from SLD-Icing
Area . 168

4.35 Contract Definition in the 4DCo-GC Project 170

5.1 Lateral Resolution of Conflict 176

5.2 Vertical Resolution of Conflict 177

5.3 Time-Based Resolution of Conflict 178

5.4 Flights from/to Frankfurt-Main as XYT-Diagram 24h180

LIST OF FIGURES 17

5.5 Flights from/to Frankfurt-Main as XYT-Diagram
around Noon . 181

5.6 Solving Conflicts Recursively 182
5.7 29k Conflicts in European Sample 184
5.8 Conflicts per Flight 185
5.9 Conflicts in Vicinity of Munich (Example) 185
5.10 Conflicts by Flight Phase 186
5.11 Conflicts after Shift of ±30 seconds 187
5.12 Conflicts after Shift of ±10 minutes 187
5.13 Airport-Focused Reduction in Relation to Time-Shift 188
5.14 Recursive Optimization Level 10 188
5.15 Recursive Optimization Level 20 188
5.16 Global Reduction in Relation to Time-Shift 189
5.17 Conflicts after Global Shift of ±10 minutes 190
5.18 Global Recursion Optimization Level 20 190
5.19 Conflicts after Lateral and Vertical Resolution 190
5.20 Very Short En-route Conflict in Red 190
5.21 Remaining Conflicts 191

6.1 Four Trajectories with Conflicts 196
6.2 Pseudo-Parallel Trajectories 198
6.3 Jitter in Conflict . 200
6.4 Conflict at North Pole 202
6.5 Conflicts at Date Line 204
6.6 Conflicts with Germany Volume 207

8.1 Improved Detection Times with New Data Structures
for Europe . 217

8.2 Improved Detection Times with New Data Structures
for Geramy . 218

18 LIST OF FIGURES

List of Tables

2.1 Separation in [NM] Depending on Wake Categories . 58

2.2 Priority for Aircraft in Different Flight Phases
(Duong et al., 1996) 74

2.3 Reference Ellipsoids for Earth 76

3.1 Overview on N-dimensional Bisection 90

3.2 Boundaries of N-dimensional Tiles 95

3.3 Root Tile covering one Day on Earth 103

3.4 Balanced Root Tile holding one Day on Earth 103

3.5 Phase Merging of Conflict Types 120

4.1 Setup of Conflict Map for 4D-Airspace 125

4.2 Properties of Traffic Samples 143

4.3 Vertical Dimension with Increased Vertical Tile Size 150

4.4 Time Dimension with Increased Tile Duration 152

4.5 Modified Balancing Parameter 154

4.6 Number of Nodes - Earth vs. Shrunk 158

4.7 Example Setup for Severity Dimension 166

19

20 LIST OF TABLES

8.1 Results from Trials with Increased Separation 216

Listings

3.1 NDMap Sample Program 123
3.2 NDMap Output of Sample Program 124

6.1 Nominal Case Scenario 195
6.2 Nominal Output . 196
6.3 Pseudo-Parallel Scenario 197
6.4 Pseudo-Parallel Output 197
6.5 Jitter Scenario . 199
6.6 Jitter Output . 200
6.7 Pole Scenario . 201
6.8 Pole Output . 201
6.9 Discontinuity Scenario 203
6.10 Discontinuity Output 203
6.11 Internal Representation of EASTWEST Trajectory . 204
6.12 Polygon Volume Scenario 206
6.13 Polygon Volume Output 207
6.14 Trajectory for German Polygon Volume 208
6.15 Moving Polygon Volume Output 208

21

22 LISTINGS

Chapter 1
Introduction

The two major Air Traffic Management (ATM) initiatives Single
European Sky ATM Research (SESAR) in Europe and Next Gen-
eration (NextGen) in the United States foresee drastic changes in
ATM already for the year 2020 (SESAR Joint Undertaking, 2013;
Federal Aviation Administration, 2013). According to the SESAR
Consortium (2008), performance targets for the year 2020 compared
to a year 2005 reference are (amongst others):

• A 73 % increase of Instrument Flight Rules (IFR) flights in
Europe to a total of 16 million annual flights.

• A 50 % decrease of en-route and terminal Air Navigation
Service (ANS)-cost in Europe per flight.

• A minimum of 98 % scheduled flights departing on time with
an average departure delay of less than 10 min for the remain-
ing flights.

• At least 95 % flights arriving on time with an average arrival
delay of less than 10 min for the remaining flights.

• A 3 times increased safety level per flight.

23

24 CHAPTER 1. INTRODUCTION

• 10 % fuel savings per flight on average due to ATM improve-
ments.

One key element of SESAR and NextGen to reach these ambi-
tious goals is 4D-Trajectory Based Operations (TBO) (SESAR
Consortium, 2007, 2010; Federal Aviation Administration, 2012).

In a 4D-TBO environment every aircraft flies along a predicted
4D-trajectory, describing the flight using 3D-positions (latitude,
longitude and altitude) referenced by time. The expected benefits
are:

• Predictability of trajectories in advance allowing early plan-
ning of operations, e. g., conflict detection and avoidance, high
precision flow control and arrival sequence planning.

• Safety benefiting from well-known future positions of aircraft
for each moment in time.

• Improved cost efficiency and less environmental impact by
optimizing routing, vertical profiles, and fuel burn for single
aircraft and the global traffic situation.

4D-TBO enables a paradigm shift from tactical to strategical Air
Traffic Control (ATC). Instead of adjusting flights on severe weather,
crossing traffic, and other upcoming events just in time, these issues
are supposed to be respected pre-emptively. Assuming proper
forecasts for aforementioned events, overall flight performance can
be improved significantly by performing more efficient avoidance
maneuvers.

However, allowing each aircraft to fly its personal optimum
profile does not work in a global traffic scenario. Conflicts would
occur with surrounding traffic. Globalization of ATM necessitates
conflict freeness for large airspaces, e. g., for the whole of Europe as
requested by SESAR. Detection and resolution of aforementioned
conflicts is the central topic of this work.

Even though Airline Operation Centers (AOCs) usually respect
issues like weather phenomena and restricted flight areas already
when providing optimized profiles it is beneficial to integrate conflict
detection also for these environmental constraints in order to model

25

the whole global picture. Thus, a conflict resolution algorithm does
not violate environmental constraints when solving traffic-based
conflicts.

Conflicts in aviation are usually defined as a violation of lateral
and vertical separation criteria. Typical stipulated lateral separa-
tions are 5 Nautical Miles (NM) for en-route airspace, and 3 NM
in the Terminal Radar Approach Control (TRACON) area (ICAO,
2007). Vertically, a separation of 1000 feet (ft) is usually required.
Several more specific rules exist, e. g., for in-trail flights due to wake
turbulence issues and independently operated parallel runways.

Compliance to separation metrics can either be validated by
monitoring the horizontal and vertical distance between each pair
of aircraft for every time, or assigning a separation cylinder to each
aircraft representing the safety area that must not intersect with
any other safety cylinder (fig. 1.1).

{
{ 5 NM

1000 ft

Figure 1.1 – En-Route Metrics for Airborne Conflicts

Applying 4D-TBO, a future loss of separation between aircraft
can be predicted well in advance based on their 4D trajectories.
When trajectories come too close for a common future time, the
trajectories are in conflict. Especially for large traffic scenarios
with many participants conflict detection between all trajectories
is a computational complex task. Using basic algorithms conflict
detection for one day of German air traffic can last several hours
(section 4.3).

Based on a list of conflicts from the conflict detection algorithm,
conflict resolution can be applied to solve conflicts strategically.
Whatever conflict resolution strategies are used, the solutions should

26 CHAPTER 1. INTRODUCTION

be validated to really solve the conflict and not create new conflicts
further downstream using the conflict detection algorithm again.

This work focuses on an efficient conflict detection algorithm
and its impact on conflict resolution. The document is structured
as follows:

• Chapter 2 gives background information about search algo-
rithms, 4D trajectories, conflict detection and conflict resolu-
tion algorithms.

• Chapter 3 describes the implemented algorithm facilitating
conflict detection for an arbitrary number of dimensions.

• Chapter 4 illustrates how the generic algorithm from chapter 3
is adapted, configured and optimized for conflict detection in
the aviation domain using 4 dimensions. Results from conflict
detection runs are presented for a German and a European
traffic sample.

• Chapter 5 focuses on conflict resolution using a trial-and-error
method taking advantage of the high performance conflict
detection algorithm. The traffic sample covers one modified
day of air traffic in Europe containing most direct routes from
departure to destination.

• Chapter 6 describes the validation of the product.

• A summary and outlook of the thesis is given in chapter 7.

Chapter 2
Related Work

The chapter provides an overview about basic topics addressed by
the thesis. Section 2.1 focuses on different data structures that
are related to the tree structure of the presented conflict detection
algorithm. An introduction on general conflict detection techniques
is given in section 2.2. Especially the conflict resolution depends on
performance limitations of aircraft. Section 2.3 provides background
details on the generation of aircraft trajectories.

Different algorithms performing conflict detection in aviation
are summarized in section 2.4. Already existing conflict resolution
techniques are described in section 2.5. Section 2.6 explains different
geodetic Earth models and map projections in order to let aircraft
fly shortest route on Earth.

2.1 Mathematics and Algorithms

This section summarizes fundamentals from mathematics and algo-
rithms that are related to this work. The algorithm described is
based on N -dimensional bisection in order to reduce the problem’s
complexity.

27

28 CHAPTER 2. RELATED WORK

2.1.1 Bisection

Bisection is a method in mathematics and computer science that
repeatedly cuts intervals into two parts. The method is used where
a complex problem can be divided into two smaller problems (Lewis
et al., 1981).

A common use case is, for example, searching a number in a
sorted array. The number is compared to the central element of the
array. If it is bigger, the same is done within the upper interval,
otherwise in the lower interval until the number is found.

The complexity of the bisection method is O(log N), with N
being the number of elements. Bisection can be performed using a
binary tree structure.

2.1.2 Binary Tree

A binary tree is a tree data structure representing the bisection
method. Each node has at most two children. Depending on the
use case, the subdivision is data dependent or predefined by the
initial problem (region tree), where each node contains the data
elements corresponding to the sub-region (section 2.1.3).

2.1.3 Binary Space Partitioning Tree

Binary space partitioning (BSP) is a class of trees subdividing a
space into convex subsets recursively. The subdivision is usually
done along hyperplanes. Famous representatives of BSP trees are
quadtrees (2D) and octrees (3D). A quadtree represents a partition
of space in two dimensions. The root tile contains the entire starting
region. Each node is subdivided in four children until reaching the
leaves. While quadtrees are used for segmentation of 2D-maps,
octrees fulfill the identical task within 3D-space. Nodes of an octree
have 8 children generated by 3 subdividing planes, with exception
of the leaves. Dworkin and Zeltzer (1993) propose to use a hex-tree
in order to represent dynamic motion of objects in a static way.
The conflict detection algorithm described in chapter 3 uses an
N -dimensional BSP tree.

2.1. MATHEMATICS AND ALGORITHMS 29

Even if quadtree and octree usually have their cutting lines/-
planes aligned with the coordinate axes, the hyperplanes which
partition the scene may have an arbitrary orientation. Figure 2.1
shows an example containing both the distribution of 9 points pi on
a 2D-plane and the corresponding quad tree based on the generated
quadrants Q. An octree is used in fig. 2.18, page 65.

p1

p2

p3

p4

p5

p6

p7 p8

p9

Q1 Q2

Q3 Q4

Q11 Q12

Q13 Q14
Q21 Q22

Q23 Q24

Q41 Q42

Q43 Q44

Q31 Q32

Q33 Q34

Q1 Q2 Q3 Q4

Q11 Q12 Q13 Q14

p7 p1 p6p9

Q41 Q42 Q43 Q44

p2 p4

Q31 Q32 Q33 Q34Q21 Q22 Q23 Q24

p3 p8 p5

Figure 2.1 – Quad Tree Example

Initially, BSP was developed for simplifying the render process
in 3D computer graphics (Schumacker et al., 1969; Fuchs et al.,
1980; Naylor, 1993). Types of application in computer graphics are:

• Drawing objects in order of distance from the viewer from
back to front. Even on today’s z-buffer supporting hardware

30 CHAPTER 2. RELATED WORK

sorting is still necessary when drawing transparent objects
(Kelly et al., 1994).

• Cutting complex objects into primitives easier to handle.

Other applications of BSP trees are collision detection, ray tracing
and other calculations on complex spatial scenes. A special k-
dimensional BSP tree is the k-d-tree.

2.1.4 k-dimensional Tree

The k-dimensional tree (k-d tree) is a BSP for organizing points in
k-dimensional space described by Bentley (1975). Every non-leaf
node has two children. Thus, a k-d tree splits only once per level
along a hyperplane. Splitting a k-d tree once in every of the k
dimensions creates a tree of depth k. k-d trees are not necessarily
balanced. The splitting hyperplanes are not necessarily at the center
or median point of the interval.

Figure 2.2 shows an example containing both the distribution
of 9 points on a 2D-plane and the corresponding k-d tree.

Wald and Havran (2006) describe how to use k-d trees for ray
tracing. They provide an algorithm to build the tree in O(N log N).
Instead of storing points, there are variations of the k-d tree working
on volumetric objects (Rosenberg, 1985; Houthuys, 1987).

In contrast, the algorithm proposed in chapter 3 divides up to N
dimensions in each level. A dimension is omitted for splitting only if
the minimum tile size would be violated by the subdivision in that
dimension. Splitting hyperplanes are always aligned to axis, and
always split a dimension in the center of the interval. The simplicity
of the structure allows very fast access to tree tiles utilizing small
portions of memory, only.

2.1.5 R-Tree

Another tree structure providing spatial access methods is the
R-tree proposed by Guttman (1984). Manolopoulos et al. (2006)
describe various types of R-trees and their applications. Key idea of

2.1. MATHEMATICS AND ALGORITHMS 31

L1

L2 L3

L4 L5

p7 p1 p2 p4

L6

p3 p8

L7

p9 L8

p5 p6

p1

p2

p3

p4

p5

p6

p7 p8

p9

L1

L2

L3

L4

L5

L6

L7

L8

Figure 2.2 – k-d Tree Example

an R-tree is to group closely spaced objects and represent them as a
minimum bounding rectangle object in the next higher level of the
tree. Each group has a predefined maximum number of entries. A
minimum fill is usually defined as a percentage of maximum number.
Figure 2.3 shows an example containing both the distribution of 9
points on a 2D-plane and the corresponding R-tree with a maximum
of three entries.

32 CHAPTER 2. RELATED WORK

R1 R2

R3 R4 R5 R6

p1 p7 p3 p8 p2 p4 p5 p6 p9

p1

p2

p3

p4

p5

p6

p7 p8

p9

R1R1

R2

R4
R3

R5
R6

Figure 2.3 – R-Tree Example

This tree structure is especially efficient for finding the k nearest
neighbor using a spatial join. A variation of the R-tree is the R*-
tree storing points and volumetric objects. Beckmann et al. (1990)
describe how to access points and rectangles efficiently using an
R*-tree.

2.2 Conflict Detection Mechanisms

Conflict detection mechanisms are applied in many application
fields as wire and component layout in Very-large-scale integration

2.2. CONFLICT DETECTION MECHANISMS 33

(VLSI), motion planning in robotics, solid modeling, ray tracing,
Virtual Reality (VR), and many more. Common goal is usually to
detect conflicts in an efficient, accurate and robust way. A good
overview on conflict detection is provided by Mount (1997).

Identifying conflicts between two geometric objects and the
computation of the intersection region depends strongly on the type
of objects. This section describes general techniques for collision
detection.

2.2.1 Multiple Phases for Complex Scenarios

Scenarios for conflict detection may become very complex. Since a
high precision conflict detection between objects often is computa-
tional expensive due to high level of detail and complex metrics, a
division into two phases may be beneficial:

• The broad phase identifies potential conflicts only. This phase
usually works on low detail data (e. g., bounding boxes instead
of high detail objects) and omits as many object pairs as
possible from the second phase. A good broad phase generates
a low number of false-positives (i. e., a potential collision was
identified, but it turns out to be a near miss) while ensuring
that it does not produce any false-negatives (i. e., existing
collisions are not identified as potential ones).

• The narrow phase performs the final collision detection with
high accuracy. Often, the broad phase provides, in addition
to the two objects, also information on where these objects
may intersect.

If the range of detail is large, additional phases in-between may be
beneficial.

2.2.2 Discrete and Continuous Motion

Collision detection can be performed for static scenarios and sce-
narios containing moving objects. The motion can be taken into
account in two ways:

34 CHAPTER 2. RELATED WORK

• In case of discrete motion, all objects are moved to their
positions for a common specific time. This global time is
increased with constant or adapted steps. Collision detection
is performed on each predicted frame. The time step size
needs to be chosen with care. Too small time steps increase
computational effort, while too big time steps increase the
probability of missing collisions. The optimum time step size
depends on objects’ shapes and speeds. A chosen step size Δt

ensures that all conflicts with a minimum duration of Δt can
be found. Detection of collisions with durations less than Δt

cannot be guaranteed. The time step size for reactive real time
simulations is trivial and depends on the achievable collision
prediction rate. Even for real time simulations, a continuous
motion simulation is reasonable, because it guarantees to
detect all collisions with their accurate time.

• Continuous motion avoids the discretization of time. Colli-
sion detection is performed on positions depending on the
additional dimension t. Since calculation of collisions is much
more complex without discretization of time, many methods
simulate motion discretely. However, especially for small,
fine-grained objects that move fast, an adequate selection of
the time step size is difficult.

2.2.3 Convex Polygon Intersection

The convex polygon intersection is often used in the narrow phase.
Intersections between two convex polygons can be detected in
logarithmic time O(log N). An algorithm with this complexity was
proposed by Dobkin and Kirkpatrick (1983): Assuming that both
polygons are given as a list of vertices in counterclockwise order, first
the lowest and highest y-coordinates are determined for polygons P
and Q. Using a variant of binary search (compare section 2.1.1) this
can be performed in O(log N). Polygons P and Q are then split
into two convex chains PL, PR and QL, QR at lowest and highest
y coordinates. Semi- infinite rays are attached to beginning and
end of each chain. For right oriented chains, rays run parallel to

2.2. CONFLICT DETECTION MECHANISMS 35

the x-axis towards +∞, for left oriented towards −∞. P and Q
intersect if and only if PL intersects QR and PR intersects QL.

Figure 2.4 reveals how P is split into PL and PR. Furthermore
it depicts how the median edge lines of PL and QR intersect. If
the intersection point is on both edges, the intersection is already
identified. Otherwise, the algorithm distinguishes between an empty
region that is untouched by both vertex chains, and the LR region,
that can be reached according to the convexity assumption by both
chains. Depending on the geometry of intersection, half of at least
one vertex chain can be eliminated, marked in orange (fig. 2.5).

P

PRPL

QR

PL

Empty
region

LR region

+

+

-

-

PL PR

x

y

Figure 2.4 – Intersection Calculation between two Convex Polygons

2.2.4 Simple Polygon Intersection

Without convexity assumption, conflict detection becomes more
complex. First of all an algorithm is required providing a decision on
the simplicity of a given polygon. A polygon is simple if the vertex
chain is not self-intersecting. A common approach to check for self-
intersection is trying to triangulate the polygon. If the triangulation
process fails, self-intersection is a possible reason. In particular, self-

36 CHAPTER 2. RELATED WORK

QR PL

Empty
region

LR
region

Empty
region

LR
region

PL

QR

+

+
+

+

-

-

-

-

x

y

Figure 2.5 – Eliminating Half of at least one Vertex Chain

intersection can be determined in O(N) using a modified version of
the linear-time triangulation algorithm (Chazelle, 1991).

The same complexity can then be achieved for the intersection
test of two simple polygons by merging both polygons using a
narrow channel and determining self-intersection subsequently.

2.2.5 Plane Sweep Algorithms

Plane sweep is a class of algorithms detecting intersections between
multiple objects with usually simple geometry. Thus, a set of N
line segments can be tested for intersection in O(N log N) (Shamos
and Hoey, 1976). The plane sweep method can be considered as
broad phase algorithm selecting potentially conflicting object pairs.

Plane sweep is based on simulating a left-to-right sweep on a
plane using a vertical sweepline. While the sweepline goes from left
to right, a list of segments intersecting the sweepline is maintained,
sorted from bottom to top by intersection point. The idea is to
reduce intersection calculations to consecutive pairs in this list
instead of testing all O(N2) pairs.

2.2. CONFLICT DETECTION MECHANISMS 37

The sweepline is moved from left to right jumping from one
event to the next. Events represent either line segment end points
or intersections between two line segments. Events are stored in a
priority queue sorted by their x-value.

Objects are usually classified as:

• Sleeping: object is not reached yet by the sweepline.

• Active: object is intersected by the sweepline.

• Dead: object is completely passed by the sweepline.

Using plane sweep all k intersections of N line segments can be
reported in O((N + k) log N) time (Bentley and Ottmann, 1979).
Intersections between any pair of k convex N -gons can be identified
in O(k log k log N) time (Reichling, 1988).

Plane sweep also performs well for not too complex problems
in higher dimensions. Thus, it is possible to detect intersections
between any pair of N spheres in 3D-space in O(N log2 N) time
(Hopcroft et al., 1983).

2.2.6 Intersection and Range Searching

Intersection and range searching focuses on intersections between
axis aligned rectangles. Thus, it can be applied for rectangular
objects in the narrow phase, but also for Axes Aligned Bounding
Box (AABB) broad phase calculations. According to Edelsbrunner
and Maurer (1981) two axis aligned rectangles A and B intersect if:

• A contains the left bottom point of B; or

• The left border line of A intersects with the bottom border
line of B; or

• The bottom border line of A intersects with the left border
line of B; or

• B contains the left bottom point of A.

38 CHAPTER 2. RELATED WORK

Figure 2.6 – Four Types of Intersection according to Edelsbrunner
and Maurer (1981)

Figure 2.6 depicts the four types of intersection listed above.
Calculating all intersecting pairs from a set of N rectangles

can be performed in O(N log N) time for 2 dimensions (Chazelle,
1988). Generalization on higher dimensions using hyper rectangles
is possible and adds an additional factor of log N in time for each
additional dimension.

2.2.7 Bounding Volume Hierarchy

A bounding volume of a geometric object is a volume containing
the whole object. Bounding volumes simplify collision detection
especially for complex object geometries. If two bounding volumes

2.2. CONFLICT DETECTION MECHANISMS 39

do not intersect, the corresponding objects also do not intersect.
Bounding volumes with simple geometric structure allow fast detec-
tion of intersections, but usually generate more false alarms because
they cannot represent the contained object very tight. Different
types of bounding volumes are commonly used:

• AABBs have a simple representation and can be calculated
fast.

• Object oriented bounding volumes have a more complex rep-
resentation, are more difficult to calculate, and containment
check is slower.

• Spherical bounding volumes allow very fast check of intersec-
tion.

• k−Discrete Orientation Polytopes (dops) introduce a refine-
ment of standard rectangular bounding volumes.

The idea of Bounding Volume Hierarchy (BVH) is building a
tree holding the object’s bounding volume in the root node. Nodes
are subdivided into at least two parts by partitioning the geometric
object into at least two subsets and calculating the corresponding
bounding volumes. That way, the union of bounding volumes
converges towards the shape of the geometric object with increasing
depth of the tree. The partitioning is performed until each subset
contains one primitive only or according to a predefined abort
criterion, representing a leaf of the tree.

Conflict detection is performed on object’s root nodes first. If
the root bounding volumes do not intersect, the objects do not
intersect. Otherwise, the children of the conflicting root nodes
are examined for intersection. If the intersection test is positive
between leaves, a conflict is very likely or even ensured, if the leaves
have the exact shape of the corresponding geometric subset.

The BVH technique is also often used for intersection tests be-
tween Bézier curves. Bézier curves are frequently used in computer
graphics to model smooth curves. Bézier curves allow indefinitely
scaling. Since a Bézier curve is completely contained in the convex
hull of its control points (Prautzsch et al., 2002), in particular the
calculation of bounding volumes is very simple.

40 CHAPTER 2. RELATED WORK

Zachmann (1998); Klosowski et al. (1998) demonstrate how to
apply BVH in VR for haptic force-feedback simulation. They inves-
tigate on using different 3-dimensional bounding boxes, Klosowski
et al. concentrating on:

• 14-dops using the 6 halfspaces that define the facets of an
AABB and 8 diagonal halfspaces cutting off the corners.

• 18-dops using the 6 halfspaces that define the facets of an
AABB and 12 halfspaces cutting off the edges.

• 26-dops using the 6 halfspaces that define the facets of an
AABB and 20 halfspaces cutting off 8 corners and 12 edges.

Bode and Hecker (2013) use BVH for conflict detection between
airborne trajectories. They distinguish between broad and nar-
row phase during the conflict detection process, where the BVH
represents the narrow phase. The broad phase, represented by
a combination of R-tree and interval tree, reduces the number of
pairwise comparisons for the narrow phase. Bode and Hecker use an
older and less performant publication of the algorithms presented
in this thesis as a baseline (see Kuenz (2011)). Current results
prove that their approach consumes about the triple time (5 ms
versus 16 ms) to compare one trajectory against 30 000 others. In
their outlook, they declare their intention to investigate on real
4D-data structures for the broad phase, proposing k-d tree and BSP
as candidates.

Teschner et al. (2005) propose to use BVH for collision detection
respecting deformable objects in an adapted way. Instead of binary
partitioning, they prefer 4-ary or even 8-ary trees because of the
better overall performance when updating or refitting the hierarchies
in case of motion. Furthermore, the hierarchy is strictly oriented on
the mesh topology of the object on generation, assuming that this
topology does not change on deformation. The article also gives
details on techniques like stochastic collision detection, distance
fields, and self collision detection. Fields of application are robotics,
surgery simulation, and cloth simulation.

The approach described in this thesis does not utilize BVH. BVH
is a powerful method for objects that are likely to collide. As also

2.2. CONFLICT DETECTION MECHANISMS 41

Bode and Hecker experienced, conflict detection based on BVH has
limited efficiency for sparse air traffic, necessitating a partitioning in
broad and narrow phase. Fast conflict detection avoids comparisons
between objects that are really far away from each other. A domestic
flight in Spain cannot conflict with a domestic German flight, and
there is no need to compare any bounding boxes. Therefore, this
work focuses on a really strong broad phase, eliminating as many
comparisons as possible in the first place. The narrow phase is
required very rarely, and the position of a possible conflict is already
limited to a very small area in all dimensions. Furthermore, the
cylindrical shape of objects (at least for aircraft objects) allows fast
collision detection without using BVH. Even when using complex
distance metrics like World Geodetic System 1984 (WGS84), the
results from the algorithms in use are very promising.

2.2.8 Kinetic Data Structures

Kinetic Data Structures (KDSs) are often used to model continu-
ously moving objects in a geometric system, e. g., for the purpose
of collision detection. According to Guibas (2001), a KDS can be
specified by

• a set of certificates defining elementary geometric relations,

• a motion plan describing the motion of objects in the near
future,

• events representing the violation of KDS certificates, and

• an event queue holding all events sorted by the time of certifi-
cate violation.

The future time of failure for a certificate can be predicted if motion
plans are available for all of its objects. An event is classified
external when the combinatorial structure of the attribute changes,
and internal, when the structure stays the same and the certificate
needs to be changed.

The performance of a KDS depends on four factors (Guibas,
2001):

42 CHAPTER 2. RELATED WORK

• responsiveness: A KDS is responsive if the cost for repairing
a failed certificate and updating the attribute computation
are small. Small quantities are considered to be O(nε) in the
problem size.

• efficiency: A KDS is efficient if the number of certificate
failures is comparable to the number of external events.

• compactness: A KDS is compact if the number of certificates
is close to linear in the degrees of freedom of the moving
system.

• locality: A KDS is local if each object participates in few
certificates, only.

Basch et al. (1999) demonstrate how to apply KDS for collision
detection. Instead of focusing on collision comparisons as illustrated
in section 2.2.7 for BVH, Basch et al. concentrate on the free space
between moving objects. This free space is subdivided into cells
of a certain type. This space deforms while the objects move.
The KDS proof of separation remains valid unless cells become
self-intersecting. Desired characteristics for the cell types are

• self-collisions are easy to detect,

• tiling can adjust to the motion of the objects, and

• easy update of the tiling in case of self-collision.

Basch et al. use an external relative geodesic triangulation
defining a set of flexible shells surrounding each of the objects. The
space between these shells is subdivided into pseudo-triangles. Once
a pseudo-triangle self-intersects as a result of moving objects, a
certificate fails, either necessitating an update of the certificate or
representing a potential conflict.

Abam et al. (2006) illustrate how to apply KDS for collision
detection in 3 dimensions. While most 2-dimensional approaches
decompose the free space between polygons into pseudo-triangles,
a suitable decomposition for free space in 3D is less obvious. Abam
et al. use guarding points around each object, assuming that the

2.2. CONFLICT DETECTION MECHANISMS 43

objects are fat. The positions of guarding points ensure that the
larger object must contain at least one guard from the smaller object
in case of collision.

The proposed solution handles events in O(log6 n) time and
processes O(n2) events in the worst case. The authors state that
their approach

“. . . should be seen as a proof that good bounds are pos-
sible in theory–whether a simple and practical solution
exists that achieves similar worst-case bounds is still
open.” (Abam et al., 2006)

Zachmann and Weller (2006) combined KDS with BVH to a
high performance conflict detection for deformable objects. While
the pure conflict detection is performed using the BVH based on
AABB and BoxTree, the KDS is used to keep the BVH up-to-date
according to the internal deformable object with the minimum
number of updates.

Implementations for specialized KDS are available from the
Computational Geometry Algorithms Library (CGAL) (The CGAL
Project, 2015). CGAL provides implementations for Delaunay
triangulation (two and three dimensions) and regular triangulation
(three dimensions). Furthermore, exact and inexact operations on
primitives are supported along polynomial trajectories.

2.2.9 Sweep and Prune

Cohen et al. (1995) propose to project three dimensional AABB
from moving 3D-objects onto the x, y, and z axes. They generate
three sorted lists, one for each dimension holding the corresponding
object intervals. By applying insertion sort, holding the lists sorted
can be performed in O(n). Furthermore, they keep track of changes
in overlap status with an effort of O(n + s), s being the number of
pairwise overlaps. Whenever two objects overlap in all three lists,
the corresponding polytope pair is declared active. Thus, the sweep
and prune is a broad phase algorithm. The exact collision detection
routine (i. e., the narrow phase) is called only for active polytope

44 CHAPTER 2. RELATED WORK

pairs. The motion is simulated by small time steps, assuming that
objects are moving only slightly from frame to frame.

Coming and Staadt (2005) suggest a kinetic sweep and prune
for collision detection. Instead of simulating small time steps, they
apply a KDS to keep the interval lists sorted. An event is scheduled
for each pair of adjacent list elements to catch the crossing of
elements. Especially for linear motion, the time of crossing can
easily be predicted. That way, discrete time steps can be avoided
and time is handled continuously.

2.2.10 Broad Phase Based on Delaunay Triangu-
lation

Tavares and Comba (2007) based their collision detection algorithm
on a delaunay triangulation, supposed to be applied in the broad
phase. While a triangle vertex represents the center of mass of
an object, the edges represent object pairs to be checked in the
narrow phase. For each frame of the animation, the triangulation is
updated. The performance results do not show benefits compared
to sweep-and-prune and brute-force bounding box methods.

2.2.11 Spatial Subdivision

When objects are small on average and they are distributed uni-
formly, subdivision of their containment volume is beneficial. Typi-
cal underlying structures for spatial subdivision are BSP tree (sec-
tion 2.1.3), k-d Tree (section 2.1.4), and R-tree (section 2.1.5)(Samet,
1990). In contrast to all aforementioned conflict detection mecha-
nisms spatial subdivision can easily be used with any number of
dimensions.

2.2.12 Spatial Hashing

Spatial hashing is a special form of spatial subdivision using a
hash-function mapping 3D positions to a 1D hash table index. The
hashing is performed in the broad phase, leading to a hash table

2.2. CONFLICT DETECTION MECHANISMS 45

where each index contains a small set of objects to be compared in
the narrow phase.

The idea of Teschner et al. (2003) is spatial hashing on objects
consisting of tetrahedrons. Each primitive is mapped into a hash
table, allowing collision detection between objects and self colli-
sion detection. The hash values are calculated from discretized
vertex positions (�x/l� , �y/l� , �z/l�) with l being the grid cell size.
After mapping all vertices, the proposed algorithm computes all
hash values that are affected by the AABB of a tetrahedron. If a
tetrahedron is mapped to an index containing vertices from other
tetrahedrons, a penetration test is performed. Collisions between
tetrahedrons and edges are not considered. The hash function is de-
fined as hash(x, y, z) = (73 856 093 ·x⊕19 349 663 ·y ⊕83 492 791 ·z)
mod n, with n being the size of the hash table.

Spatial hashing does not build an explicit 3D data structure.
Instead memory is used only for storing the hash table. The size
typically depends on

• Size of the global bounding box.

• Size of objects.

• Acceptable collision risk for non-related objects being hashed
on the same index.

• Inner data structure used within hash map.

Considering the scenario setup illustrated in table 4.1 on
page 125, the scenario contains 2Dx ∗ 2Dy ∗ 2Dz ∗ 2Dt cells, summing
up to 239.73(∼1012) entries. Depending on the choice of the inner
data structure and the accepted overlap of hash values, a direct
advantage concerning memory usage is not expectable.

Another difference between explicit spatial data structures and
spatial hashing is the level of detail that needs to be taken into
account when inserting new objects. While the spatial hashing
needs to mark all affected grid elements, tree-structured spatial
subdivision only needs to adapt to the associated subdivision layer.
Although aircraft and their occupation volume are small compared

46 CHAPTER 2. RELATED WORK

to minimum grid size, this difference especially arises when consider-
ing the assigned trajectories. Thus, on insertion in a spatial hashing
structure, whole trajectories of aircraft need to be upsampled to the
underlying grid structure and mapped into the hash table. Applying
dynamic spatial subdivision, the mapping to final grid size is only
relevant in densely occupied areas.

2.3 4D Trajectory Prediction

When trying to detect and solve conflicts it is essential to take the
problem complexity of the application area into account. If, for
example, the motion of objects can easily be described in a closed
analytical form, an analytical solution may be beneficial. If objects
follow complex trajectories depending on many factors as described
here, other data representations should be preferred. Therefore, this
section describes the ways to operate an aircraft, and the prediction
of an aircraft trajectory, either pre-flight or airborne.

The primary goal is to move the aircraft from the departure
to the arrival airport, satisfying the very high safety standards
of air transport, in accordance with economic and environmental
demands, and providing acceptable working conditions for the pilot
crew. While this is true for decades now, the way how to do so
changed significantly. Even though following list also represents the
chronological order of employment, today all three types of control
are typically integrated in modern transport aircraft:

• The most basic way to fly a transport aircraft is by giving
instructions using the control column or side stick and the
thrust lever. The pilot directly controls the aircraft.

• A more automated way of flying an aircraft is using the
autopilot. The autopilot controls lateral and vertical speed,
bearing, altitude and localizer/glideslope in approach mode.
The pilot controls the aircraft on a higher, semi-automatic
level.

• A Flight Management System (FMS) provides a fully auto-
matic control system for flying an aircraft. The pilot enters

2.3. 4D TRAJECTORY PREDICTION 47

whole routes into the FMS. The system predicts a trajectory
from departure to destination and automatically guides the
aircraft along this route. The pilot manages the aircraft. The
pilot still may use the control systems above, however this
decreases predictability and typically efficiency of flight. The
lower level systems are the safety net for the FMS.

Figure 2.7 shows the cockpit from the former research aircraft
Advanced Technologies Testing Aircraft System (ATTAS) oper-
ated by Deutsches Zentrum fuer Luft- und Raumfahrt (German
Aerospace Center) (DLR) providing all aforementioned ways of
controlling an aircraft. The ATTAS is a Vereinigte Flugtechnische
Werke (VFW) 614 twin engine jet transport aircraft modified with
worldwide unique equipment for research purpose (fig. 2.8). ATTAS
was recently retired after 26 years in service. Its direct successor
is Advanced Technology Research Aircraft (ATRA), a modified
Airbus A320-232.

Figure 2.7 – ATTAS Cockpit allowing 3 Ways of Flying

ATTAS is equipped with one of world’s most advanced FMS.
The Advanced Flight Management System (AFMS) was developed
by the Institute of Flight Guidance at DLR Braunschweig. Various
flight trials with ATTAS and also first trials with ATRA proved

48 CHAPTER 2. RELATED WORK

Figure 2.8 – DLR’s former Research Aircraft ATTAS

high accuracy and flexibility of the AFMS (Korn and Kuenz, 2006;
Kuenz et al., 2007).

Using an FMS for automatic flight execution does not only
reduce pilot’s workload but is also the on-board technical enabler
for TBO.

2.3.1 The Advanced Flight Management System

This section holds a description of DLR’s AFMS being a good rep-
resentative for a modern FMS. The initial version of the AFMS was
started in early 1990s (Adam and Kohrs, 1992; Kohrs, 1992; Czerl-
itzki, 1994; Czerlitzki and Kohrs, 1994) and since then continuously
improved.

By means of strategic trajectory planning and a corresponding
guidance module the AFMS allows planning of highly accurate 4D-
trajectories and following them with little deviations autonomously.

Figure 2.9 shows the in- and output data of the AFMS. Gener-
ation of 4D-trajectories is performed based on a list of waypoints
describing the route from departure (or actual position when already
airborne) to the destination, altitude, speed and time constraints,
aircraft’s performance data and an accurate weather forecast. The
weather forecast for flight trials is provided by Germany’s national

2.3. 4D TRAJECTORY PREDICTION 49

List of
Waypoints

Altitude, Speed
and Time

Constraints

Aircraft Model

Weather
Forecast

Descent
Parameter

AFMS Cockpit

ATTAS
Real Weather

Figure 2.9 – In- and Outputs of AFMS

meteorological service Deutscher Wetterdienst (DWD). Using the
descent parameters given by the pilot the AFMS allows predicting:

• Low Drag Low Power (LDLP) approaches with selected in-
tercept altitude and level length. LDLP tries to use clean
configuration as long as possible. Besides a significantly higher
noise emission, extracting slats, flaps and gear increases drag
and thus reduces flight’s efficiency. However, the LDLP inter-
cepts the final glideslope in level flight in order to allow late
adjustments for the final descent.

• Continuous Descent Approach (CDA) with selected intercept
altitude. The CDA also makes use of low drag configura-
tions. Furthermore, CDA avoids the final level at glideslope
intercept. Therefore, the aircraft flies higher and thus more
efficient. Noise pressure level immissions on the ground are
reciprocally proportional to the altitude, doubling the altitude
reduces noise pressure level by 50 % (Deutsches Institut für
Normierung, 1999).

• Segmented Continuous Descent Approach (SCDA) with se-
lected start of steep descent and intercept altitude. The steep

50 CHAPTER 2. RELATED WORK

descent profile is produced by an early configuration in high
altitudes. The steep descent part is flown with flaps and
gear out. Drag is increased for this procedure, and thus also
fuel burn. However, depending on aircraft type, the noise
influence of the higher altitude of the profile can outweigh the
increased noise emissions due to configuration.

Figure 2.10 shows example profiles for the supported approach
types. All profiles have in common the final segment down to the
runway threshold that is usually a descent with 3°.

He
ig
ht

Intercept
Altitude

LDLP

CDA

SCDA

~3°

Figure 2.10 – Approach Types supported by AFMS

The term CDA is often used non-stringently in literature, it
developed to a buzz word - and most airport support their own
kind of CDA procedure. Loose definitions allowing level flights with
maximum defined lengths and very shallow descent parts are often
allowed. DLR’s advanced CDA has the following advanced features
compared to a standard CDA:

• Commencing the advanced CDA from an altitude where the
aircraft is silent on the ground there is no level flight until
touchdown.

• Descents are performed with engines idle. Thus, sink rate and
flight path angle are not necessarily constant while descending.

2.3. 4D TRAJECTORY PREDICTION 51

Idle thrust does not only reduce noise emissions of the engines
but also reduces noise immissions on the ground and fuel
consumption due to higher and therefore more economical
flight profiles.

• The vertical profile can be specified independently of the
lateral path. This enables the implementation of special
procedures like curved approaches.

One main task when calculating a 4D-trajectory performing a CDA
is to predict an appropriate position for the Top Of Descent (TOD).
First, the AFMS calculates the glideslope intercept point by means
of glideslope angle, intercept altitude and runway threshold position
and elevation. The AFMS calculates the TOD by stepping backward
from the glideslope intercept point (see fig. 2.11), implying an idle
descent to the glideslope intercept.

Glideslope, ~3°

Idle Descent
Level Flight TOD

Glideslope Intercept

Figure 2.11 – Calculating the TOD

The foreseen airspeeds depend on phase of flight and type of
aircraft. Optimum speeds for different flight phases and all other
relevant information about aircraft are published for most trans-
port aircraft by the European Organisation for the Safety of Air
Navigation (Eurocontrol) in the Base of Aircraft DAta (BADA),
current version in use is 3.9 Eurocontrol (2011).

Once having generated a 4D-trajectory the AFMS provides
guidance commands to fly along the calculated trajectory. A 4D-tra-
jectory consists of a lateral route with altitude and time information
for every waypoint. If an appropriate connection to the autopilot is
available these commands are directly forwarded to the aircraft that
will automatically follow the trajectory. If such a connection is not
available the guidance commands can be displayed as instructions

52 CHAPTER 2. RELATED WORK

to be carried out by the pilot. The AFMS guidance commands
control the aircraft in all 4 dimensions (lateral, vertical and time).

0 4 8 12 16 20 24 28 32

0 4 8 12 16 20 24 28 32
Duration : 00:09:35
Used Fuel : 329 kg

Distance along Route [NM]

kts

CAS:

Altitude:

140
160
180
200
220
240

ft

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

Idle
Descent

Descent Deceleration

Descent Deceleration 250 190 kts Descent
Deceleration
190 170 kts

Descent
Deceleration

Descent
Deceleration
160 133 kts

Flaps 1
Flaps 2

Flaps Full
Gear Down
1800ft AGL

WAYP0

DIRAL

ALESI

VE028

LERDI

RW26

Figure 2.12 – CDA Trajectory for Airbus A330-300

For a precise prediction and guidance along 4D-trajectories
the AFMS has also to consider the aircraft’s configuration. The
higher drag and lift coefficients of extended flaps otherwise leads
to deviations which might not be accepted in a 4D TBO traffic
management, as described by de Muynck et al. (2011).

Figure 2.12 depicts an example of an advanced CDA calculated
by the AFMS for the Airbus A330-300. Usually, a flight is subdi-
vided into five phases: Departure (Dep), Climb (Clb), Cruise (Crs),
Descent (Dsc) and Arrival (Arr). The example starts in cruise
flight.

The TOD is in Flight Level (FL) 80 where the aircraft is in clean
configuration. The descent starts idle with a constant Calibrated
Air Speed (CAS) of 250 knots (kts). This is followed by an energy
sharing phase where the aircraft both descents and decelerates. The
glideslope is intercepted at 3000 ft with 170 kts, flaps just coming

2.3. 4D TRAJECTORY PREDICTION 53

out to position 2. At 1800 ft above ground level the aircraft is
configured for landing (flaps full, gear down). Flying the standard
glideslope approach the aircraft will need thrust to hold the landing
speed on the very last part before landing. Deviations may occur
during the execution of an advanced CDA due to:

• Insufficient or imprecise aircraft performance data.

• Jitter in the configuration points.

• Bad weather forecast.

• . . .

When forced to deviate from the predicted trajectory because of
unforeseen influence described above, the AFMS guidance function-
ality tries to hold the time deviation at minimum and in exchange
accumulate the altitude error. The altitude error is compensated
when intercepting the glideslope. This type of readjustment depends
on whether the aircraft is too high or too low.

Being in time and having a positive altitude error (aircraft is
too high) means that the aircraft has too much energy left. Since
the engines are idle in descent there is no way out with the thrust.
Therefore, the AFMS reacts by increasing the drag. If the AFMS
detects a positive altitude error when intercepting the glideslope it
brings forward dynamically the configuration times for flaps and
gear. A negative altitude error (aircraft is too low) implies a lack
of kinetic energy. An early reaction in form of setting higher thrust
should be avoided because:

• Slow response times of jet engines make a closed loop control
difficult.

• Even small changes of the engine speed are felt disturbing by
the passengers.

A negative altitude error is corrected by insertion of a less steep
segment. Only in extreme cases this segment will be a level segment.
In order to get rid of the missing energy, the AFMS brings forward
the point of leaving idle thrust. Thus, there is no new phase of

54 CHAPTER 2. RELATED WORK

closed loop low power control but a small extension of the thrust
phase just before landing.

Figure 2.13 and fig. 2.14 are noise footprints for an Airbus
A320 approach to Frankfurt via Gedern. The trajectories were
calculated by the AFMS and fed into the DLR noise calculation
tool SIMUL (Boguhn, 2007). The noise areas start with a dark
blue for >55 dB(A) and increase in steps of 5 dB(A). The difference
between fig. 2.13 and fig. 2.14 illustrates the noise benefit achievable
by selecting the advanced CDA descent in favor of LDLP.

Figure 2.13 – Noise Footprint of LDLP

The AFMS prediction and guidance capabilities have been vali-
dated in several simulation runs using the A330-300 Full Flight
Simulator formerly operated by the Zentrum für Flugsimulation
Berlin (ZFB) and flight trials with DLR’s test aircraft ATTAS and
ATRA.

Both the simulations and real flight trials were performed start-
ing in FL70-FL110 with enough way left to touchdown allowing

2.3. 4D TRAJECTORY PREDICTION 55

Figure 2.14 – Noise Footprint of CDA

prediction of advanced CDA and LDLP approaches. The ATTAS
and ATRA flights were arranged at the base airport Braunschweig
principally using the runway 26. The destination airport for the
A330 simulations was Munich.

Figure 2.15 displays a typical result of an advanced CDA ap-
proach with ATTAS. The figure depicts with a red line the occurred
altitude error with a maximum of 70 ft, the airspeeds, the times of
flaps and gear transitions and the altitude profile. Typical precision
for more than 100 approaches was a maximum of ±150 ft altitude
error and ±5 s time deviation at the touchdown point.

The figure also shows that the altitude error peaks are at the
transitions from one flight path angle to the next, e. g., at the TOD
and the glideslope intercept point. This behavior is reasoned by the
fact that the AFMS does not calculate flight path angle transitions
and therefore they are not part of the trajectory. Hence, the altitude
error calculation by building the difference between actual altitude
and trajectory tends to be bigger than the real altitude error.

56 CHAPTER 2. RELATED WORK

7000

Altitude:

ft

500

1500
1000

2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

22 24 26 28 30 32 34 36 38 40

Alt Error:

CAS:

ft

kts

VE028

LERDI

RW26

ALESI

22 24 26 28 30 32 34 36 38 40

22 24 26 28 30 32 34 36 38 40
200
190
180
170
160
150
140

50
0

50
100
150

150
100

DIRBO

Figure 2.15 – CDA flown by ATTAS

Two flight trials have been untypical with a time precision of
rather bad 10 seconds. Investigations revealed that an imprecise
weather forecast reasoned the unusual time deviation. On one
occasion, the Harz mountains created a constant downdraft in
their lee, where Braunschweig is situated, but the weather forecast
file only contained information about the horizontal wind and not
about vertical wind components. On the other occasion, a mini
jet stream was encountered between 5000 ft and 10 000 ft, but the
wind was only forecasted at these two altitudes and around, not
in-between. Thus the jet stream was not detectable in the wind
data and not taken into account when predicting the trajectory.
Finally, considering the imprecise weather forecast, a time deviation
of 10 seconds is not bad at all for more than 30 NM of flight.

The main driving factor for the A330 simulations was to prove
the usability of the AFMS for any aircraft listed in the BADA
folder (currently 295 aircraft) and not ATTAS only. The results
in fig. 2.16 prove high quality of the AFMS prediction as well as a
suitable BADA modeling. Top down, the figure depicts the time

2.3. 4D TRAJECTORY PREDICTION 57

11000

Altitude:

ft

Time Error:

CAS:

sec

kts

240
220
200
180
160
140

0
2
4

4
2

10000
9000
8000
7000
6000
5000
4000
3000
2000

16 20 24 28 32 36 40 44 48 52

16 20 24 28 32 36 40 44 48 52

16 20 24 28 32 36 40 44 48 52

TEGBA

MAGAT

OM08L

RW08L

Figure 2.16 – CDA flown by Airbus A330-300

error, the airspeed profile, times for flaps, slats and gear transitions
and the altitude profile for the whole descent to Munich.

The green line ending at the runway in the altitude profile is
the glideslope angle, in Braunschweig 3.5 degree and for Munich 3.0
degree. Remarkable in the altitude profile is the much smoother
descent because of the better glide angle of the A330.

Typical maximum altitude errors of 100 ft and time deviations
of up to 3 seconds at touchdown have been evaluated with the A330
full flight simulator. The higher precision with the A330 compared
to ATTAS can be attributed to the missing realistic weather. There
is also a meteorological model available for winds and gusts for the
A330 simulator, but it is not as unforeseeable as reality.

58 CHAPTER 2. RELATED WORK

2.4 Conflict Detection in Aviation

Several algorithms already exist performing conflict detection in
aviation. Nowadays, a conflict in aviation based on radar and/or
Automatic Dependent Surveillance-Broadcast (ADS-B) position
data usually exists if lateral distance in latitude/longitude plane
is lower than 5 NM and the vertical distance is below 1000 ft. In
the vicinity of airports in approach and departure phase, a reduced
separation is often used depending on wake categories of both
preceding and succeeding aircraft. Bigger aircraft produce stronger
wake turbulence while smaller aircraft are more sensitive to wake
turbulence areas. The International Civil Aviation Organization
(ICAO) defines separations collected in table 2.1 (ICAO, 2007),
based on following categories:

• Heavy (H): All aircraft types with 136 000 kg or more maxi-
mum take-off weight.

• Medium (M): All aircraft types with less than 136 000 kg, but
more than 7000 kg maximum take-off weight.

• Light (L): All aircraft types with 7000 kg or less maximum
take-off weight.

Table 2.1 – Separation in [NM] Depending on Wake Categories

Preceding aircraft
Heavy Medium Light

Succeeding aircraft
Heavy 4 3 3
Medium 5 3 3
Light 6 5 3

Although the Airbus A380 is classified as heavy it produces sig-
nificantly more wake turbulence than all other heavy classified
aircraft. Therefore, the ICAO advises 6 NM distance to succeeding
heavy, 7 NM distance to succeeding medium, and 8 NM distance to
succeeding light aircraft (ICAO, 2008).

2.4. CONFLICT DETECTION IN AVIATION 59

In addition, special separation requirements exist for parallel
and nearly parallel runways. According to ICAO (2004b), two major
modes of operation are distinguished for arrivals:

• For independent parallel approaches, radar separation minima
are not prescribed for aircraft on extended runway center lines.

• For dependent parallel runways, radar separation minima are
prescribed for aircraft on extended runway center lines.

According to ICAO (2004a), the minimum separation for de-
pendent approach operations between runway center lines is 915 m;
independent operations are recommended with at least 1035 m sep-
aration. If the airport’s Secondary Surveillance Radar (SSR) does
not provide:

• a minimum azimuth accuracy of 0.06 degrees; or

• an update period of 2.5 seconds or below; or

• a high resolution display featuring position prediction and
deviation alert;

a larger distance of 1310 m or even 1525 m is necessary for inde-
pendent parallel approach operations, depending on whether the
aircraft operation would be adversely affected. However, at least a
minimum azimuth accuracy of 0.3 degrees or better and an update
period of 5 seconds or less is required for independent approach
operations.

Dependent runway approaches foresee a 3 NM radar separa-
tion for flights approaching on the same runway and 2 NM radar
separation for aircraft landing on adjacent runways.

ICAO (2004b) also defines dependent and independent parallel
runway operations for departures and mixed mode.

2.4.1 Conflict Situations in Aviation

Conflict detection is necessary in different situations with different
time horizons. This section gives a summary on conflicts in aviation,
starting with the longest planning horizon.

60 CHAPTER 2. RELATED WORK

2.4.1.1 Sector Load and Flow Control Conflicts

Every aircraft flying according to IFR in Europe needs to file a
flight plan and feed it into the Central Flow Management Unit
(CFMU). The flight plan contains, amongst others:

• Estimated time of departure and arrival.

• Cruise speed.

• Requested flight route.

• Cruise flight level.

• Departure and arrival airport.

• Alternate airport.

• Type and callsign of aircraft, wake category.

• Number of persons on board.

Based on the flight plan, the CFMU (operated by Eurocontrol)
assigns slots at departure and arrival airports. The CFMU validates
that all sectors used by the requesting aircraft are still below their
maximum load limit. The load factor of sectors is not calculated on
single aircraft events, but estimated on traffic flows. Time horizon
for CFMU planning goes from 6 days to one hour before departure.

2.4.1.2 Trajectory Based Conflicts

Modern ATM concepts are often based on TBO. Every aircraft
flies according to a 4D trajectory that is conflict free from all other
trajectories. Furthermore, additional information can be taken
into account as weather phenomena, restricted areas and other
constraints. TBO can be performed with several time horizons:

• Strategical: Several months before departure, airline opera-
tion centers need to have rough estimations of departure and
arrival times, e. g., in order to sell tickets. Typically, accuracy
of these predicted times is rather low because they are based

2.4. CONFLICT DETECTION IN AVIATION 61

on vague weather forecasts. However, even if the predicted tra-
jectories differ from the really flown ones, a general feasibility
proof based on individual flights can be performed.

• Pre-tactical: Coming closer to the departure time, trajecto-
ries can be updated with more accurate information. Chang-
ing trajectories necessitates new conflict detection and resolu-
tion.

• Tactical: When aircraft cannot comply with their assigned
trajectories, new trajectories need to be predicted that are
conflict-free from the surrounding traffic and other constraints.

2.4.1.3 Medium-Term Conflict Detection

Medium Term Conflict Detection (MTCD) recognizes conflicts of
an aircraft usually with a time horizon of 20 minutes ahead at
maximum. This conflict detection can be based on different data,
e. g., on trajectories using TBO, aircraft intend data broadcasted
via ADS-B, or extrapolation of current flight data.

2.4.1.4 Short-Term Conflict Alert

Short Term Conflict Alert (STCA) is usually used as an Air Traffic
Controller (ATCo) support tool with a prediction horizon of 2
minutes. STCA is integrated as a safety net; its presence is ignored
when calculating airspace capacity. The conflict detection is usually
based on extrapolating current aircraft state data.

2.4.1.5 Airborne Collision Avoidance System

The Airborne Collision Avoidance System (ACAS) was introduced
in order to reduce (near) midair collisions (Eurocontrol, 2012).
ACAS is the last safety net on the air side. The conflict detection
is based on SSR transponder signals; non transponding aircraft are
not detected. ACAS works on small time scale. The maximum
generation time of a traffic advisory is 48 seconds before reaching
the Closest Point of Approach (CPA). With a maximum generation

62 CHAPTER 2. RELATED WORK

of 35 seconds, ACAS issues a resolution advisory. According to
(ICAO, 2002), ACAS I supports see and avoid but does not provide
resolution advisories. Resolution advisories are always vertical in
today’s dominant version ACAS II, and coordinated with other
ACAS II equipped aircraft via a selective mode S link, so that two
aircraft choose complementary maneuvers.

2.4.2 Trajectory-Based Conflict Detection

Conflict detection on a set of N aircraft trajectories can easily be
performed by brute-force conflict detection between every possible
pair of two trajectories. This results in N(N −1)/2 comparisons and
thus a complexity of O(N2). A conflict between two trajectories
t1, t2 can be detected by segment and point comparisons of the two
trajectories (Schwoch, 2008).

The segment based method compares every segment of t1 with
every segment of t2. If both segments described by great circle
subsets intersect, a collision is detected. However, this approach
does not detect parallel conflicting trajectories.

Therefore, the point based method compares each trajectory
point of t1 with the time-corresponding point of t2, and the other
way round. If the distance is below the mandatory separation
distance, a conflict is detected.

If trajectory points are too sparse, new interpolated trajectory
points are added in order to catch all conflicts. This procedure is
used as the baseline conflict detection algorithm for performance
tests in chapter 4. As the algorithm’s complexity indicates this
method is not reasonable for large scenarios with many trajectories.

An advanced baseline can be defined by adding an optimization:
trajectories not having a common time frame (i. e., t1 arrives before
t2’s departure, or t1 departs after t2’s arrival) are early omitted since
they do not conflict. This method is used as advanced reference
in chapter 4. The performance benefit of the optimized baseline
algorithm is significant.

Further optimization following the same basic idea was per-
formed within the Programme for Harmonised Air Traffic Manage-

2.4. CONFLICT DETECTION IN AVIATION 63

ment Research in Eurocontrol (PHARE). Kremer et al. (1999)
proposed a method of performance increase by means of coarse
filters. Coarse filtering reduces number of trajectory pairs under
investigation for a final conflict check. If aircraft do not have over-
lapping flight levels, the corresponding pairs can be omitted for
conflict detection. Furthermore, Kremer proposed to cut flights
into the parts departure, en-route, and descent. For each part, the
bounding boxes can be checked for intersection with the potential
conflict partner’s bounding boxes to reduce number of final conflict
probes.

2.4.3 Subdivision of Airspace

Koeners and de Vries (2008) described an approach on how to
subdivide a given airspace in three dimensions (latitude, longitude
and time) to reduce the effort of conflict detection. A static grid is
filled by trajectories, grid cells are either marked as occupied or free
(fig. 2.17). Cells occupied by only one trajectory are colored blue for
trajectory 1 and green for trajectory 2, while cells occupied by both
trajectories are colored red. Koeners and de Vries propose a cell
size being half of the separation size. When storing routes in the
grid, a cell buffering technique copies data also to all neighboring
cells (Jardin, 2005). Since the subdivision is static this method is
only reasonable for strongly limited geographical areas, e. g., the
terminal maneuvering area of an airport.

An octree subdividing latitude, longitude and altitude is used
by Hildum and Smith (2004); Smith (2008). Subdivision is applied
each time an octant contains a conflict. The octree is stored using
a linear octree structure as described by Gargantini (1982). The
idea of a linear octree is a linear access on octants by means of
a key derived from the latitude, longitude and altitude position.
This allows access on every octant organized in a binary tree in
O(log N) time. Each octant then stores a list of intersecting objects
with the corresponding intersection times. Figure 2.18 shows an
example of a conflict situation. The proposed algorithm also checks
neighbor-octants in order to detect every conflict.

64 CHAPTER 2. RELATED WORK

Longitude

Ti
m

e

Figure 2.17 – Example Grid with Conflict according to Koeners
and de Vries (2008)

This approach is especially beneficial if time extension of the
scenario is small, and separation is guaranteed laterally or vertically.
The described method is not efficient for areas majorly ensuring
separation by time, e. g., an octant containing the threshold of an
arrival runway.

Jardin (2003) uses a static 3D-grid subdividing latitude, longi-
tude and time. He applies a grid spacing of 5 NM and 30 seconds
in time, resulting in ∼16 MiB of memory necessary for Continen-
tal United States per flight level. Each grid cell holds a single
binary value indicating if the cell is occupied by other aircraft or
weather. An explicit conflict list is not generated by the algorithm
since Jardin performs direct conflict solution when a new trajec-
tory conflicts with already occupied cells on insertion. Of course,
neighboring cells also need to be taken into account.

Jen Chiang et al. (1997) proposed a static 3D-geometric subdivi-
sion with minimum requested separation size. Conflicts are detected
by searching multiple aircraft in one tile and the 26 surrounding
neighbors. This approach is fast since most neighbor tiles are empty
in practice. However, the tests need to be performed for several
discrete times with time offset Δt. Section 3.3.1 describes a different
method for handling neighborhoods.

2.4. CONFLICT DETECTION IN AVIATION 65

V3

V1

V2

V3V3

Figure 2.18 – Conflict in Octree between V1 and V2 according to
Hildum and Smith (2004)

2.4.4 Conflict Detection Considering Uncertain-
ty

Amongst others, Erzberger investigated the idea of respecting tra-
jectory uncertainties in conflict detection (Erzberger et al., 1997).
Claiming at least 10 minutes ahead time for conflict detection, the
optimum time is a trade-off between efficiency and certainty. The
earlier a resolution maneuver is initiated, the more efficient it is.
However, the more look ahead time is applied on trajectories, the
more uncertainty is integrated in the conflict decision.

The conflict detection functionality is based on trajectories
and statistical model of prediction errors, represented as ellipsoids
in three-dimensional space (fig. 2.19). In order to limit conflict
detection trials, Erzberger et al. propose three methods:

66 CHAPTER 2. RELATED WORK

Predicted Time

Predicted Time

Path Cross
Angle

Prediction Error
Ellipse

Minimum
Predicted Separation

Predicted
Trajectories

Figure 2.19 – Trajectory Prediction Error Ellipses according to
Erzberger et al. (1997)

• Trajectory pair pruning omits conflict detection if trajectories
are spatially exclusive in either altitude or horizontal position.
Therefore, it is checked if the trajectories fly in separated flight
levels and if their lateral bounding boxes intersect. That way,
60 % to 80 % of all possible trajectory pairs are pruned.

• Separation computations are minimized. For example, lateral
calculations are avoided if aircraft are already separated ver-
tically. Lateral cross-distances are calculated only if x- and
y-distance are both below laterally required separation.

• Time skipping avoids conflict detection on trajectory segments
that are already ensured to have no conflict. Thus, if two
trajectories have a big distance at one test time τ , their
distance is assumed to not converge faster towards zero than
10 000 ft min−1 vertically and 0.33 NM s−1 (about 2 Mach at
standard sea level conditions) laterally. Therefore, if two

2.5. CONFLICT RESOLUTION IN AVIATION 67

aircraft have a distance of 200 NM at a given time τ , it is not
necessary to test them again before τ + 10 minutes.

The combination of the above described methods leads to a conflict
detection time of 10 seconds for up to 800 trajectories and a predic-
tion horizon of 30 minutes running on the scalable multi-workstation
architecture of Center-TRACON Automation System (CTAS).

In contrast to Erzberger’s proposal the conflict detection algo-
rithm described in this work has no direct support for uncertainty
management for several reasons:

• Trajectory prediction and execution accuracy has increased
in the last decades, compare section 2.3.1.

• A prediction horizon of 30 minutes is not enough in a TBO
environment handling gate-to-gate traffic. An uncertainty
forecast for flights lasting several hours is hard to predict, if
possible at all, with an acceptable accuracy.

• This approach handles whole trajectories. Thus, it covers
also the bottlenecks of today’s airspace, which are usually the
runways. Aircraft are staggered densely on runways both for
arrivals and departures. Allowed deviations from their fore-
seen trajectories is only few seconds in arrival and departure
phase. Including uncertainties that accumulate during the
flight to the arrival phase decreases runway’s throughput to
an unacceptable level.

2.5 Conflict Resolution in Aviation

In general there are three types of conflict resolution in aviation as
depicted in fig. 2.20:

• Lateral conflict resolution avoids a predicted conflict by a
lateral detour.

• Vertical conflict resolution lets one aircraft sink below or climb
above the conflict partner.

68 CHAPTER 2. RELATED WORK

• Time-based conflict resolution changes the time of arrival at
the conflict.

Direction, duration and most efficient type of conflict solution
depends on the conflict properties. Aforementioned resolution

Figure 2.20 – Three Types of Conflict Resolution

types are not feasible in all situations. A combination of the given
resolution types may result in more efficient maneuvers.

For instance, resolution advisories from the ACAS (sec-
tion 2.4.1.5) should be directly executed by a pilot. Due to the
short time horizon, time-based conflict solution is not envisaged.
Since horizontal resolution of SSR is rather low, ACAS resolution
advisories are only vertical nowadays.

Especially when considering TBO and strategic planning of
trajectories, conflict solving can generally be performed in all three
ways for en-route conflicts.

In contrast, vertical conflict resolution is not an option for con-
flicts on the runway because threshold elevation is a geographical
constraint. The same accounts for lateral resolution with the ex-
ception of allowing to reroute the aircraft from/to another close-by
runway.

2.5. CONFLICT RESOLUTION IN AVIATION 69

Several publications already handle conflict resolution. The
following sections give an extract.

2.5.1 Conflict Resolution using Trial-and-Error

Erzberger et al. (2010) propose to not only search for one solution
solving the conflict under investigation but continue the search and
afterwards select the best from several solutions. A major factor
for a good solution is a small introduced time delay. Since conflict
resolution is complex, Erzberger et al. distinguish several cases
for lateral (fig. 2.21), vertical (fig. 2.22) and time-based (fig. 2.23)
solutions.

Direct-To

Left/Right Path Stretch

Analytical Turn

Left/Right Route Offset

Figure 2.21 – Horizontal
Resolution according to Erz-
berger et al. (2010)

Step Altitude
Climb/Descent

Temporary
Altitude, Climb

Temporary
Altitude, Descent

Figure 2.22 – Vertical Reso-
lution according to Erzberger
et al. (2010)

Some of the resolution types are not applicable in any circum-
stance. For instance, the lateral direct-to maneuver depends on an
existing dogleg that can be bypassed directly to a waypoint further
downstream. Doglegs are commonly used today but should not be
standard in envisaged TBO. In exchange, if a direct-to is possible it
is usually even more efficient than the unresolved situation before.

According to Erzberger et al., the path stretching has the best
success rate among the horizontal resolution types. The additional
waypoint is put on an ellipse with the aircraft’s position as one
focus and the return point as second focus. The radii depend on
the specified delay.

70 CHAPTER 2. RELATED WORK

Mach

Time

Time

True
Airspeed

Top of
Descent

Figure 2.23 – Time-Based
Resolution according to Erz-
berger et al. (2010)

Summarizing, Erzberger et al. create ∼128 potential solutions
(2 direct-to, ∼16 vertical, 6 analytical turn, 4 route offset, ∼80
path stretch, and ∼20 speed). Based on these, he generates ∼128
trial trajectories with a trajectory predictor and probes them in the
conflict detector. From up to 15 solutions, he chooses the one that
fits best according to predefined metrics.

2.5.2 Conflict Resolution using Genetic Algo-
rithm

Durand et al. (1996) propose to solve conflicts globally with genetic
algorithms. Starting with a population of conflicting trajectories,
three basic operators are used to influence conflicts: selection,
mutation and crossover. A fitness function is defined, defining
the desired properties of the population, e. g., having no conflicts
and being cost efficient. The selection operator picks suitable
individuals from the population to breed a new generation. The
mutation operators ensure genetic diversity by changing one or more
values from single individuals. The crossover operator generates
children based on more than one parent individual. The process
iterates as long as fitness improves. Problems of genetic algorithms
are:

2.5. CONFLICT RESOLUTION IN AVIATION 71

• Quality of the overall process strongly depends on the qual-
ity of the fitness function. Defining a good fitness function
sometimes is a difficult task. If the fitness function is com-
plex, frequent calls destroy the overall performance. Fitness
functions should be continuous instead of false/true in order
to give hints for convergence direction.

• Genetic algorithms scale badly with complexity. Large popu-
lations with many parameters span a large search space.

• Genetic algorithms tend to converge to local optima instead
of finding a global optimum. This behavior can be avoided
by changing the fitness function appropriately.

• It is difficult to estimate convergence behavior and time to so-
lution. Certification of genetic algorithms is (at least) difficult
in aviation.

2.5.3 Conflict Resolution based on Potential
Fields

Another approach of solving conflicts is based on potential fields’
theory (Kelly and Eby, 2000; Roussos et al., 2008). The basic idea
is to use an electrostatic modeling of the problem where aircraft
are handled as electrons with negative charge. Since same charges
push away each other, conflict avoidance is directly integrated in
the model. Destinations have a positive load which attracts aircraft.
Aircraft are moving towards their destination while being influenced
from the resulting electric field. Thus, aircraft/ electrons being
instantiated at their departure fly a most likely conflict free route
towards their destination.

Calculation of complex global situations is very demanding and
time consuming using potential fields. Therefore, this kind of con-
flict resolution is mostly used on local conflict situations. A big
problem is constraining the algorithm in order to get flyable trajec-
tories respecting the performance and maneuverability limitations
of aircraft and constraints from ATM.

72 CHAPTER 2. RELATED WORK

2.5.4 Conflict Resolution based on Light Propa-
gation

Dougui et al. (2010) propose an algorithm based on the different
refractions of light. Refraction indices are assigned according to
the congestion of airspace. Optimal trajectories are then found by
calculating the shortest light path between two points respecting
the local metrics built, e. g., from refraction indices and aircraft
protection zones. Calculation times are reduced by limiting the
search space using a branch-and-bound method.

The proposed algorithm runs in (2D+time) and usually comes
up with a flyable conflict free trajectory.

2.5.5 Conflict Avoidance in Crowd Simulation

Crowd simulation is often used in computer graphics and movie
productions when the movement and behavior of a large amount of
objects and characters shall be simulated. The individual entities
behave according to assigned rules and thus interact with their en-
vironment, e. g., by avoiding conflicts with other entities. Although
crowd simulation is often used to simulate human behavior in a
3-dimensional system, the same mechanisms can easily be adapted
to a 4-dimensional system simulating aircraft traffic.

Foudil et al. (2009) perform crowd simulation in a discretized
coordinate system modeled as a grid of cells. The path of an object
is generated using the A∗ algorithm (Hart et al., 1968), each object
occupying one cell at each time. The predicted path is collision free
from static objects. Conflicts with other entities are classified in
Toward (head-to-head), Away (overtake situation) and Glancing
(side-on). Conflict avoidance is then performed on human life
experience, e. g., by taking the smallest deviation for the Toward
case and performing a slow down to avoid an Away collision.

Unfortunately, the proposed fallback procedure to stop walking
when no solution can be found is not directly transferable on aircraft,
being strongly limited by deceleration gradient and minimum air
speed. Especially queuing at saturated arrival runways requires
other techniques, preferably with a larger look ahead time.

2.6. GEODETIC EARTH SYSTEMS 73

Golas et al. (2013) propose a hybrid approach of local collision
avoidance in the vicinity of crowd entities and approximate, long-
range collision avoidance. The long term look ahead is based on an
extrapolation of the known path. In order to avoid wrong decisions
based on approximated data, the look ahead time is restricted.

Even though the approach of Golas et al. has a higher poten-
tial to draw near the overall optimum than a pure local collision
avoidance, a centralized global system seems more suitable to find
the most efficient solution than a distributed crowd simulation with
each entity having a very restricted view.

2.5.6 Extended Flight Rules

The Extended Flight Rules (EFR) do not provide an algorithm
solving conflicts but a method to identify for a conflict situation
which aircraft has right of way (Duong et al., 1996). The priority
assignment considers maneuverability, current flight phase, and
speed of both aircraft.

If two aircraft in normal operation and same flight phase having
an encounter the faster aircraft must give way to the slower.

In normal operation with different flight phases, priority is
assigned as described in table 2.2. The letter R on the main
diagonal corresponds to aforementioned distance/speed rule. A and
B means priority is given to aircraft A or B respectively. The EFR
also define further rules, amongst others, for encounters between
more than two aircraft, different equipped aircraft, and emergencies.

2.6 Geodetic Earth Systems

Since the algorithms described in this paper assume a Euclidean
coordinate system while the problem in focus is Earth related, this
section describes some commonly used Earth models. Chapter 4
illustrates how the shape of Earth is taken into account by the
algorithms.

74 CHAPTER 2. RELATED WORK

Table 2.2 – Priority for Aircraft in Different Flight Phases (Duong
et al., 1996)

Aircraft B
Phase Climb Cruise Descent

Phase Subphase In
it

ia
l

In
te

rm
ed

.
Fi

na
l

N
or

m
al

P
re

-D
es

c.

In
it

ia
l

In
te

rm
ed

.
Fi

na
l

Ai
rc

ra
ft

A

Initial R A A A A A A B
Climb Intermed. B R B B B B B B

Final B A R B B A A B

Cruise Normal B A A R A A A B
Pre-Desc. B A A B R A A B

Initial B A B B B R B B
Descent Intermed. B A B B B A R B

Final A A A A A A A R

Geodetic Earth models are simplified geometrical systems
describing the shape of Earth. Positions on Earth are often
given in East-North-Up (ENU) notation referenced by a longi-
tude λ ∈ [−π, π), latitude ϕ ∈ [−π/2, π/2], and a height. Positions
on the northern hemisphere have a positive latitude, positions on
the eastern hemisphere positive longitudes, and positions being
further away from Earth center higher heights. The 3D-position of
a surface point P (ϕ, λ) depends on the geodetic reference system
being used (fig. 2.24).

A simple model of Earth is the spherical system, assuming that
the shape of Earth is close to a sphere. There are several different
Earth radii used in literature depending on the optimization criteria
usually lying between 6370 km and 6380 km.

2.6. GEODETIC EARTH SYSTEMS 75

Equator

P

C
Pr

im
e

M
er

id
ia

n

Figure 2.24 – Point P with Latitude ϕ and Longitude λ

Since the Earth is flattened at the poles by ∼ 21 km more
accurate geodetic systems are based on oblate ellipsoids of revolution.
The flattening f is defined as

f =
a − b

a
= 1 − b

a
(2.1)

a is the equatorial radius
b is the polar distance from the center

Table 2.3 gives an overview on global reference ellipsoids for
Earth in chronological order. Following a decision of the ICAO,

76 CHAPTER 2. RELATED WORK

WGS84 is the commonly used reference ellipsoid in aviation since
1989.

Table 2.3 – Reference Ellipsoids for Earth

Name Equatorial Polar Inverse flat-
axis a(m) axis b(m) tening 1/f

Spherical 6 371 000 6 371 000 ∞
Airy 1830 6 377 563 6 356 257 299.32
Bessel 1841 6 377 397 6 356 079 299.15
International 1924 6 378 388 6 356 912 297.00
WGS 72 6 378 135 6 356 751 298.26
WGS 84, GSR 80 6 378 137 6 356 752 298.257

2.6.1 Distances on Earth

The shortest distance between two points on a sphere is an ortho-
drome, a segment of a great circle. A great circle is the intersection
of a sphere with a plane going through the center of the sphere.
Non identical two points p1, p2 which are not exactly on opposite
sides of the sphere define exactly one great circle. The minor arc
is the shortest distance between the two points along the sphere’s
surface. The distance between p1 and p2 can be predicted based on
the inner angle between the polar vectors at the sphere center by
multiplication with the sphere’s radius.

Calculation of shortest distance on an ellipsoid’s surface is signif-
icantly more difficult. Thaddeus Vincenty’s formula performing an
iteration towards the ellipsoidal distance is often used in aviation
(Vincenty, 1975). Vincenty’s formula works for any oblate ellipsoids
of revolution and thus can easily be adapted to WGS84. Even
though the algorithm is an iterative approach, calculation time is
fast because of quick convergence. Depending on the requested
accuracy, only few iteration steps are necessary, typically well below
10.

2.6. GEODETIC EARTH SYSTEMS 77

2.6.2 Map Projection

This section describes some widely used map projection techniques
to map a spherical/ellipsoidal Earth system on a 2D plane. Chap-
ter 4 explains how the conflict detection algorithm of chapter 3
is adapted for usage with geodetic Earth systems based on these
mappings. There is no optimum projection, every mapping creates
distortions.

2.6.2.1 Sinusoidal Projection

The sinusoidal projection (also known as Mercator equal-area pro-
jection, fig. 2.25) is a pseudo-cylindrical projection preserving the
area (Snyder, 1987). It shows relative sizes accurately, but distorts
shapes and directions. The transformation from sphere (ϕ, λ) into
plane (x, y) coordinates is simple:

x = (λ − λ0) · cos(ϕ), y = ϕ (2.2)

λ0 is the central meridian

2.6.2.2 Mercator Projection

The Mercator projection (fig. 2.26) is a cylindrical map projection.
Since it represents loxodromes (i. e., lines crossing all meridians
of longitude at the same angle) with constant course, it is the
standard map projection for nautical purposes. The Mercator
projection preserves well angles and shapes of small objects, but
distorts larger objects. The scale increases from the Equator to the
poles, where it is infinite.

x = (λ − λ0) , y = ln
[
tan

(π

4
+

ϕ

2

)]
(2.3)

λ0 is the central meridian

78 CHAPTER 2. RELATED WORK

2.6.2.3 Transverse Mercator Projection

The transverse Mercator projection (sometimes also referred to as
Gauss-Krüger projection, fig. 2.27) is a variant of the Mercator
projection. It features a freely adjustable central meridian and thus
constructs local high accuracy maps all around the globe.

x =
1
2

k0 ln
[

1 + sin λ cos ϕ

1 − sin λ cos ϕ

]
, y = k0 arctan (sec λ tan ϕ) (2.4)

k0 = sec ϕ

Figure 2.25 – Sinusoidal
Projection Figure 2.26 – Mercator Pro-

jection

2.6. GEODETIC EARTH SYSTEMS 79

Figure 2.27 – Transverse Mercator Projection

80 CHAPTER 2. RELATED WORK

Chapter 3
Conflict Detection

Efficient algorithms are required to perform conflict detection for
complex problems in a reasonable time. Several algorithms already
exist realizing high performance conflict detection, but usually
come from different application areas with different environmental
constraints.

The constraints for conflict detection in aviation are:

• Objects (e. g., aircraft) and their occupied space are small
compared to the containment area (i. e. airspace). Typical
shapes of occupied space are cylinders with diameters of
5 NM and heights of 1000 ft (fig. 1.1 on page 25). Although
the underlying non-linear coordinate system increases effort,
overall collision detection in narrow phase is simple.

• Aircraft are typically staggered vertically with valid 1000 ft
separation. Approximation of the separation cylinder with a
sphere would result in a high false-positive rate.

• Aircraft move fast in airspace, typically resulting in conflicts
with short durations. Aircraft move on continuous trajectories.
Due to their high speed compared to their size discretization
of time should be avoided.

81

82 CHAPTER 3. CONFLICT DETECTION

• 4D airspace is sparsely filled with objects only. However,
designated areas of airspace are crowded, especially areas in
the vicinity of airports.

• No-fly zones with complex 4D shapes are additional hazards
in airspace that shall be respected.

• Different conflict metrics may apply for different parts of
airspace.

• WGS84 distance metrics are complex to calculate (section 2.6).

• Even though the trajectories of aircraft are assumed to be
well-known for whole flights, updates of trajectories should
be possible with low costs.

• The expected number of conflicts in aviation scenarios is
usually low. Even a dense scenario with unaligned trajectories
usually yields less than one conflict per aircraft on average
(compare table 4.2 on page 143).

• The algorithm should allow to dynamically add (e. g., new
scheduled departures) and delete (e. g., canceled flights) ob-
jects.

Since already pairwise comparisons of trajectories are compu-
tationally expensive, an efficient broad phase avoiding pairwise
conflict detections in the first place is desirable. BVH as described
in section 2.2.7 allows a very fast first comparison between two
trajectories based on their bounding boxes, but does not skip the
comparison completely.

Applying KDS from section 2.2.8 requires the generation of
certificates and prediction of events for aircraft. Furthermore, a
KDS implementation for three dimensions seems to be ambitious (no
known 3D-implementation yet), especially with cylindrical shaped
objects.

Also the sweep and prune approaches described in section 2.2.9
are not reasonable for the given problem. Handling the dimensions
one-by-one would result in a large number of altitude intersections
each generating an event even if the objects are laterally well
separated.

3.1. DEFINITIONS 83

The 3D subdivision described in section 2.4.3 using octrees is
promising, but a static subdivision of worldwide airspace with a
reasonable memory equipped computer would allow a flat tree only.
Furthermore, it is not intuitive to skip one dimension (Koeners and
de Vries skipped altitude while Hildum and Smith skipped time),
as long as no memory constraints exist.

The algorithm developed in this thesis is based on N-dimensional
bisection. The fundamental idea is based on an early exclusion
of conflict checking whenever a conflict is obviously impossible.
In 4D-airspace, a conflict check may be excluded if two aircraft
are separated laterally (fig. 3.1). Separation is ensured either in
x-direction, y-direction, or a combination of both. If two aircraft
fly in significantly different altitudes, they are separated vertically
(fig. 3.2). Finally, aircraft are allowed to fly exactly the same route
with exactly the same vertical profile if they only fly at different
times (fig. 3.3).

3.1 Definitions

This section gives some definitions for basic objects referred to
within the following chapters.
A line segment in N-dimensional space is defined as a point set by
two points �p1 and �p2:

L(�p1, �p2) = {�x : �x = �p1 + μ (�p2 − �p1)} (3.1)

�x, �p1, �p2 ∈ R
N

0 ≤ μ ≤ 1, μ ∈ R

A trajectory is defined as a set of connected line segments by k
points �p1, . . . , �pk:

T (�p1, . . . �pk) = L(�p1, �p2) ∪ L(�p2, �p3) ∪ . . . ∪ L(�pk−1, �pk) (3.2)

84 CHAPTER 3. CONFLICT DETECTION

Figure 3.1 – Lateral Separa-
tion between 4D-Trajectories

Figure 3.2 – Vertical
Separation between 4D-
Trajectories

Figure 3.3 – Time - based
Separation between 4D-Tra-
jectories

Figure 3.4 – 4D-Hypercube
(Tesseract)

3.1. DEFINITIONS 85

�p1, . . . , �pk ∈ R
N

k ≥ 2, k ∈ N

A trajectory T is one of two basic object types that are supported
for conflict detection. The other object type is a volume V . We will
refer to an object O as either a trajectory T or a volume V .

A volume V is based on simplices, the N -dimensional analogue
of a triangle with (N + 1) vertices. Well known simplices are points
(0-simplex), line segments (1-simplex), triangles (2-simplex), and
tetrahedrons (3-simplex). A simplex S can be defined as the convex
combination of (N + 1) affine independent points as

S(�p1, . . . , �pN+1) =

{
�x :

(
�x =

N+1∑
i=1

μi�pi

)
∧

(
N+1∑
i=1

μi = 1

)}

(3.3)

�x ∈ R
N

�p1, . . . , �pN+1 ∈ R
N : det(�p2 − �p1, �p3 − �p1, . . . , �pN+1 − �p1) �= 0

0 ≤ μi ≤ 1, μi ∈ R

A simplex s1 is an N -face of a simplex s2 if it is equal to one N -face
of s2.

NFace : S × S → {0, 1} (3.4)

NFace(s1(�q1, . . . , �qN), s2(�p1, . . . , �pN+1)) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,

if s1(�q1, . . . , �qN) ={
�x :

(
�x =

N+1∑
i=1

μi�pi

)
∧

(
N+1∑
i=1

μi = 1

)
∧ (∃j : μj = 0)

}

0, else
(3.5)

86 CHAPTER 3. CONFLICT DETECTION

�x ∈ R
N

j ∈ {1, . . . , N + 1}
�p1, . . . , �pN+1 ∈ R

N

�q1, . . . , �qN ∈ R
N

0 ≤ μi ≤ 1, μi ∈ R

Finally, a volume V is defined as a homogeneous simplicial N -
complex recursively by a set of simplices connected by faces of
dimension N-1:

V (s1, . . . , sk) =
{

s1, if k = 1
V (s1, . . . , sk−1) ∪ sk, if k > 1 (3.6)

∃j : (NFace(sj ∩ sk, sj) = 1) ∧ (NFace(sj ∩ sk, sk) = 1)
s1, . . . , sk ∈ S(�p1, . . . , �pN+1)

j ∈ {1, . . . , k − 1}

The bisection algorithm described in this chapter operates on tiles.
A tile A is a subset of a N-dimensional Euclidean space defined by
two vectors holding minimum (�amin) and maximum (�amax) values
for each dimension.

A(�amin,�amax) = {�x : (amin,i ≤ xi ≤ amax,i) for all i ∈ {1, . . . , N}}
(3.7)

�x,�amin,�amax ∈ R
N

A similar definition can be given by the Cartesian product of N
intervals:

A(�amin,�amax) = [amin,1, amax,1]×[amin,2, amax,2] × . . . ×
[amin,N , amax,N]

(3.8)

One dimension of an object can be defined to be a time dimension. If
a time dimension is specified, let it be assigned to the last dimension
N of an object without loss of generality. Time τ then serves as

3.2. N-DIMENSIONAL CONFLICT 87

a common reference for conflict detection. Therefore, a trajectory
needs to be one-dimensional along time axis and capable of being
parameterized by a time τ .

∃1(�x ∈ T) : xN = τ (3.9)

�x ∈ R
N

amin,N ≤ τ ≤ amax,N

This restriction does not account for volumes though, volumes can
be (N − 1)-dimensional along time. The functions V (τ) and T (τ)
correspond to the volume/trajectory for the given time τ

V (τ) = {V (s′
1, . . . , s′

m) ⊂ V (s1, . . . , sk) : s′
i,N = τ

for all i ∈ {1, . . . , m}}
(3.10)

T (τ) = {�x ∈ T : xN = τ} (3.11)

�x ∈ R
N

O(τ) resolves to T (τ) or V (τ) for trajectories or volumes, respec-
tively. The result of O(τ) has always full dimension N with the Nth
dimension being constantly equal to τ in order to avoid different
dimensions in calculations.

3.2 N-Dimensional Conflict

This section defines if two objects are in conflict. It needs to be
distinguished if a time reference shall be taken into account, or if
all dimensions are treated equally.

88 CHAPTER 3. CONFLICT DETECTION

3.2.1 Conflicts without Time Reference

Two trajectories t1, t2 ∈ T are in conflict if the separation of trajec-
tories is lower than a predefined mandatory separation �S in all N
dimensions.

∃(�p1 ∈ t1)∃(�p2 ∈ t2) : (|�p1 − �p2|i < Si) for all i ∈ {1, . . . , N}
(3.12)

�pk ∈ R
N , point on trajectory tk

�S ∈ R
N , mandatory separation

A volume v1 ∈ V is in conflict with an object o1 if v1 contains
partly o1.

∃�p1 : (�p1 ∈ o1) ∧ (�p1 ∈ v1) (3.13)

3.2.2 Conflicts with Time Reference

If a time axis is specified within the N-dimensional vector, it is used
as a common reference of all objects. Two trajectories t1, t2 ∈ T
are in conflict, if their distance at a common time τ is lower than
the necessary separation �S in all N dimensions.

∃τ : |t1(τ) − t2(τ)|i < Si for all i ∈ {1, . . . , N} (3.14)

τ ∈ R, common time
�S ∈ R

N , mandatory separation

A volume v1 ∈ V is in conflict with an object o1 ∈ (T ∪ V) if v1
contains partly o1 at a common time τ .

∃τ, �p1 : (�p1 ∈ o1(τ)) ∧ (�p1 ∈ v1(τ)) (3.15)

τ ∈ R, common time

3.3. N-DIMENSIONAL TILING ALGORITHM 89

The separation in time dimension is zero by definition. Therefore,
time separation does not need to be checked explicitly. Nevertheless,
the time component of �S shall be positive.

Obviously, a conflict with time reference is also a conflict without
time reference for SN > 0 because the difference in time dimension
is zero. Therefore, data with time reference can be treated with both
algorithms. Checking conflicts with time reference is a specialization
of the standard check without time reference.

Setting SN > 0 to an arbitrary small epsilon

SN = ε (3.16)

ε > 0

provides identical results with and without time reference. However,
there are good reasons to consider time separately:

• The mandatory separation �S is also used as minimal tile size
for the bisection algorithm. Simply setting one dimension to
ε produces unwanted results.

• Having a common reference between all objects can be used
beneficially as a speed-up by reducing necessary comparisons.

• Based on monotony of time dimension binary search can be
applied.

• The conflict tree size can be reduced significantly in time
reference mode (section 3.3.3).

3.3 N-Dimensional Tiling Algorithm

Detecting N -dimensional conflicts in a large set of objects is a time
consuming task. For example, Germany’s airspace is an operation
area of more than 10 000 flights on busy days, each flight represented
by a high-precision 4D-trajectory with several hundred sampling

90 CHAPTER 3. CONFLICT DETECTION

points. Comparing each trajectory against each other without any
optimization produces unacceptable response times.

In order to avoid extensive conflict detection, the provided algo-
rithm separates objects by generating N -dimensional tiles holding
just one object. The tiles are organized in a tree structure. Depend-
ing on the number of dimensions N , one node of the tree has up to
2N children.

Starting condition for the tiling algorithm is an N -dimensional
orthogonal tile being large enough to hold all objects in all dimen-
sions in terms of a convex hull. Objects are treated by the algorithm
consecutively. In the beginning, this root tile is empty.

Objects are inserted in the root tile. The conflict detection is
performed directly on insertion. As soon as a tile (e. g., the root
tile) is affected by more than one object, the tile is subdivided in all
dimensions by adding up to 2N children. Figure 3.5 illustrates the
subdivision process for the one-, two-, and three-dimensional cases.
Tile shape for the 4D-case is a 4D-hyperrectangle, its cubic version
also known as tesseract(fig. 3.4). Table 3.1 gives an overview on
tile shapes and their subdivision.

Table 3.1 – Overview on N-dimensional Bisection

Dimension Tile shape Number of tiles in depth
1 2 3 m

1 Line 2 4 8 2m

2 Rectangle 4 16 64 4m

3 Rectangular box 8 64 512 8m

4 4D-Hyperrectangle 16 256 4096 16m

...
...

...
...

...
...

n n-D Hyperrectangle 2n 22·n 23·n 2m·n

Having in mind the aviation background, the 4-dimensional
case is of particular interest. Therefore, fig. 3.6 depicts the sixteen
first-level children of a tesseract.

3.3. N-DIMENSIONAL TILING ALGORITHM 91

>

Figure 3.5 – Bisection for 1-3 Dimensions

Figure 3.6 – First Level Bisection of Tesseract with 16 Children

92 CHAPTER 3. CONFLICT DETECTION

The subdivision is performed until all leaf tiles:

• Are affected by one object only; or

• The minimum tile size is reached. Reaching the minimum
tile size with more than one object is interpreted as a po-
tential conflict. Therefore, the minimum tile size should be
set to conflict size or above in order to detect all conflicts.
Section 3.3.10 explains how minimum tile size should be set.

3.3.1 Affected Tiles

Due to the orthogonal layout, a tile can be described by two N-
dimensional vectors �amin and �amax (eq. (3.7)). The tile size �δ is the
difference:

�δ = �amax − �amin (3.17)

�δ,�amin,�amax ∈ R
N

A tile is subdivided only if it is affected by more than one object.
Affection can be both:

• Penetration of a tile by an object (fly-through, section 3.3.2);
or

• Vicinity of a tile to an object (fly-by, section 3.3.3).

If an object’s distance to a tile is closer than mandatory separation
distance, it affects the tile.

Figure 3.7 demonstrates a situation with two objects in different
tiles having a conflict. Both tiles contain a penetrating fly-through
and a fly-by object.

In this algorithm, fly-by objects are directly stored in the fly-by
tiles on subdivision. Compared to other algorithms in literature
(e. g., section 2.4.3) where all neighboring tiles need to be investi-
gated, this procedure has three main advantages:

• It is not necessary to store neighborhood information. A
hyperrectangle of dimension N has 3N − 1 direct/diagonal

3.3. N-DIMENSIONAL TILING ALGORITHM 93

Figure 3.7 – Objects in Different Tiles having a Lateral Conflict

neighbors. For a 4D map, this would increase necessary
memory by 34 − 1 = 80 pointers per tile – 640 B on 64 bit
computer.

Identifying neighbors dynamically, without storing them, is
not an option since neighbor search is too slow.

• Keeping neighborhood information consistent is a complex
task and computational expensive in a dynamic heterogeneous
tree.

• In contrast to a static array, it is not feasible to check for
conflicts against all candidates from neighboring tiles in a
dynamic tree. After the first subdivision of root tile, every
tile is a direct neighbor of every other tile. Thus, conflict
check has to be limited on objects close to the border.

3.3.2 Check for Penetration

A tile A is penetrated by an object O if at least one point of O is
within A.

∃(�p ∈ O) : (�p ∈ A) (3.18)

This equation is good for the sake of mathematical definition, but
since objects are defined as infinite point sets, it cannot be checked
directly by a computer program.

Due to the orthogonality of the underlying coordinate system,
penetration of a tile by an object can be re-formulated allowing

94 CHAPTER 3. CONFLICT DETECTION

an implementation on a computer. An object penetrates an N-
dimensional tile if:

• All points of the object are within the tile; or

• At least one boundary of the object intersects with one of the
2 · N tile boundaries; or

• The object contains the complete tile (only relevant for vol-
umes).

Bullet one is easy to verify. Only one (e. g., the first) point �p of the
object needs to be checked.

∀i : amin,i ≤ pi ≤ amax,i (3.19)

i ∈ {1, . . . , N}
�p ∈ R

N

If the tile encloses the test point �p, the object obviously penetrates
the tile A. If the result is negative, not all points of O lie in the
tile.

Bullet three can be checked with comparable effort. Only one
point �p (e. g., �amin) of the tile needs to be checked to be within a
volume V .

(�p ∈ V (s1, . . . , sk)) ⇔ ∃i : �p ∈ si (3.20)

i ∈ {1, . . . , k}

Again, if the volume contains the point �p, the volume obviously
penetrates the tile A. If the result is negative, not all points of A
are located within the object.

If both checks are negative, the intersection of tile and ob-
ject boundaries need to be checked. For each dimension, an N -
dimensional tile has a lower and an upper boundary. Since tiles are
axis-aligned, the shape of tile boundaries has one dimension less
than the tile itself (table 3.2).

3.3. N-DIMENSIONAL TILING ALGORITHM 95

Table 3.2 – Boundaries of N-dimensional Tiles

Dim. Tile Boundary Number of
shape shape boundaries

1 Segment Point 2
2 Rectangle Segment 4
3 Rectangular box Rectangle 6
4 4D-Hyperrect. Rectangular box 8
...

...
...

...
n n-D Hyperrect. (n-1)-D Hyperrect. 2 · n

The final check whether object boundaries intersect with the
tile depends on the object type. The corresponding algorithms are
explained in section 3.4.1 for trajectories and within section 3.4.2
for implemented volumes.

3.3.3 Check for Vicinity

The vicinity test can be performed easiest by using a dilatation of
the tile. Instead of checking distances to a given tile, the tile is
extended by the separation margins. Figure 3.8 depicts a trajectory
that penetrates both the tile itself and the extended fly-by tile.
Based on the two N-dimensional vectors �amin and �amax describing
the tile, the dilatation tile can be described by

�a′
min =

(
�amin − �S

)
and �a′

max =
(
�amax + �S

)
(3.21)

amin, amax, a′
min, a′

max ∈ R
N

�S ∈ R
N , mandatory separation

Thus, vicinity check can be performed as described in section 3.3.2
using �a′

min and �a′
max.

In time reference mode, a dilatation of time is not necessary
because proximity in time is not relevant for the conflict decision.

96 CHAPTER 3. CONFLICT DETECTION

Figure 3.8 – Trajectory in Fly-Through and Fly-By Zone

3.3. N-DIMENSIONAL TILING ALGORITHM 97

Penetrated by
one aircraft

Penetrated by
one aircraft

Affected by
two aircraft

Figure 3.9 – No Conflict without Fly-Through Object in Center
Tile

Objects are only compared at identical times τ . Avoiding the
dilatation in time provides a significant decrease of used memory
and significant increase of calculation speed. For the aviation
example, this results in ∼25 % better run-time and ∼40 % less
memory. Therefore, we set for the time reference mode

a′
min,N = amin,N and a′

max,N = amax,N (3.22)

A tile contains a potential conflict only if:

• It is affected by at least two objects; and

• Penetrated by at least one object.

A tile with fly-by objects, only, does not contain any conflicts
(fig. 3.9).

3.3.4 Symmetric Simplification

Figure 3.7 on page 93 illustrates that conflicts are detected twice.
Both tiles displayed contain a fly-by and a fly-through object, each.
While this is technically not a problem since detected conflicts are
merged, symmetric situations are both memory and time consuming.
Thus, the idea of this section is avoiding symmetric situations by
skipping the fly-by object in one of the two tiles.

A clear rule needs to be defined in order to ensure that fly-
by situations are at least taken into account by one tile. The

98 CHAPTER 3. CONFLICT DETECTION

implemented method skips fly-by objects by their relative position
to the tile. For each dimension i it is checked whether the tile-
relevant part of the object is below the corresponding amin,i or above
amax,i. If no dimension is found where the object is constantly below
or above the corresponding tile dimension, the fly-by object is kept,
resulting in a potential extra effort.

Otherwise, the fly-by object is kept only if it is constantly above
the maximum tile value for at least one dimension. Focusing on
the left tile in fig. 3.7, the right trajectory is constantly above the
maximum x-value of the left tile. Concerning the right tile, the
left trajectory is constantly below the x-value of the right tile and
thus is omitted. For the aviation example, this technique improves
run-time by ∼15 % and decreases memory usage by ∼25 %.

3.3.5 Full Containment

If a volume V contains one point of a tile A and volume’s boundaries
do not intersect the tile’s boundaries, the volume V includes the
complete tile.

∀�x ∈ A ⇒ �x ∈ V (3.23)

Every other object also penetrating this tile has a real conflict
with the volume V . No extra information concerning volume V
is gained with further subdivision of the appropriate internal tile.
Therefore, volumes containing whole tiles can be treated as a fly-by
object for the tiling decision.

For example, if only one aircraft flies in German airspace, and
the trajectory is checked for conflict against a volume representing
German airspace, subdivision only needs to be done until one tile is
completely inside German airspace and also contains the trajectory.

Figure 3.10 depicts two aircraft flying through the volume object
"German airspace". The southern aircraft enters and leaves Germany
at the east-boundaries. The northern aircraft starts within the
German volume, and leaves the volume through the upper boundary.
Once a tile contains a trajectory and the tile is completely inside the
German volume, it is not necessary to perform further subdivision,
although the tile technically is penetrated by two objects.

3.3. N-DIMENSIONAL TILING ALGORITHM 99

Figure 3.10 – Two Trajectories in Conflict with the Volume German
Airspace

3.3.6 Bounding Boxes

Check for penetration can be further sped up using bounding
boxes. A bounding box BO of an object O is a closed volume that
completely contains the object O.

∀�x ∈ O ⇒ �x ∈ BO (3.24)

Two objects O1 and O2 do not intersect, if their bounding boxes
do not intersect.

(BO1 ∩ BO2 = ∅) ⇒ (O1 ∩ O2 = ∅) (3.25)

In order to exclude intersections as early as possible, it is beneficial
to construct small bounding boxes.

Amongst others (e. g., spherical, eight-direction discrete orienta-
tion polytope, and the convex hull, compare (Ericson, 2005)), two
different types of bounding boxes are commonly used:

• Axis aligned bounding boxes have a simple representation,
can be calculated fast, and containment of a point �p can be
identified with 2 · N comparisons very efficiently. Depending
on the orientation of the object, axis aligned bounding boxes
can be much larger than the object.

100 CHAPTER 3. CONFLICT DETECTION

Figure 3.11 – Axis Aligned vs. Object Oriented Bounding Box

• Object oriented bounding boxes have a more complex rep-
resentation, are more difficult to calculate, and containment
check is slower. Object oriented bounding boxes approximate
an object usually with a smaller volume than axis aligned
bounding boxes.

Figure 3.11 shows an example for both axes aligned (light grey) and
object oriented bounding box (light green) types in 2D. If objects’
sizes are big compared to distances between objects, and they are
usually not aligned to axis, object aligned bounding boxes might
be beneficial. This approach focuses on the simpler and faster axis
aligned bounding boxes:

BO(bmin, bmax) =
{�x ∈ O : (bmin,i ≤ xi ≤ bmax,i) for all i ∈ {1, . . . , N}} (3.26)

Conflicts can be excluded early by a non-intersection of bounding
boxes. Since the geometry of a bounding box is similar to that of
a tile, comparisons can be performed inter objects and between

3.3. N-DIMENSIONAL TILING ALGORITHM 101

objects and tiles. Two bounding boxes b1 and b2 do not intersect if
∃i : (b1max,i < b2min,i) ∨ (b1min,i > b2max,i) (3.27)

i ∈ {1, . . . , N}

3.3.7 Building the Tree

Task of the conflict tree is to represent all objects in a consistent
way supporting a fast detection of separation violations.

Concerning the implementation, the conflict detection module
holds separately:

• A list of all objects.

• The tree structure with references to the objects.

• A list of conflicts between stored objects.

A major invariant of the software is that all entries are consistent
when the module is accessible from the outside. Therefore, when a
new object is added to the tree, the object is added to the internal
object list, all necessary tiles are generated immediately, and finally
the list of conflicts is updated.

When a tile needs to be subdivided because it is affected by
at least two objects with at least one penetration, all 2N children
need to be checked for affection by the new object. Some of the
children tiles might already exist from earlier inserted objects, all
other affected tiles need to be generated. This recursive process is
performed until further subdivision is not required or separation
size is reached.

If a leaf is completely inside of a/some volume(s) (section 3.3.5),
a conflict with the volume(s) is detected. If one of the leaves has
minimum tile size �S a potential conflict is detected with all other
objects of the tile (section 3.5). Otherwise, the object is proven to
be free of conflict.

102 CHAPTER 3. CONFLICT DETECTION

3.3.8 Monotonic Dimensions

When adding a new object, all dimensions are checked for monotony.
If a dimension increases or is partly constant with increasing index,
the dimension is monotonically increasing. If a dimension decreases
or is partly constant with increasing index, the dimension is mono-
tonically decreasing. In time reference mode, the time dimension
of an implemented trajectory object is always strictly increasing
due to eq. (3.9). But also other dimensions can be monotonic,
for instance a trajectory going strictly from West to East has a
monotonic longitudinal axis.

When identified, monotony can be used beneficially for speeding
up intersection calculation with an axis-oriented plane. Instead of
checking each trajectory segment to have vertices on opposite sides
of the plane, binary search can be applied to identify the correct
segment directly.

3.3.9 Balancing the Tree

When configuring the tree, dimensions are usually independent.
Value range and mandatory separation might differ significantly
between dimensions. Dimensions can even have different physical
units. The user has to ensure that units are used consistently for
each dimension. Based on the starting interval I = [�Imin, �Imax] and
the separation �S, the number of subdivisions �D can be defined as

Di = log2 ((Imax,i − Imin,i) /Si) (3.28)

�D, �Imin, �Imax, �S ∈ R
N

i ∈ {1, . . . , N}

If the resulting vector has a big range max(Di) − min(Di), the
minimum tile size is reached in different tree depths. Although this
is technically not a problem, such behavior produces an unbalanced
tree that subdivides deeper tiles in a subset of dimensions only.

If such behavior is unwanted, the software provides an automatic
balancing functionality. When the interval I and minimum tile size

3.3. N-DIMENSIONAL TILING ALGORITHM 103

�S is set, starting intervals are adapted in order to reach minimum
tile size in every dimension at the same subdivision step.

For example, when trying to model one day of the Earth in
4 dimensions latitude, longitude, altitude and time, the setup of
table 3.3 can be used. For this example, special properties of Earth

Table 3.3 – Root Tile covering one Day on Earth

Dim. Unit Min Max S (Max-Min)/S Di

x Deg -180 180 5/60 4320 12.08
y Deg -90 90 5/60 2160 11.08
z FL -10 500 10 51 5.67
t s 0 86 400 90 960 9.91

are not taken into account, see chapter 4 for details. A balanced
starting condition can be achieved by adapting the initial ranges in
order to reach the separation minima for all dimensions within the
same step. The intervals are extended on one side only to avoid
additional sub-trees. Being extended, only the original part of the
interval will contain flights. Table 3.4 shows the same setup after
balancing.

Balancing the tree has negative effects on memory usage and
conflict detection times in practice (section 4.5.4 on page 152).
However, balancing makes the tree look more natural, and therefore
is beneficial, e. g., for debugging and visualization purposes.

Table 3.4 – Balanced Root Tile holding one Day on Earth

Dim. Unit Min Max S (Max-Min)/S Di

x Deg -180 180 5/60 4320 12.08
y Deg -90 270 5/60 4320 12.08
z FL -10 43 190 10 4320 12.08
t s 0 388 800 90 4320 12.08

104 CHAPTER 3. CONFLICT DETECTION

3.3.10 Broad Phase vs. Narrow Phase

The N -dimensional tiling algorithm performs the broad phase and
does not identify real conflicts but potential conflicts, only. The
final conflict check needs to be performed afterwards in the narrow
phase. Thus, all real conflicts are handled twice:

• First by the tiling algorithm with low costs CT .

• Second by the final conflict check that might be very expensive
in terms of calculation costs CF .

If the likelihood of conflicts PC is low, exclusion of many non-
conflicting situations is beneficial. Conflict likelihood increases
when coming further down in the tiling tree. The total costs C
calculate as

C = PC · (CT + CF) + (1 − PC) · CT (3.29)

PC ∈ R, 0 ≤ PC ≤ 1 (conflict likelihood)
CT , CF > 0, CT � CF (costs)

Using the tiling algorithm is beneficial as long as C is lower than
CF . Obviously this strongly depends on CT

CF
and PC . Therefore,

the size of the smallest tile does not necessarily need to be the
conflict detection size. If conflicts have a high likelihood and CT

CF
is

close to one, smallest tile size should be bigger than the mandatory
separation size. Therefore, the tiling algorithm is called with an
increased requested separation �S, while the final conflict check
(section 3.5) uses the original separation.

Especially in time reference mode (section 3.2.2) time separation
can be freely adjusted in order to achieve best possible detection
performance.

3.3. N-DIMENSIONAL TILING ALGORITHM 105

3.3.11 Memory Limitation

The bisection algorithm in its basic version performs a time-memory
tradeoff. In order to reach fast computation times, it uses a tremen-
dous amount of memory. Depending on the problem and computer
hardware, the algorithm might exceed physical available memory.
Therefore, two mechanisms are implemented helping to adjust the
tradeoff:

• Static: By means of a max tree depth, the user can limit
the refinement of the tree. The algorithm does not generate
nodes that exceed the defined tree depth. This method is an
indicator only to reduce memory size; it does not allow to
explicitly name a memory limit.

• Dynamic: The algorithm provides a feature of monitoring
memory usage against available system memory. If the ratio
exceeds a given value (e. g., 70 %), it automatically decreases
the depth of tree by one. Depending on the tree size and
especially on the number of leaves, this operation might take
some time. However, it prevents memory problems on reduced
hardware. The tree depth reduction is performed every time
the given ratio is exceeded.

3.3.12 Tile Knowledge

As already mentioned in section 3.3.7, each tile stores references to
the objects affecting it including the type of affection (fly-through
or fly-by, and if the object contains the complete tile). In order to
increase algorithm’s speed, more information is stored in tiles.

When verifying tile affection, the segments of trajectories are
checked successively. Negative results can beneficially be used for
further subdivisions. Trajectory segments not affecting a node will
also not affect any of its children because every child is a real subset
of its father.

Therefore, the interval affecting a tile is stored for each object.
In the beginning, this interval is set to [1, K] with K being the

106 CHAPTER 3. CONFLICT DETECTION

number of trajectory definition points. If possible this interval is
reduced when going down the tree.

3.4 Supported Objects

The implemented software provides two objects in its current version:
trajectories and a special implementation of volumes, the polygon
volume. A variation of a polygon volume, the moving polygon
volume, is described in section 3.4.3. Further objects can be defined
easily if necessary.

3.4.1 N-Dimensional Trajectories

The trajectories supported by the module directly implement as a
list of N -dimensional points connected by line segments, as defined
in eq. (3.2), page 83. Concerning the penetration check defined in
section 3.3.2, one boundary of the object intersects with one of the
2 · N tile boundaries if an edge of the trajectory intersects with a
tile boundary. Edges E can be identified for trajectories as the line
segments from eq. (3.2). An object’s edge E intersects with a tile
boundary if corresponding vertices eb and ee are on opposite sides
of the boundary

∃i : (eb,i − bi) ∗ (ee,i − bi) ≤ 0 (3.30)

i ∈ {1, . . . , N}
�b ∈ {�amin,�amax}

�eb, �ee ∈ R
N being begin and end of edge E

in one dimension and the intersection point �p of the edge with the
boundary �b for the same dimension i

�p =
bi − eb,i

ee,i − eb,i
∗ �ee +

(
1 − bi − eb,i

ee,i − eb,i

)
∗ �eb (3.31)

3.4. SUPPORTED OBJECTS 107

�b ∈ R
N

�eb, �ee ∈ R
N being begin and end of edge E

i ∈ {1, . . . , N}

is within the tile in all dimensions.
If at least one edge intersects with a tile boundary, the object

penetrates the tile. If:

• Not all points of the trajectory are in the tile; and

• No edge intersects with a tile boundary;

it does not penetrate the tile.

3.4.2 N-Dimensional Volumes

Volumes are not implemented as generic as in eq. (3.6). Reasons
for defining volumes another way are:

• Simplicial complexes are not the most intuitive way to imagine
a volume.

• Simplicial complexes have more degrees of freedom than a
typical user needs.

• Segmentation of a volume into simplices is a non-trivial task
for humans, especially for high dimensions.

• Intersection of simplicial complexes with tiles is complex for
high dimensions.

Instead of generic simplicial complexes, the implementation is
based on simple 2D-polygons P. We define 2D-polygons P as a
complex of 2-simplices (i. e., triangles, compare eqs. (3.3) to (3.6)):

P(s1, . . . , sk) =
{

s1, if k = 1
P (s1, . . . , sk−1) ∪ sk, if k > 1 (3.32)

108 CHAPTER 3. CONFLICT DETECTION

∃j : (NFace(sj ∩ sk, sj) = 1) ∧ (NFace(sj ∩ sk, sk) = 1)
s1, . . . , sk ∈ S (�p1, �p2, �p3)

j ∈ {1, . . . , k − 1}

Every dimension higher than 2 is defined by an interval, being
constant for all points of the 2D polygon. Thus, a polygon volume
V is defined as the Cartesian product

V = P ×
[
�Imin, �Imax

]
(3.33)

�Imin, �Imax ∈ R
N-2

A volume as described above intersects with a tile if all N −2 interval
dimensions intersect with the corresponding tile intervals, and the
polygonal part intersects with the 2D-part of the tile. Therefore,
fastest way to exclude an intersection is to find a dimension j where

(Imin,j > amax,j+2) ∨ (Imax,j < amin,j+2) (3.34)

j ∈ {1, . . . , N − 2}
�amin,�amax ∈ R

N being the tile limitations

If the tile includes all intervals, the polygon’s outline needs to be
checked. While the polygon’s outline would need to be extracted
explicitly from the point set eq. (3.32), the software implementation
creates polygons from a given outline. Thus, the outline is explicitly
available.

Since the polygon’s outline has the same format as a (closed)
2D-trajectory (section 3.4.1), the same algorithms can be applied.
Having in mind the check for one point of the volume being part
of the tile, and for one point of the tile being within the volume
(section 3.3.2) validation of intersection between tiles and polygon
volumes are rather fast.

3.4. SUPPORTED OBJECTS 109

As written before (section 3.3.5), full containment is of interest
for polygon volumes. Full containment can easily be identified. A
tile is completely within a polygon volume if:

• One point of the tile is within the polygon volume; and

• The polygon volume does not intersect with the tile boundaries

Due to the application of airborne traffic, the software is con-
figured to detect conflicts involving trajectories, only. Therefore,
conflicts between volumes are omitted, only trajectory/trajectory
and trajectory/volume situations are of relevance.

Based on polygon volumes, more complex constructs can be
defined by combination. Staggering polygon volumes above each
other allows to define volumes that change extension with altitude
(e. g., for representation of cumulonimbus clouds that usually have
a flat layer at the top). Defining different polygon volumes for short
connected time periods represents a volume changing shape in time
(e. g., for representation of ash-clouds).

3.4.3 N-Dimensional Moving Volumes

For the time referenced conflict detection, an extension of polygon
volumes is provided by the ability of assigning a trajectory TV to a
volume V. This trajectory defines an offset in all (N-1) dimensions
as a function of time. Thus, the trajectory adds the capability
of moving the polygon along an assigned path. The original time
interval of V, if defined, is ignored. In accordance with eq. (3.33), a
polygon volume V(τ) for time τ is defined as the Cartesian product

V(τ) = P ×
[
�Imin, �Imax

]
× [0, 0] + TV(τ) (3.35)

�Imin, �Imax ∈ R
N-3

TV ⊂ R
N is the assigned trajectory

The penetration detection works similar to that described for the
non-moving polygon volume described in section 3.4.2 while respect-

110 CHAPTER 3. CONFLICT DETECTION

ing the movement induced by the assigned trajectory. A bounding
box intersection trial between the tile and the bounding box of the
polygon volume for the time interval [amin,N , amax,N] allows a quick
check if a situation represents a possible collision, at all. When
positive, it needs to be verified if:

• The moving polygon contains the whole tile. One point of
the tile (e. g., the center point 0.5 · (�amin +�amax)) needs to be
checked to be inside the polygon.

• The tile contains the whole polygon. One point of the polygon
needs to be checked to be inside the tile.

• The tile intersects with the moving polygon. If both tests
above provide negative results, polygon intersection needs
to be tested. The intersection test also helps to calculate
complete containment (section 3.3.5). If one point of the
polygon is inside the tile (see above) and the tile does not
intersect with the polygon volume, the tile is completely within
the polygon volume.

A moving polygon volume V(τ) is in conflict with a tile A if

∃τ : ∃�x : (�x ∈ V(τ)) ∧ (�x ∈ A) (3.36)

τ ∈ {amin,N , amax,N } ∧ (∃1�y ∈ TV : yN = τ)

However, checking the intersection between a volume and a tile for
every time τ is not possible that way on a computer. Discretization
of time is necessary, but also introduces several problems:

• Discretization reduces the accuracy of results. If a situation
of interest is active for a very short time period, the resolution
of discretization needs to be good enough to detect the issue.

• High resolution discretization results in many computational
expensive calculations. Especially with large tiles (i. e., the
tiles close to the tree root) and long trajectories performance
would be low using straight forward discretization.

3.4. SUPPORTED OBJECTS 111

Figure 3.12 – Shape Generated by Moving Polygon

Figure 3.13 – Shape Generated by Less Symmetric Polygon

Therefore, another approach is chosen to calculate intersections.
Figure 3.12 shows the blue shape generated by the red moving poly-
gon in 2D along two trajectory segments in black/white. The blue
corridor represents the polygon along the two trajectory segments.
The only values of interest for the corridor are the points with
biggest distance back and front (along track), and left and right
(cross-track) from the central trajectory. These values define a rect-
angle in 2D and change from one segment to the next, depending
on the trajectory’s direction and polygon’s shape.

The idea is translating x/y into along/cross-track components
and thus overlaying along-track distance and time. Figure 3.13
shows a less symmetric polygon creating a different shape.

112 CHAPTER 3. CONFLICT DETECTION

Figure 3.14 – 3D-Corridor for Moving Polygon

The corridor can also be calculated vertically and for all other
higher dimensions, see fig. 3.14. The corridor is an object oriented
(i. e., trajectory segment oriented) bounding volume (compare sec-
tion 3.3.6) for the moving polygon. That way, a conservative
representation of the moving polygon for a specified time interval
is provided.

Figure 3.15 illustrates the calculation of higher dimension’s cor-
ridor sizes using the example of altitude. Since the vertical size of a
polygon is constant for the whole polygon by definition, it is enough
to investigate the four corners of the red polygon volumes. Based
on the gradient z′ = (Δz/Δdistance) of the trajectory segment, the
standard altitude interval from start of trajectory segment needs to
be extended by:

• (AlongTrackBefore ∗ z′); and

• (AlongTrackBehind ∗ z′).

3.5. N-DIMENSIONAL CONFLICT DETECTION 113

Figure 3.15 – Generation of Vertical Corridor

Based on the calculated corridor, intersections with the tile
(if any) can be found fast and easily. Therefore, the trajectory
defining the volume’s movement is intersected with all tile boundary
planes. If the intersection point is closer to a tile boundary than
the corridor’s size, the corridor intersects with the tile. Since the
cross-track tile size depends on the trajectory segment direction,
it is beneficial to center the trajectory in cross track direction
in order to reach a symmetric (and thus no direction dependent)
lateral corridor size. Figure 3.16 depicts an intersection of a moving
polygon volume with a tile. Even though the centered trajectory
does not penetrate the tile boundaries, the intersection point with
the front plane of the tile marked by the red ball is close enough to
indicate a possible conflict between tile and corridor.

Finally, the potential conflict needs to be verified to be a real
conflict by searching an intersection between the volume and the
tile. The potential conflict provides an appropriate time frame for
that verification. Since the search area now has very limited size,
time can be discretized to small values, e. g., to one time unit.

3.5 N-Dimensional Conflict Detection

As explained above, output of the broad phase algorithm described
in section 3.3 represents a list of potential conflicts. Depending on
the application area, potential conflicts might not fulfill all condi-

114 CHAPTER 3. CONFLICT DETECTION

Figure 3.16 – Intersection between Moving Polygon and Tile Plane
marked with Red Sphere

3.5. N-DIMENSIONAL CONFLICT DETECTION 115

Penetrated by
two aircraftPenetrated by

one aircraft
Penetrated by

one aircraft

Figure 3.17 – Two Non-conflicting Objects in same Tile

tions of a real conflict. In aviation, separation minima are typically
defined as a 2D circle in latitude/longitude plane. Figure 3.17 shows
a situation where one tile is penetrated by two aircraft. However,
even if latitude and longitude of both flights are closer than the al-
lowed 5 NM, they are separated with the circular metric mentioned
before.

The narrow phase conflict detection check is also essential if
it was decided to reduce depth of the tree by stopping the broad
phase process earlier (e. g., going down to a separation of 10 NM
only, compare section 3.3.10) or memory limits were reached (sec-
tion 3.3.11).

Validating a potential conflict as a real conflict might be a
complex task. Therefore, this check is not done within the software
core, but the detection module expects a pointer to an external
function deciding if two given points are in conflict:

bool isRealConflict(point �p1, point �p2, trend �t1, trend �t2) (3.37)

�p1, �p2,�t1,�t2 ∈ R
N

In time reference mode, the trends �t1 and �t2 hold the differential
coefficient for points �p1 and �p2 along the corresponding trajectories
based on one time unit. Trends can be used if conflict situation
depends on current state of objects. In aviation, aircraft might be
defined to have a conflict depending on their vertical speed.

116 CHAPTER 3. CONFLICT DETECTION

The conflict function defined in eq. (3.37) is called for trajectory
objects only, because volumes are checked with regard to penetra-
tion, only.

Summarizing, once the tiling algorithms indicates potential
conflicts, these need to be verified as real conflicts. The final
conflict check depends on the involved object types and is described
in the following sections.

3.5.1 Conflict between Trajectories

Section 3.2.1 and section 3.2.2 define a real conflict situation without
and with time reference respectively. In the following, the process
of conflict validation based on potential conflicts is described for
trajectories.

3.5.1.1 Trajectory Conflict including Time Reference

Based on the identified potential conflict and the corresponding
tile A, a τ fulfilling eq. (3.14) needs to be identified in the interval
τ ∈ [Amin,N , Amax,N]. Since A is a leaf tile, the interval is rather
small and can be searched with a small discretization in time. As
soon as the conflict function from eq. (3.37) turns true for one τ , a
conflict is identified.

Once a conflict is identified, it is extended in time dimension
in order to get start and end of conflict. A minimum gap time G
between two conflicts ensures that two parallel trajectories with
small position jitter are continuously in conflict when moving close
to mandatory separation �S.

The minimum gap time G is also useful for the process of
calculating minimum and maximum conflict time. Starting from
the conflict-proved time τ , the conflict function from eq. (3.37) is
checked at τ ± k · G with k = 1, 2, 3, When the conflict check is
negative, the step size is continuously reduced down to the foreseen
result accuracy. Figure 3.18 shows how conflict start and end are
iteratively calculated starting at the conflict-proved time τ . This
procedure allows fast detection of the conflict interval. However,
due to the discretization of time, this approach may leave gaps

3.5. N-DIMENSIONAL CONFLICT DETECTION 117

Conflict
proved

time, start
of iteration

Step sizeStep size Step size Step size

Figure 3.18 – Calculation of Start and End of Conflict

that are smaller than the minimum gap time G. Therefore, a final
merging is necessary, see section 3.5.3.

3.5.1.2 Trajectory Conflict without Time Reference

Without time reference, a tile contains a conflict if two trajec-
tories t1, t2 come closer than the given mandatory separation �S
(eq. (3.12)). Therefore, the minimum distance between two tra-
jectories needs to be calculated. Before calculating the distance,
trajectories are normalized with �S in order to have a common metric
for all dimensions.

Based on the normalized trajectories, all relevant segments from
t1 are checked against all relevant segments from t2. Segments are
relevant if they affect the tile. If the result is less or equal 1 in each
dimension, the result is finally verified with the external conflict
function eq. (3.37).

If conflicts are identified for multiple segments, they are merged.
The trajectory point index for the first conflict partner is stored for
later use, see section 3.5.4 for details.

118 CHAPTER 3. CONFLICT DETECTION

3.5.2 Conflict between Trajectory and Volume

As mentioned before, a conflict between a volume and a trajectory
exists when the trajectory penetrates the volume. As for trajectories,
the conflict detection procedure differs with regard to time reference
available or not.

3.5.2.1 Trajectory/Volume Conflict including Time Ref-
erence

The conflict with time reference is comparable with the procedure
described in section 3.5.1.1. Instead of testing the conflict function
it is checked if the volume for time τ contains the trajectory point.

3.5.2.2 Trajectory/Volume Conflict without Time Refer-
ence

In contrast to the inter-trajectory conflict detection described in
section 3.5.1.2, conflict detection for volumes is not performed
within tile boundaries only, but for the whole volume. Therefore,
each segment of the trajectory is checked for intersection with the
volume boundaries. In addition, start and/or end of trajectory
within the volume is stored as a conflict.

Based on that conflict list, conflicts are sorted according to the
trajectory point index and grouped to pairs. These pairs then hold
entry and exit point of the polygon volume.

3.5.3 Conflict Merging

As described in section 3.5.1.1, the discretization of time may
produce gaps that are smaller than the minimum gap time G.
Figure 3.19 illustrates this behavior. Since the third time offset
points to a no-conflict situation, the conflict is limited to the left side
of the conflict gap. Another position of the conflict gap could have
produced the correct result containing the whole conflict. However,
taking the gap problem into account directly when calculating the
conflict interval would be computational expensive.

3.5. N-DIMENSIONAL CONFLICT DETECTION 119

Conflict
Conflict

Gap
Conflict

Minimum
Gap

Minimum
Gap

Minimum
Gap

Minimum
Gap

Figure 3.19 – Discretization of Time prevents Gap Jump

In order to ensure that no conflict gap is smaller than minimum
gap size G a final merge is performed when a new conflict is identified.
If another conflict already exists with identical conflict partners
combined with a smaller distance to the new conflict than G, both
conflicts are merged.

Having knowledge about the extent of conflicts helps with early
occlusion of already detected conflicts. The conflict in fig. 3.18 is
detected in all three upper and the center lower tile. Since the
first tile detecting the conflict calculates the whole conflict area, all
subsequent conflicts are based on a time τ , already characterized
by the first conflict, and these may be omitted.

3.5.4 Output Format

The result of conflict detection is a list of conflicts. Each conflict is
described by:

• References to both conflict partners. For conflicts between
heterogeneous object types, trajectories are always first in
order.

• Start and end time of conflict in time reference mode. If no
time reference is specified, start and end contain the linearly
interpolated point index for the first conflict partner.

120 CHAPTER 3. CONFLICT DETECTION

• Trends of both objects. In time reference mode, the trends
hold the differential coefficient for the conflict duration along
the corresponding trajectories based on one time unit. Trends
are zero for non-trajectory objects and inactive time reference
mode.

• The Closest Point of Approach (CPA) holds the point where
the distance between both objects is smallest. In order to
compare distances for heterogeneously scaled coordinate sys-
tems each dimension is normalized using the corresponding
entry of mandatory separation �S. If objects intersect, the
CPA is the first intersection point. Otherwise, the CPA is the
midpoint between closest corresponding points of objects.

The CPA is useful when displaying conflict situations.

• The phase of conflict classifies conflicts for each object and
comes from the aviation domain. Conflicts appearing no
later than two minutes after start of trajectory are considered
to be departure conflicts. Conflicts ending no earlier than
two minutes before end of trajectory are considered to be
arrival conflicts. Conflicts with positive/negative climb-rate
are considered to be climb/descent conflicts.

Furthermore, object’s conflict types are merged to a common
conflict type. Table 3.5 shows the resulting global conflict
type. The choice of conflict resolution algorithm strongly
depends on the conflict type.

Table 3.5 – Phase Merging of Conflict Types

Dep Arr Clb/Crs/Dsc

Dep Dep ArrDep Other
Arr ArrDep Arr Other

Clb/Crs/Dsc Other Other Other

• The 2D-length of conflict can be used for prioritization/clas-
sification issues.

3.6. OBJECTS IN FOCUS 121

• The minimum 2D-distance of conflict helps with adjustment
of lateral conflict solution. Other algorithms are used if two
trajectories intersect or if they just come close.

• Reference to one node of conflict. This is just a cross reference
for internal use.

Conflicts between 3 or more partners are reported separately. That
means, if three trajectories t1, t2, t3 have a conflict at a common
point/interval,

(3
2

)
= 3 conflicts will be reported (t1 with t2, t1 with

t3, and t2 with t3). The common conflict of four trajectories is
reported as

(4
2

)
= 6 conflicts.

3.6 Objects in Focus

In some cases, it is not relevant to get all conflicts of a scenario,
but only the conflicts involving a pre-defined subset of objects.
Of course, this can be easily achieved by filtering the conflicts of
interest from the final conflict list but it can also be done more
efficiently.

The software implementation allows to define a list of objects in
focus. Since the knowledge about focus objects is already used when
building the tree, defining objects in focus should be performed
before adding object. Tiles are subdivided the same way as before,
but only if it contains at least one object in focus. Depending on
the number of focused objects compared to the scenario size, this
may reduce both memory usage and calculation times drastically.

Figure 3.20 and fig. 3.21 show the detected conflicts for an
unfocused and focused scenario.

3.7 Software Implementation

The software developed is written for standard PC hardware using
C++, graphical output is done using OpenGL. While the primary
operating system in use is Linux, it works as well on a Microsoft
Windows platform. The number of dimensions of the problem and

122 CHAPTER 3. CONFLICT DETECTION

1

12

2

3

4

5

6

7

8

9

10

11

Figure 3.20 – 12 Objects
and their Conflicts

1

12

2

3

4

5

6

7

8

9

10

11

Figure 3.21 – Focus on Ob-
jects 10-12

the information if it contains a time reference are stored using
template variables. This increases compilation times, but holds
software complexity low. The core software module has ∼8500 lines
of code and can be compiled for 32 bit and 64 bit hardware. The
latter one is preferred because it allows addressing more than 4 GiB
of memory and therefore allows handling larger scenarios. Since
many pointers and references are used in the code, the 64 bit version
needs more memory for the same scenario though.

The software module is called N-Dimensional Map-Implementa-
tion (NDMap), providing above described N-dimensional tiling
algorithm and additional functionality for conflict resolution. List-
ing 3.1 shows a small example code demonstrating how to use the
NDMap.

The output of this example is shown in listing 3.2. The result
reports two conflicts between the trajectory and the concave polygon
volume. Adding an object took around 1.7 ms, 116.5 KiB of memory
are used. The tree has 1 element of level 0 (this is the root tile), 5
tiles of level 1, 4 of level 2, . . ., and 139 tiles of level 13. In total, the
tree contains 662 nodes. 684 objects have been inserted in nodes as
penetrating object and 254 as fly-by.

All results in this work are calculated on a Dell Precision T7500
computer powered by an Intel Xeon X5687 with 3.6 GHz running
a 64 bit Linux operating system (Suse 12.2). Since the algorithm
performs well with a really huge scenario, the computer is equipped
with well above standard 96 GiB main memory. Although the Cen-

3.7. SOFTWARE IMPLEMENTATION 123

Listing 3.1 – NDMap Sample Program

#include "NDMap.hpp"
NDMap<4, true> myMap; // create a map with 4 dimensions

including time reference
myMap.setInterval(’x’, -180, +180); // longitude in

[-180,180] degree
myMap.setInterval(’y’, -90, +90); // latitude in

[-90,90] degree
myMap.setInterval(’z’, 0., 100000.); // altitude in

[0,100000] feet
myMap.setInterval(’t’, 0., 86400.); // time in

[0,86400] seconds (=one day)
myMap.setSeparationMinima(NDVec<4>(5 / 60., 5 / 60.,

1000.,90.));// 5 minutes x and y, 1000ft, and 90
seconds

myMap.setDebug(false);
myMap.setTiming(); // Turn on timing of add/del methods
myMap.setIdentifier ("Test 4D");

NDPoly<4,true> temp("Poly"); // create a polygon
temp.addPoint(NDVec<2>(0,35)); // Two dimensions only
temp.addPoint(NDVec<2>(.4,37)); // Object exists in all

altitudes...
temp.addPoint(NDVec<2>(0,40)); // ...and for every

time
temp.addPoint(NDVec<2>(1.5,38));
temp.addPoint(NDVec<2>(.6,35));
myMap.addObject(&temp,true); // store polygon in map

NDTraj<4,true> traj("Traj"); // create a trajectory
traj.addPoint(NDVec<4>(.1,30,10000,0)); // South to

North flight from y=30
traj.addPoint(NDVec<4>(.1,50,10000,50));// to y=50

degree at x=.1
myMap.addObject(&traj,true); // store trajectory in map

cout << myMap; // print relevant information

124 CHAPTER 3. CONFLICT DETECTION

Listing 3.2 – NDMap Output of Sample Program

Test 4D containing 1 trajectory 1 polygon 4D incl. time
,

Pen: 684 FlyBy: 254
Sep: (0.08333333333, 0.08333333333, 1000, 90)
116.5 KByte, Add: 1.67050001 ms
0:1, 1:5, 2:4, 3:8, 4:8, 5:9, 6:20, 7:26, 8:22, 9:38,

10:124, 11:122, 12:136, 13:139, [=662];
2 conflicts:

1 t[12.5, 13.75] between Traj/Dep and Poly/Poly at
(0.1, 35, 10000, 12.5)(Polygon)

2 t[23.125, 24.66666667] between Traj/Dep and Poly/Poly
at (0.1, 39.25, 10000, 23.125)(Polygon)

No label filtered

tral Processing Unit (CPU) had 4 cores (8 threads), the algorithm
did not use parallel processing in its current version.

Chapter 4
Conflict Detection in
4D-Airspace

This chapter describes how the conflict detection algorithm ex-
plained in chapter 3 can be used for conflict probe of 4D-trajectories
in aviation. First of all, the algorithm needs to be configured cor-
rectly. Therefore, the number of dimensions N is set to 4 and time
reference mode is activated. Table 4.1 shows the setup for each
dimension covering one day of world-wide air traffic. S defines the
mandatory separation for each dimension. D is the resulting depth
for each dimension.

Table 4.1 – Setup of Conflict Map for 4D-Airspace

Dim. Unit Min Max S D∗

x/Longitude Deg -180 180 5/60 12.08
y/Latitude Deg -90 90 5/60 11.08
z/Altitude ft −1000 100 000 1000 6.66
t/Time s 0 86 400 90 9.91
∗ with D=log2

(max − min
S

)

125

126 CHAPTER 4. CD IN 4D-AIRSPACE

4.1 Topological Isomorphism of Earth

4.1.1 The Earth-Mode

The last but one column of table 4.1 holds the mandatory separation
�S. The value 5/60 is supposed to be the equivalent of 5 NM for
longitudes and latitudes. Due to Earth’s sphere-like shape, this is
not true for longitudes. One nautical mile is about one minute of
arc measured along latitude, or about one minute of arc of longitude
at the equator (fig. 4.1). All longitudinal minutes aside the equator
measure less than 1 NM. Therefore, 5/60° is about 5 NM on the
equator, but less aside.

15
°

Figure 4.1 – Latitudes and Longitudes on Earth

If a tile is smaller than the mandatory separation �S conflicts
may be overlooked. The real distance between longitudinal arcs is
illustrated best by the sinusoidal projection (fig. 2.25 on page 78).

4.1. TOPOLOGICAL ISOMORPHISM OF EARTH 127

Obviously, the distance between 5 longitudinal minutes at the poles
is zero and therefore lower than any longitudinal separation Sλ.

La
tit

ud
e

Longitude

5NM
5NM

Figure 4.2 – Spherical and Corresponding Cartesian Model

When representing Earth in a Cartesian coordinate system, it
is preferable to have an overlapping model (i. e., an aircraft flying
close to a border between two tiles penetrates both tiles) instead of
having an uncovered gap between two tiles.

In order to respect the non-parallelism of longitudes the tiling
algorithm provides an Earth-mode. In Earth-mode the conflict
detection algorithm uses longitudes λ directly as x coordinates,
see fig. 4.2. However, the non-parallelism of longitudes is taken
into account by adapting the longitudinal separation Sλ to the
appropriate latitude ϕ:

S′
λ(ϕ) =

Sλ

cos ϕ
(4.1)

When precision needs to be very high and a spherical Earth model
is not accurate enough, the elliptical Mercator projection leads to
(Osborne, 2008):

S′
λ(ϕ) =

Sλ · (
1 − e2 sin2 ϕ

)
cos ϕ

(4.2)

128 CHAPTER 4. CD IN 4D-AIRSPACE

e2 = 2f − f2 = 0.00667053982 is the eccentricity of Earth
with f = 0.0033408505 being the flattening of Earth

Both eq. (4.1) and eq. (4.2) are not defined at the poles for ϕ = ±90°.
Coming close to the Poles, objects occupy all longitudes.

Since e2 sin2 ϕ is close to zero, elliptical effects are very small
and often negligible in favor of faster calculations. For the spherical
formula, the longitudinal minutes matching 5 NM double at a lati-
tude of 60°, since S′

λ(60°) = Sλ/0.5. For more complex objects, it
is not necessary to recalculate cos ϕ each time. For not too big ob-
jects, a common ϕ can be used, based on a conservative estimation
choosing the latitude of the object point being farthest from the
equator. This can be calculated easily by analysis of the object’s
bounding box.

Even though the decision is not critical in terms of overall
correctness, the subdivision process also needs to be adapted in
Earth mode. Since tiles are rectangular, but the longitudinal range
changes with latitude, we need to specify which longitudinal range
is taken for the subdivision decision. Starting with the whole Earth
as root tile, longitudinal range at both minimum (Antarctic) and
maximum (Arctic) latitude is zero and thus not a good choice. The
maximum (full) longitudinal range is reached in the center of the
latitude interval. Concerning the longitudinal subdivision, a tile
A(amin, amax) is generated as long as

(amax,λ − amin,λ) ≥ S′
λ

(
amax,ϕ + amin,ϕ

2

)
(4.3)

Due to the tree structure and above formulated tiling decision,
the tiling is not perfect at the Poles. Regarding the distance criteria
one tile is enough very close to the Poles, but the tree structure
subdivides longitudes in every depth step as long as it is beneficial
for the central latitude of a tile. Thus, several Pole tiles are usually
generated with an overlapping area of influence.

4.1. TOPOLOGICAL ISOMORPHISM OF EARTH 129

4.1.2 Great Circle Connections

As described in section 2.6.1, shortest surface connections on a
spherical Earth model are great circles. Disregarding wind influence,
it is most efficient for aircraft to fly along great circles. However, the
tiling algorithm is based on a Cartesian coordinate system where
shortest connections between points are straight lines. Depending
on distance and direction, great circle distance and route differ
significantly from the Cartesian direct connection (fig. 4.3).

Maximum
Deviation

Figure 4.3 – Cartesian vs. Great Circle Connection

Realizing great circles in the tiling algorithm is no problem
technically. However, it would increase computation times since
great circle intersection is far more complex than axes-aligned
Cartesian intersection calculation.

The difference between Cartesian and great circle connection
gets smaller with more sampling points. Thus, conflict detection
works precise enough with a sufficient number of sampling points.
If the trajectory provider is unable to deliver denser points, the
implemented object class provides functionality interpolating new
points based on great circle and WGS84 calculation before per-
forming conflict probe. Figure 4.4 shows how the distance between
great circle and Cartesian connection depends on length of flight
and its latitude, departure and arrival positions both having same

130 CHAPTER 4. CD IN 4D-AIRSPACE

latitudes. Since the algorithm’s sensitivity concerning computation
time against point density is low, trajectories can be interpolated
with a high number of points (compare section 4.4.3 on page 147).

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

M
ax

im
um

D
is

t
G

re
at

C
ir

cl
e-

C
ar

te
si

an
(N

M
)

Flight Distance (NM)

Equator
10◦ Lat
20◦ Lat
30◦ Lat
40◦ Lat
50◦ Lat
60◦ Lat
70◦ Lat
80◦ Lat

Figure 4.4 – Influence of Distance and Latitude on Great Circle-
Cartesian Distance

The object class implementation also provides functionality for
calculation of essential points from a trajectory with too many
points. When a trajectory was interpolated for conflict detection it
can later on be reduced for, e. g., drawing purpose. The reduction is
performed using an N -dimensional version of the Douglas-Peucker-
algorithm proposed by Ramer (1972); Douglas and Peucker (1973).
Based on a maximum allowed deviation, the algorithm approximates
a trajectory with a reduced number of points. The algorithm begins
with connecting start and end of trajectory as shown in fig. 4.5.
Following the divide and conquer principle, the algorithm recursively
divides the line segment where the trajectory is furthest from the
polygon in order to insert a new sampling point. The algorithm
is implemented for N-dimensional fitting. The distance function is
normalized by the given maximum allowed deviation vector. The
overall distance metric is defined as the maximum of the components
in order to align sensitive axes first.

4.1. TOPOLOGICAL ISOMORPHISM OF EARTH 131

1.2.
3.

4.

5.

Figure 4.5 – Douglas-Peucker for Polygonal Approximation

4.1.3 Singularity and Discontinuity of Longi-
tudes

Earth’s longitude is singular at the Poles and has a discontinuity
at the ±180° meridian. Positions at Poles, i. e., latitude ϕ = ±90°,
have an undefined longitude. Furthermore, the latitude/longitude
grid is highly non-linear close to the Poles. However, the Pole
singularity is solved using the Cartesian ENU coordinate system
shown in fig. 4.2. When checking conflicts with tiles the singularity
of eqs. (4.1) to (4.2) needs to be taken into account. Close to Pole
objects can be defined to be within all longitudinal Pole tiles, if
there exist more than one. In worst case this results in a potentially
conflicting object having no real conflict.

The discontinuity at the ±180° meridian (also known as inter-
national date line) is more difficult to respect in an adequate way.
The most efficient way of handling the discontinuity is avoiding
it. Thus, if the air traffic scenario under investigation is limited to
Europe, flights typically do not cross the date line. Working on a
scenario with traffic between the United States and Asia is possible
by using a longitudinal interval of [0, 360] instead of [−180, 180]
as long as the prime meridian through Greenwich is not crossed.
That way, each scenario not touching one selected meridian can
be aligned by a suitable longitudinal interval avoiding the problem

132 CHAPTER 4. CD IN 4D-AIRSPACE

of discontinuity. However, if no such untouched meridian can be
identified, another solution is necessary.

On a spherical Earth model, longitudinal meridians -180° and
180° (generally (k · 360° − 180°), k ∈ Z) are identical. The Cartesian
representation (fig. 4.2 on page 127) puts the endpoints of the
interval to the left and right border respectively, producing the
maximum possible distance for identical longitudes. While a great
circle connection on the spherical model is defined to be the shortest
connection between both points, the Cartesian representation only
provides one direct connection within the interval. Aiming for the
shortest connection shortcuts via the longitudinal discontinuity
need to be taken into account. The green and red connections in
fig. 4.6 show the short and long great circle routes from P1 to P2
in spherical and Cartesian representation.

Date Line

Date Line

P1
P2 P1

P2

Figure 4.6 – Shortest Connection on Spherical and Cartesian
Representation

The major issue with the connections crossing the date line is
not respecting it in a proper way, but finding an efficient solution
without downgrading the overall performance. The implementation
respects the wrap-around for the longitudinal dimension in Earth-
mode. Additional sampling points are automatically inserted for
trajectories having the shortest connection via the longitudinal
discontinuity λX . In total, four points are inserted around λX :

4.1. TOPOLOGICAL ISOMORPHISM OF EARTH 133

• The first point p1 is inserted just before passing the disconti-
nuity. The point is located at amax,λ − ε for increasing and
amin,λ + ε for decreasing longitudes.

• The second point p2 has same coordinates as p1, but a marked
altitude that is not within the scenario’s altitude interval.

• The third point p3 has same coordinates as p4 with the same
(marked) altitude as p2.

• The fourth point p4 is inserted just after passing the disconti-
nuity. The point is located at amin,λ + ε for increasing and
amax,λ − ε for decreasing longitudes.

The marked points p2 and p3 are inserted in order to guarantee that
the large Cartesian connection p2p3 is not considered for conflict
detection without retarding the code (dotted horizontal line in
fig. 4.7). Invalid conflicts on the vertical segments p1p2 and p3p4
are very unlikely and can be omitted directly after conflict detection.
An example is given in section 6.5. This procedure solves all issues
concerning the detection of trajectories penetrating a tile. However,
a conflict between two aircraft flying parallel on opposite sides of
λX still stays undetected.

Eastern Hemisphere Western Hemisphere Western Hemisphere Western Hemisphere

p1 p4

Start

Destination

p2p3

Date Line

Date Line

p3 p2

Figure 4.7 – Passing the Date Line in Cartesian Coordinates

Therefore, the fly-by detection also needs to be adapted. The
dilatation procedure defined in section 3.3.3 does not respect a
possible longitude discontinuity. Dilatation of a tile at the disconti-
nuity boundary does not produce one single but two unconnected

134 CHAPTER 4. CD IN 4D-AIRSPACE

N -dimensional spaces. As explained in section 3.3.4 on page 97
fly-by objects only need to be taken into account when passing on
the positive (i. e., right) side. Since the likelihood of an aircraft
being less than 5 NM right of the longitudinal discontinuity is low,
objects are checked on insertion if they are relevant as discontinuity
fly-by. Thus, the extra fly-by volume is checked only for few relevant
objects.

4.1.4 Alternative Earth Mapping

Pole and discontinuity issues raise the question if there are other
more suitable mappings from 4D-airspace into a 4-dimensional
Cartesian coordinate system.

4.1.4.1 Spherical Coordinate System

A mapping avoiding pole and discontinuity issues is the spherical
coordinate system depicted in fig. 4.8. Every point on (and in)
Earth has unique 3D-coordinates. Airspace surrounds Earth and
can be addressed the same way.

X-Axis

Y-Axis

Z-Axis

Earth

Figure 4.8 – Alternate Earth Mapping

4.1. TOPOLOGICAL ISOMORPHISM OF EARTH 135

Containing no air traffic at all, the Earth volume is free of
conflicts and thus will only be subdivided at the Earth surface by
the conflict detection algorithm. Due to a large Earth radius of
∼6 370 km and a small airspace height of typically less than 20 km,
the conflict detection algorithm needs to focus on a small but widely
spread part of the initial volume. Even though this results in a
deep tree (degrading also the performance), the tiling algorithm
is predestined for these conditions. The reason why the spherical
coordinate system was not used in this work is the alignment of
conflict metrics.

Using spherical coordinates, conflict dimensions are not aligned
to the coordinate system anymore. Thus, altitude separation needs
to be calculated by building the difference between Pythagorean
distances of both trajectories to Earth center. Distances concerning
latitude and longitude are even more complex to distinguish. While
small tiles at the North Pole have z as altitude and x, y for longitude
and latitude, z is the latitude at the Equator. The unaligned axes
also complicate fly-by detection. In addition, the user interface
would need to map between usual latitude/longitude/altitude rep-
resentation and internal x, y, z coordinates introducing workload
and accuracy degradation.

Another problem with spherical mapping is the support of sparse
trajectories. Long distance trajectories with few sampling points
rely on a proper interpolation. While linear interpolation is accept-
able for the mapping described in section 4.1.1, it is problematic
with spherical coordinates. The direct connection between two
spherical points of same distance to center gets closer to the cen-
ter. If the center angle between the two points is big enough, the
direct connection will penetrate the Earth volume. In extreme, the
connection between two opposite points goes through the Earth
center. Thus, linear interpolation varies altitude between two points
having same altitude. Since altitude is more sensitive than lateral
separation (1000 ft versus 5 NM), very dense trajectory points are
necessary to stay accurate enough, or the interpolation method
needs to be changed to a more complex one.

136 CHAPTER 4. CD IN 4D-AIRSPACE

4.1.4.2 Geodesic Dome

Another option to represent the Earth surface without poles and
discontinuity is using triangles instead of intervals of latitude and
longitude. Fuller (1943) proposed a world map on the surface of an
icosahedron, a geometrical object approximating a sphere with 20
equilateral triangular faces. Today, the regular icosahedron is often
used as the base for geodesic domes. Each triangle can be split
into 4, 9, 16, 25, . . . , k2 (k ∈ N) equilateral triangles to get finer
granularity (Woo et al., 1999). Projecting the new vertices from
the triangle face onto the sphere generates better approximations.
Figure 4.9 shows an icosahedron with 4 projected sub-triangles.

Figure 4.9 – Icosahedron with 4 Triangle Subdivision

In practice, the algorithm described in this work would need
severe adaptations to handle triangular areas instead of intervals
of latitude and longitude. While latitude and longitude are almost
independent in the Cartesian tiling algorithm, triangles connect the
two dimensions. The grid is not as regular as the latitude/longitude
grid, and therefore more complex to describe. Furthermore, the
number of twenty faces does not fit well into the tree structure
because it is not a power of two.

4.2. TRAFFIC SAMPLES AND CONDITIONS 137

Integration of the triangular layout in the generic NDMap breaks
the general approach, and a separate approach would be preferable.
Furthermore, since triangle borders are not axis-aligned, degradation
in computation speed is anticipated. All in all, the higher structural
complexity is not a good trade-off for the absence of poles and
discontinuities.

4.2 Traffic Samples and Conditions

In the remaining work, conflict detection and resolution is basically
performed on two scenarios described in this section, one scenario
covering one day of German traffic, and one scenario holding Euro-
pean traffic.

4.2.1 German Traffic Sample

Germany has one of World’s densest net of airfields and airports
(∼550 (Central Intelligence Agency, 2007)). The German air navi-
gation service provider DFS Deutsche Flugsicherung GmbH (DFS)
controlled 3.06 million flights in 2011 (DFS Deutsche Flugsicherung,
2011). The German traffic sample is based on one of the busiest
days 2008 holding 10 256 flights. Using flight plans and radar tracks,
trajectories were generated with the AFMS to get a traffic sample
with realistic assumptions. However, since aircraft comply with the
performance models and weight assumptions from the AFMS, the
resulting sample is by no means identical to the real traffic day,
and thus contains ∼3 k conflicts based on a conflict definition of
5 NM/1000 ft in and above 5000 ft and 3 NM/1000 ft below.

Trajectories are not complete from departure to destination but
cut close to the country borders in order to cover only the German
part of flight (fig. 4.11). Figure 4.10 shows the distribution of
flights along daytime. Peak traffic level is ∼500 concurrent flights.
The sample contains flights departing from, arriving in, and flying
through Germany. Some callsigns are used twice on the same
day; the second flight replaces the first one in conflict detection on
occurrence. Further information on the German traffic sample is

138 CHAPTER 4. CD IN 4D-AIRSPACE

0

100

200

300

400

500

600

00:00 04:00 08:00 12:00 16:00 20:00 00:00

N
um

be
r

of
A

ir
bo

rn
e

Fl
ig

ht
s

Time of Day

Figure 4.10 – Airborne Aircraft in German Traffic Sample

gathered in table 4.2. The untypical high maximum flight durations
and distances are provoked by some experimental flights also being
part of the traffic sample. These particular aircraft were obviously
not accomplishing a transport task but performed special missions
producing abnormal data.

Figure 4.11 – German
Air Traffic Sample

Figure 4.12 – Optimized Euro-
pean Air Traffic Sample

4.2. TRAFFIC SAMPLES AND CONDITIONS 139

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 04:00 08:00 12:00 16:00 20:00 00:00

N
um

be
r

of
A

ir
bo

rn
e

Fl
ig

ht
s

Time of Day

Figure 4.13 – Airborne Aircraft in European Traffic Sample

4.2.2 European Traffic Sample

The European traffic sample holds 33 069 airborne movements. In
contrast to the German sample, flights are not cut at European
borders, but are usually complete from departure to destination.
The data is taken from the Demand Data Repository (DDR) pro-
vided by Eurocontrol (2010). The sample contains flights departing
from, arriving in, and flying through Europe. As in the German
sample, some callsigns were used multiple times a day. However,
since the callsign is used as identifier in the NDMap the callsigns
were unified by appending numbers in order to investigate the full
traffic. As fig. 4.13 shows, the sample starts with departures at mid-
night, and holds all aircraft flying into the next day. The peak level
of ∼3700 aircraft being airborne at the same time is significantly
higher compared to Germany because:

• The scenario contains more than 3 times more movements;
and

140 CHAPTER 4. CD IN 4D-AIRSPACE

• Flights are complete from take-off to touchdown. An aircraft
departing from the United States flying into Europe later on
is counted for the whole flight duration.

The European traffic sample was modified to create an optimized
scenario. In order to fly as efficient as possible, flights were put to
most direct routes and optimum altitude and speed profiles. Since
the aircraft do not respect today’s airway structure the sample
represents a future scenario.

The only data taken from the original sample is:

Callsign as an identifier for each flight.

Aircraft type describing the performance of specific aircraft

Departure and arrival runways defining the route to be flown

Departure time as the time reference for the flight

Cruise flight level defining the maximum altitude of flight.

All flights are optimized by applying the direct great circle
connection from departure to arrival airport. Since the original
runways are used, up to two waypoints are inserted at each airport in
case angles get too pointed (Kuenz and Schwoch, 2012). Figure 4.14
shows an example where four additional points (D1 and D2 for
the departure and A1 and A2 for the arrival) are necessary to get
a feasible route layout. The new constraints for the trajectory
predictor (compare section 2.3) were gathered by Gunnar Schwoch
(DLR) in the context of the 4 Dimensional-Contracts - Guidance and
Control (4DCo-GC) project under the European Union’s Seventh
Framework Programme for Research (FP7).

Based on aforementioned inputs, new optimized trajectories
are generated using the AFMS described in section 2.3.1. Besides
having much more efficient trajectories, the main difference to the
real life traffic without conflicts is a significantly increased number
of conflicts. The use of flexible route structures changes flight
durations significantly by flying shorter great circle routes and
aircraft-optimized speeds. This results in uncoordinated en-route
and arrival segments and an overall conflict count of nearly 29 000.

4.3. RESULTS FROM CONFLICT DETECTION 141

D1

D2 A1

A2

5 NM

5 NM

Figure 4.14 – Four Points in Worst Case for a Flyable Route
Layout

Further information on the European traffic sample is collected in
table 4.2.

4.3 Results from Conflict Detection

Detection of conflicts becomes complex with a large number of
objects. Figure 4.15 shows conflict detection times for the Ger-
man sample using the basic algorithm described in section 2.4.2.
Comparing each trajectory against each other results in conflict
detection times of more than 3.5 days for ∼10 k trajectories1. Due
to the quadratic complexity O(N2) using even bigger scenarios is
unwise with this algorithm. Figure 4.16 depicts the results of the
optimized version of the algorithm described in section 2.4.2. The
overall detection time is reduced to less than 5.5 hours by checking
conflicts only for aircraft being airborne simultaneously.

Even though the worst case complexity is still quadratic (e. g., if
all aircraft are airborne at the same time), the conflict detection time
has a nearly linear relation to the number of flights at least for the
given scenario complexity. However, the overall poor performance of
∼1.8 s detection time per trajectory restricts the variety of possible
application areas.

1Be aware of the y-axis scaling being non-consistent in this section due to
very different computation times.

142 CHAPTER 4. CD IN 4D-AIRSPACE

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

h)

Number of Trajectories

Detection Time

Figure 4.15 – Detection Times for German Sample Baseline

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

m
)

Number of Trajectories

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

m
)

Number of Trajectories

Detection TimeDetection Time

Figure 4.16 – Detection Times for German Sample Advanced
Baseline

4.3. RESULTS FROM CONFLICT DETECTION 143

Table 4.2 – Properties of Traffic Samples

German European
Aircraft [#] 10 256 33 069
Uniques [#] 9783 33 069
Extension Cut-to-border Complete
Conflicts [#] 3051 28 986

Heavy [%] 12.5 % 9.6 %
Medium [%] 83.8 % 83.8 %
Light [%] 3.7 % 6.6 %

Duration (μ ± σ) 0:46:04 ± 0:19:11 2:01:45 ± 2:10:11
[H:MM:SS] Interval [0:35, 7:43:38] [7:45, 17:59:57]

Distance (μ ± σ) 287.6 ± 118.4 820.9 ± 1021.8
[NM] Interval [1.9, 2615.3] [19.5, 8310]

Points (μ ± σ) 47.1 ± 18.9 89.1 ± 61.0
[#] Interval [2, 454] [6, 1019]

Latitude (μ ± σ) 50.3 ± 2.0 45.6 ± 10.3
[deg] Interval [46.5, 55.2] [-35.0, 88.1]

Longitude (μ ± σ) 10.1 ± 2.6 8.0 ± 28.2
[deg] Interval [5.5, 15.9] [-123.2, 140.4]

Altitude (μ ± σ) 24 914 ± 12 225 19 715 ± 14 042
[ft] Interval [0, 45 000] [-72, 47 000]

Time (μ ± σ) 12:37:24 ± 5:10:57 13:49:40 ± 3:54:02
[H:MM:SS] Interval [-2:21:01, 23:59:57] [-51:57, 39:05:36]

The tiling algorithm described in this document reduces detec-
tion times significantly. Figure 4.17 depicts the performance of the
4-dimensional tiling algorithm. The detection of all conflicts is per-
formed in ∼18.5 s for the German traffic sample. Thus, the average
detection time per trajectory is as low as 1.8 ms. Figure 4.17 also
shows the allocated memory of the hexadecimal tree. Using about
58 KiB per trajectory the algorithm can handle much more than the
German area on standard off-the-shelf personal computer hardware.
Both computation time and memory usage are mostly linear for

144 CHAPTER 4. CD IN 4D-AIRSPACE

the given scenario complexity. The computational performance can
be tuned to 1.61 ms per trajectory by adapting the minimum tile
duration (fig. 4.24 on page 153). However, this increases the average
memory usage to 68 KiB per trajectory.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.17 – Detection Times for German Sample with Tiling
Algorithm

Figure 4.18 depicts the results from the tiling algorithm for the
European sample. The prediction time is nearly linear with an
average of 5.3 ms per trajectory. The steeper part in the center and
the more shallow start and end are likely caused by the time based
sorting of the scenario. Traffic density is lower around midnight
and higher during daytime, compare fig. 4.13. The computational
performance can be tuned to 4.97 ms per trajectory by optimizing
the minimum tile duration (fig. 4.25 on page 153).

Trying to find a reason for the rather big difference in calculation
times to the German sample (5.3 ms vs. 1.8 ms) is a complex job.
Performance indicators are discussed in section 4.4.

4.4. PERFORMANCE INDICATORS 145

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
To

ta
lC

on
fli

ct
D

et
ec

ti
on

T
im

e(
s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories in Thousand

Detection Time
Memory Usage

Figure 4.18 – Detection Times for European Sample with Tiling
Algorithm

4.4 Performance Indicators

Worst case performance of the provided algorithm is O(N2) in
particular for the case that all N trajectories are identical. Building
the tree would not occlude any trajectory pairs from conflict probe.
Thus, every single trajectory needs to be checked against each other,
as also done by the baseline algorithm. However, as can be read
from the promising results, in practice the algorithm performs very
well.

The main influencing factors on the algorithm’s run-time are
discussed in following sections.

4.4.1 Number of Trajectories

Since the conflict probing is done sequentially the number of trajec-
tories has influence on the total run-time. Talking about calculation
times per trajectory, the number of trajectories has only weak in-
fluence. If the trajectories are well distributed in the 4D-airspace,

146 CHAPTER 4. CD IN 4D-AIRSPACE

calculation times are low even for a high number of trajectories. If
trajectories are identical, computation of conflicts is complex for
few trajectories already.

The only weak dependence of trajectory count from calculation
times per trajectory is proven by performing conflict detection on
a quadrupled German traffic sample. Initially, the German traffic
sample does not leave the Northern and Eastern hemisphere. The
quadrupled German traffic sample is generated by first mirroring
traffic at the zero meridian, and mirroring the resulting traffic at the
equator. This leaves densities and length of trajectories constant,
but quadruples the total trajectory count. As shown in fig. 4.19,
the memory is four times higher than the memory used for the
German traffic sample. In contrast, the computation time per
trajectory nearly stays the same with ∼2.3 ms per trajectory. The
additional ∼0.5 ms per trajectory may be a result from the larger
arrays for trajectories and conflicts, e. g., when verifying if a conflict
has already been identified before.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories in Thousand

Detection Time
Memory Usage

Figure 4.19 – Detection Times for Quadrupled German Scenario

4.4. PERFORMANCE INDICATORS 147

4.4.2 Density of Trajectories

Dense areas with many trajectories have a higher potential for
conflicts. On average, the generated tree has a higher depth for
denser occupied airspace. Thus, higher density has a negative
impact on computation times per trajectory.

4.4.3 Number of Trajectory Sampling Points

The number of trajectory sampling points increases computational
work when calculating intersections, e. g., with tile boundaries.
Effects can be illustrated by performing conflict detection on a
trajectory set containing more trajectory points. Therefore, the
German traffic sample was densified using WGS84-interpolation to
a minimum of one trajectory point each 0.5 NM. Leaving all other
parameter unchanged, average and standard deviation of trajectory
points is increased to 599 ± 244 compared to 47 ± 19 originally.

0

5

10

15

20

25

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.20 – Detection Times for Increased Number of Sampling
Points

Figure 4.20 shows that memory usage stays nearly unchanged
while conflict detection time increases by ∼29 % for 1270 % of

148 CHAPTER 4. CD IN 4D-AIRSPACE

the initial sampling points. Thus, the link between number of
sampling points and calculation times is not very strong. The
fact that memory usage even decreases slightly can be explained
by the WGS84-interpolation while the NDMap performs linear
interpolation internally.

4.4.4 Length of Trajectories

The trajectory length has significant influence on computation times
because long trajectories affect many tiles. Thus, a doubled length
of a trajectory is comparable to two single length trajectories in
terms of computational burden.

4.4.5 Number of Potential and Real Conflicts

Obviously, a high number of conflicts in a scenario increases com-
putational work. The average depth of the hexadecimal tree gets
higher, and number of final conflict detection probes increases.

4.4.6 Summary of Performance Indicators

Finally, coming back to the difference of computation times between
German and European sample, scenario density is probably not the
reason because 10 000 trajectories in Germany is a higher average
load than 33 000 trajectories over whole Europe. Main reasons for
the worse performance of the European sample are likely the nearly
3 times longer trajectories and the higher number of sampling points.
Also the allocated memory is high compared to the German sample.
About 106 KiB of memory was used per trajectory.

4.5 Performance Optimization for Con-
flict Detection

This section discusses the choice of minimum tile sizes in order to
guarantee a mandatory separation �S. As described in section 3.3.10

4.5. PERFORMANCE OPTIMIZATION FOR CD 149

on page 104 the minimum tile size needs to be at least as big as the
minimum separation �S in order to detect all conflicts, but might
also be bigger. Therefore, detection runs were performed with
different configurations of the hexadecimal tree to find the optimum
set of parameters. In this section, all runs were performed using
the German traffic sample.

4.5.1 Lateral Tile Size Optimization

Starting with the lateral tile size, fig. 4.21 shows detection times
and memory allocation for lateral separation distances from 5 NM
to 20 NM. The detection time increases apart from some jitter
monotonically with larger lateral tiles. The memory usage decreases
slightly with increasing lateral size of tiles. The figure also shows
the average number of penetrations and fly-bys per tile. Especially
an increasing number of fly-bys per tile is noticeable. As depicted
on fig. 3.8 on page 96, fly-by zones get larger with increasing lateral
separation size. The number of penetrations stays constant. The
reduction of tree depth counteracts the increasing number of fly-bys,
resulting in an overall decreasing memory usage. Summarizing, it
is beneficial for run-time to set the minimal lateral tile size to the
lateral conflict size. Using larger tiles for the leaves reduces the
necessary memory slightly, but also increases calculation times.

4.5.2 Vertical Tile Size Optimization

The results look different when changing vertical tile size instead of
lateral size as plotted in fig. 4.22. While memory usage decreases
slightly for increasing vertical size, detection times increase. More
eye-catching are three steps where memory usage and calculation
time decrease simultaneously. This behavior can be explained by
having a closer look at table 4.1. The altitude dimension needs the
lowest number of subdivisions (6.66) to get down to minimum tile
size. By increasing the smallest vertical tile size, the number of
necessary subdivisions is further decreased. Table 4.3 shows the
necessary number of subdivisions for increased Vertical Tile Size

150 CHAPTER 4. CD IN 4D-AIRSPACE

16

18

20

22

24

26

28

30

32

34

36

6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)/

A
ffe

ct
io

ns
pe

r
T

ile

Smallest Tile Size (NM)

Detection Time
Memory Usage

Penetrations per Tile
FlyBys per Tile

Figure 4.21 – Variation of Tile Size

(VTS). Obviously, the steps in fig. 4.22 are placed where the number
of vertical subdivisions decreases by one.

Table 4.3 – Vertical Dimension with Increased Vertical Tile Size

Min Max VTS D∗

-1000 100 000 1000 6.66
-1000 100 000 1578 6.00
-1000 100 000 3156 5.00
-1000 100 000 6312 4.00
∗ with D=log2

(max − min
VTS

)
When the vertical subdivision downto minimum tile size is

finished in the tree, the whole tree starts getting thinner. Each
node has a maximum of 8 instead of 16 children. This is beneficial
for memory and run-time. Summarizing, a starting value of 1000 ft
is a good choice. Another efficient opportunity is using the next
point where the subdivision count decreases, namely 1578 ft or
slightly above to be on the safe side. Using even higher minimum

4.5. PERFORMANCE OPTIMIZATION FOR CD 151

17

18

19

20

21

22

23

24

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
To

ta
lC

on
fli

ct
D

et
ec

ti
on

T
im

e(
s)

M
em

or
y

U
sa

ge
(G

B
)/

A
ffe

ct
io

ns
pe

r
T

ile

Smallest Tile Altitude (ft)

Detection Time
Memory Usage

Penetrations per Tile
FlyBys per Tile

Figure 4.22 – Variation of Altitude

values is not beneficial for overall run-time. The approach of taking
the subdivision positions into account is respected by the modified
balancing algorithm in section 4.5.4.

4.5.3 Time-based Tile Size Optimization

The effects of varying the time-based tile size are shown in fig. 4.23.
With a very fine granularity of one second, both memory usage and
computation times are high. Too large tiles result in low memory
usage, but increased computation times. However, the initially
chosen 90 seconds representing a typical time-based separation
between two succeeding aircraft with approach speeds are not the
best choice in terms of computation times. Table 4.4 shows the
step-creating increments of time depth. In order to increase the
calculation speed a minimum tile duration below 84.375 s should be
selected. Figures 4.24 and 4.25 show the results for a tile duration of
80 s for Germany and Europe respectively. Average detection times
are 1.61 ms for Germany and 4.97 ms for Europe per trajectory.

152 CHAPTER 4. CD IN 4D-AIRSPACE

Table 4.4 – Time Dimension with Increased Tile Duration

Min Max Duration D∗

0 86 400 90 9.91
0 86 400 84.375 10.00
0 86 400 168.75 9.00
0 86 400 337.5 8.00
0 86 400 675 7.00

∗ with D=log2
(max − min

Duration

)

16

18

20

22

24

26

28

30

32

0 50 100 150 200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)/

A
ffe

ct
io

ns
pe

r
T

ile

Smallest Tile Time (s)

Detection Time
Memory Usage

Penetrations per Tile
FlyBys per Tile

Figure 4.23 – Variation of Time

4.5.4 Balancing the Tree

The results in this section are based on a minimum time duration
of 80 s, as experienced in the last section.

As described in section 3.3.9, balancing of a tree adapts starting
intervals of each dimension in a way that ensures reaching minimum
tile size for all dimensions at the same level of depth. The results
from an automatically balanced tree for the German traffic sample
are shown in fig. 4.26. While using about 25 percent more memory

4.5. PERFORMANCE OPTIMIZATION FOR CD 153

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
To

ta
lC

on
fli

ct
D

et
ec

ti
on

T
im

e(
s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.24 – Results for 80 Seconds Tile Duration (Germany)

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000 30000
0

0.5

1

1.5

2

2.5

3

3.5

4

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.25 – Results for 80 Seconds Tile Duration (Europe)

than the unbalanced version (compare fig. 4.17), calculation time
remains the same. Balancing on the European traffic sample also

154 CHAPTER 4. CD IN 4D-AIRSPACE

results in 25 percent higher memory usage and 7 percent worsened
calculation speed.

All in all, the balancing does not seem to be reasonable in terms
of possible performance gain.

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.26 – Results from Automatically Balanced Tree

Trying to solve the trade-off between memory and computation
times another balancing approach was developed. Instead of bal-
ancing all dimensions to the same tree depth, each dimension is
handled independently in the new approach.

Table 4.5 – Modified Balancing Parameter

Initial Modified
Dim. Min Max D Max D S

x -180 180 12.08 503 13.001 5/60

y -90 90 11.08 252 12.001 5/60

z -1000 100 000 6.66 127 089 7.001 1000
t 0 86 400 10.08 163 954 11.001 80

4.5. PERFORMANCE OPTIMIZATION FOR CD 155

As was experienced with the vertical and time-based optimiza-
tion in sections 4.5.2 and 4.5.3, an integer number of subdivisions
seems to be preferable. Therefore, the new balancing algorithm
enlarges starting intervals in order to achieve an integer number of
subdivisions. Since overshooting is critical, the next higher integer
is approximated with an offset of +0.001. Thus, the smallest tile
size stays just above the separation minimum. Table 4.5 shows
the new parameters calculated by the modified balancing algo-
rithm. As used before, D is the number of subdivisions, given by
log2((max − min)/S).

As depicted in fig. 4.27 the modified balancing algorithm does
not provide the expected benefits. Compared to the unbalanced
version, run-time is increased by 14.3 % from 1.61 ms to 1.84 ms per
trajectory while increasing necessary memory by 23 % to 83 KiB
per trajectory.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.27 – Results from Modified Balancing Algorithm

156 CHAPTER 4. CD IN 4D-AIRSPACE

4.5.5 Focus on Aircraft

As described in section 3.6, run-time and memory usage can be
drastically improved when the collision detection focuses on a subset
of trajectories. An exemplary application is the responsibility of an
air traffic controller for a predefined subset of aircraft as described
in section 4.7.2.

Figure 4.28 depicts results for trial runs with 1-200 selected
aircraft based on the German traffic sample. Aircraft are selected
by random from the traffic sample and registered in the NDMap
before loading the scenario. The random selection of aircraft im-
pedes a monotonic increase of total detection time. Selecting only
one aircraft, generation of the whole tree takes 1.1 seconds while
using 401 KiB memory. Focusing on six aircraft as done in the
Luftraummanagment 2020 (LRM2020) project, the tree generation
including conflict detection for the selected 6 flights takes 1.5 s.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 50 100 150 200
0

10

20

30

40

50

60

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(M

B
)

Number of Selected Trajectories

Detection Time
Memory Usage

Figure 4.28 – Algorithm’s Performance for Different Numbers of
Selected Aircraft

Selecting aircraft increases performance without creating a big
overhead. The break-even point in terms of performance compared
to the standard setup is reached with ∼7600 selected aircraft, where

4.5. PERFORMANCE OPTIMIZATION FOR CD 157

the calculation takes ∼18 s and uses 583 MiB of memory. Thus, if a
focus on a subset of aircraft can be set, this should be done unless
the subset contains more than 7600 aircraft for the German traffic
sample.

4.5.6 Shrinking the Root Tile

This section investigates if starting with large root tiles penalizes
the algorithm’s performance significantly. Selecting the whole world
as root tile for the German traffic sample with latitudes in [46.5°,
55.2°] and longitudes in [5.5°, 15.9°] (table 4.2 on page 143) may
result in an unnecessary long search path for conflicts.

Therefore, the conflict detection was executed with a shrunk
root tile with latitudes in [46.5°, 55.2°], longitudes in [5.5°, 15.9°]
and altitudes in [-500 ft, 50 000 ft]. The unexpected results are
depicted in fig. 4.29. The shrunk root tile results claim 45 % more
memory usage and a 37 % increase of calculation time. Turning on
the balancing algorithm produced even worse results.

0

5

10

15

20

25

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.29 – Results from Shrunk Root Tile

158 CHAPTER 4. CD IN 4D-AIRSPACE

Trying to explain the increase in memory usage and run-time,
table 4.6 lists the number of generated tiles in each depth level for
both defined root tiles. As expected, the shrunk root tile needs less
depth than the Earth root tile (10 versus 11), and the shrunk root
tile generates a thicker tree close to the root (16 versus 4 nodes in
level 1). In total, the shrinking increases the number of generated
tiles significantly by 45 %. Since the only values changed are the
number of subdivisions for each single dimension, the reason needs
to be the shift between the dimensions against each other. One
possible explanation is that it might be beneficial to let the time
dimension split before all other dimensions split occupied airspace.
However, trials increasing all dimensions but time to magnify that
effect were not successful.

Table 4.6 – Number of Nodes - Earth vs. Shrunk

Earth-Root Shrunk-Root

0 1 1
1 4 16
2 8 256
3 32 3388
4 116 39 838
5 1754 364 277
6 15 050 1 114 110
7 65 182 617 153
8 249 573 537 019
9 602 255 445 249
10 878 849 374 011
11 593 092 N/A

Total 2 405 916 3 495 318

The observed behavior indicates that the algorithm is sensitive
against different starting conditions. It also illustrates that the
proposed input balancing is not perfect – extending the shrunk tile
to Earth dimensions obviously is a better option.

However, the conditions leading to the best calculation perfor-
mance are nontrivial and for sure also not independent from the

4.6. COMPARISON WITH OCTREES 159

input data. Several trials with different starting intervals were per-
formed with the result that the Earth intervals as initially chosen
are close to optimum. Future work on that topic may result in an
even better input balancing algorithm.

4.6 Comparison with Octrees

Since the implementation of the NDMap is generic concerning the
number of dimensions, detection runs can easily be performed with
less than 4 dimensions. This section shows results from two 3D-
octree configurations. In order to get the same final conflicts as in
the 4D version, the external conflict function still checks conflicts
in all 4 dimensions.

Figure 4.30 presents the results using an octree holding latitude,
longitude, and altitude as proposed by Hildum and Smith (compare
section 2.4.3 on page 63). Comparing the outcome with the 4D-
configuration in fig. 4.24, the procedure needs only 12 % of memory,
but uses a 36 times higher calculation time.

Generation of the data was a bit difficult. The final conflict
detection needs a 4-dimensional vector to validate the conflict.
However, if time is not included in the tree, the corresponding
4D-point cannot be identified clearly without ambiguity. Therefore,
the NDMap was used in 4D mode. In order to avoid benefits from
the time dimension, a minimum tile duration of 86 400 s (i. e., one
day) was applied.

Figure 4.31 shows results from another octree configuration of
the NDMap holding latitude, longitude, and time. This time, the
NDMap was configured in real 3D mode. Using about 364 MiB of
memory, this configuration needs about 220 % of the time from the
reference 4D-hexadecimal configuration in fig. 4.24. The relative
good performance indicates that two aircraft rarely cross above each
other at the same time. It also proves that the provided algorithms
perform well in 3 dimensions.

160 CHAPTER 4. CD IN 4D-AIRSPACE

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
To

ta
lC

on
fli

ct
D

et
ec

ti
on

T
im

e(
s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.30 – 3D-Octree Latitude/Longitude/Altitude

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 4.31 – 3D-Octree Latitude/Longitude/Time

4.7. APPLICATION IN PROJECTS 161

4.7 Application in Projects

The software module NDMap has already been used by several
projects at DLR. The applications differ in applied time horizons and
traffic complexity significantly. This section gives short descriptions
for some of the projects and especially focuses on the application
of the NDMap.

4.7.1 Future Air Ground Integration

The Future Air Ground Integration (FAGI) project has taken place
from 2007 to 2009 and used a first version of the NDMap module
for STCA and TBO (Kuenz and Edinger, 2010a,b). The project
focused on providing a transition from today’s vector-based control
of aircraft into a TBO environment supporting both FMS equipped
and unequipped aircraft.

The FAGI concept distinguishes aircraft by their equipage:

• Aircraft equipped with a 4D-FMS are capable to predict and
fulfill 4D trajectories board-autonomously. The expected
accuracy is ±6 s as one out of nine aircraft in European traffic
was capable in 2007 (Smedt and Berz, 2007).

• Conventional equipped aircraft without an onboard 4D-
FMS are incapable of high precision board-autonomous 4D-
guidance.

The key element of the proposed 4D concept for an advanced
Terminal Maneuvering Area (TMA) handling is the late merging of
all arriving traffic. Before merging, arriving aircraft are separated
procedurally by staggering them laterally in an Extended TMA
(E-TMA) allowing each aircraft to fly its individual speed and
altitude profile. When entering the E-TMA, a time constraint for
the merging point is assigned to each aircraft. The late merging
point for all aircraft is located just before the final approach. The
early assignment of time constraints enables arriving aircraft to
fulfill the requested time in an efficient way, i. e., speed adaptation.
Therefore, the E-TMA is rather big (80 NM to 120 NM radius). If

162 CHAPTER 4. CD IN 4D-AIRSPACE

speed variation is not enough to reach the constraint, strategic path
stretching can be used to delay aircraft further. Parallel routes from
every entry point to the late merging point enables faster aircraft
to overtake slower aircraft (fig. 4.32).

Aircraft not entering near a static E-TMA entry are guided by
means of dynamic routing. Depending on the equipage, there are
two different approaches possible:

• 4D-equipped aircraft are able to generate their own optimum
4D-trajectory board-autonomously. They fulfill a ground
predicted time constraint at late merging with high precision,
ideally without any interventions after the negotiation process
with ground control. Equipped aircraft fly direct routes to
the late merging point. Aircraft violating their contract with
ground control are supposed to be degraded to unequipped
aircraft and thus follow the trombone routing

• Unequipped aircraft are not able to fulfill the given constraints
on their own. Therefore, they are supposed to be guided by
a ground based 4D guidance system as described by Kuenz
et al. (2008). The ground-based guidance system generates
speed vectors and, if necessary, also shortcuts to reach the
target time. To get them precise in time at the merging point,
they are guided along a trombone approach allowing rather
late correction of merging times.

Aircraft flying the trombone can be delayed to allow insertion of
short term departures and simplify handling of emergency situations.

Since a trajectory was generated for each aircraft flying trajec-
tory based conflict detection was applied for the E-TMA using the
NDMap.

However, since not every aircraft was FMS-equipped, an accurate
adherence of the trajectory could not be assumed for all aircraft.
Therefore, short term conflict detection was implemented using
current aircraft state vectors’ extrapolation into near future. Based
on current 3D-position and 3D-velocity, position was extrapolated
by 2 minutes into future. The corresponding trajectory holding
current and future position was fed into the NDMap in order to
provide STCA functionality to the air traffic controllers.

4.7. APPLICATION IN PROJECTS 163

Used by Unequipped Aircraft

E
astE

ntry

South Entry

W
es

tE
nt

ry

North Entry

E-TMA with 4
static entries

enroute

Time-based
Separation at Late

Merging Point

Strategic
Path-

Stretching

Dynamic 4D
Routes for

dynamic entries

NM100

10

Trombone
Area

Figure 4.32 – The FAGI Concept

Properties of the applied STCA are:

• Very short trajectories with usually only 2 points, duration
of 2 minutes and a trajectory length below 20 NM.

• Very high update rate, depending on update rate of aircraft
states.

• Low conflict likelihood.

4.7.2 Luftraummanagement 2020

Sectorless ATM is the main concept element of the project LRM2020
(Korn et al., 2009; Birkmeier et al., 2010). Instead of assigning
controllers to geographical areas, controllers are assigned directly

164 CHAPTER 4. CD IN 4D-AIRSPACE

to several (e. g., 4-6) flights accompanying them during their whole
stay in upper airspace. This should reduce the number of necessary
controllers as well as communication overhead when switching
sectors. Since assigned aircraft are in geographical independent
areas, the controller needs powerful assistance tools allowing him
to handle his traffic safe and efficiently.

Conflict detection is performed with a mid-term time horizon.
While a short term horizon reduces efficiency and increases urgency
to react, a long term horizon is not beneficial due to both uncer-
tainties and for ATM controllers unusually early conflict warnings.

Since controllers have only to deal with aircraft that are within
their responsibility, the NDMap can be optimized for every single
controller by focusing on the assigned aircraft. That way, mem-
ory usage and detection times are drastically improved, compare
section 4.5.5.

4.7.3 Volcanic Ash Impact on the Air Transport
System

The Volcanic ash impact on the Air Transport System (VolcATS)
project tries to increase safety and improve adaptation of ATM
under volcanic eruption influence (Schlager et al., 2012). Project
goals are:

• Satellite-based identification and short-term forecast of ash-
free airspace.

• Installation and proving of miniature sensors for SO2 and
particles for scheduled flights allowing an early warning when
flying into an ash cloud.

• Development of ATM procedures for fast adaption of airspace
in case of volcanic ash issues.

In times of the Eyjafjallajökull crisis in 2010, ash contaminated
airspace was clustered into three groups:

• Areas of low contamination with 0.2 mg/m3 to 2 mg/m3.

4.7. APPLICATION IN PROJECTS 165

• Areas of medium contamination with 2 mg/m3 to 4 mg/m3.

• Areas of high contamination with more than 4 mg/m3.

Figure 4.33 shows conflicts between air traffic and the ash cloud
generated by Grímsvötn in May 2011. The different classification
of contamination is drawn in different colors.

Since the forecast of ash contamination is not accurate enough
today, the classification is not taken into account for the definition
of no-fly zones. Instead, aircraft are not allowed flying into visible
ash zones.

However, improvement of the forecast accuracy and onboard
sensors will allow a more sophisticated adaption of ATM in times
of volcanic eruption in the future. The gathered information shall
be merged in a repository center (Vujasinovic, 2012a).

Figure 4.33 – Conflicts between Air Traffic and Volcanic Ash Cloud

A big difference to other aforementioned projects is the classifi-
cation into designated severity classes. If an ash cloud cannot be
avoided at least the trajectory with minimum overall contamination
is desired. This does not necessarily mean that areas with high

166 CHAPTER 4. CD IN 4D-AIRSPACE

contamination need to be avoided hardest though. Leaving an ash
cloud by shortly breaking through a high contamination area may
be preferable to a long stay in medium conditions. Since the project
is still in its beginning, progress concerning modeling the traffic
and contamination is small so far. However, first ideas exist.

The most vulnerable parts of an aircraft to be damaged by
volcanic ash are engines. Ash contains silicium that melts at hot
temperatures in the combustion chamber. The hot ash then cools
down on the turbine blades and may stall the engine (Vujasinovic,
2012b).

Thus, there is a link between contamination severity and engine
temperature. For the sake of an interesting example, let us assume
that designated combinations of engine temperature and ash con-
centration are acceptable. The idea is to use the severity parameter
as an additional dimension to model both ash concentration and
engine temperature. That way, new conflict rules can be established.
Table 4.7 illustrates how the new dimension can be defined. Values
from 0 to 2 are assigned to ash concentrations from high to low.
Values from 0 to −2 are assigned to engine temperatures from high
to low. Based on the absolute difference, the new dimension raises
a conflict for an exemplary separation value of 2.5 if and only if:

• Engine temperature is high; or

• Ash concentration is high; or

• Ash concentration and engine temperature are both medium.

Table 4.7 – Example Setup for Severity Dimension

Airspace Contamination
High (0) Med (1) Low (2)

Engine Temp.
High (0) 0 1 2
Med (-1) 1 2 3
Low (-2) 2 3 4

Following the example, medium engine temperature is accept-
able in low contamination only, while low engine temperature is

4.7. APPLICATION IN PROJECTS 167

acceptable in low and medium contaminated airspace. However,
trials in an engine test bench are necessary to show if above made
assumptions are reasonable.

Of course, above described procedure is just a rough estimation
for the real effects. The modeling also can be done in much more
detail adding several new dimensions covering properties like num-
ber, size, shape, weight, melting point, and chemical composition
of particles. In order to take advantage from the NDMap an ap-
propriate representation of data is necessary allowing comparison
with a separation minimum, as performed for the severity example.
Logical combination of parameters shall then be done within the
external conflict function.

4.7.4 Supercooled Large Droplets Icing

The Supercooled Large Droplets Icing (SuLaDI) project investigates
icing problems in aviation (Voggenreiter and Etzenbach, 2012).
Icing is especially dangerous for measurement equipment aboard
of aircraft by distorting signals, engine inlets reducing thrust, and
wings destroying the aerodynamics by increasing drag and reducing
lift. While Jeck (2002) gives a definition of standard icing conditions,
SuLaDI focuses on untreated Supercooled Large Droplet (SLD)
conditions that represent a very specific and dangerous hazard to
aircraft.

Assuming an accurate icing area forecast, the NDMap is used to
avoid icing areas. Since the icing zones are additional restrictions
to already existing constraints from ATM, conflict resolution from
icing areas also needs to respect the baseline ATM constraints in a
safe and efficient way. In particular, maneuvers avoiding icing areas
shall not affect other traffic.

Icing zones are modeled as polygonal areas with minimum and
maximum altitude and time as hazard for all aircraft trajectories.
Furthermore, icing areas can be moved by assigning movement
trajectories.

Figure 4.34 presents conflict solution from an exemplary SLD
icing area.

168 CHAPTER 4. CD IN 4D-AIRSPACE

Figure 4.34 – Vertical and Lateral De-Confliction from SLD-Icing
Area

As proposed already for the ash cloud in the previous section,
adding one or more new dimensions holding icing conditions and
aircraft state/equipage may be beneficial to model more complex
behavior, e. g., allowing an aircraft equipped with special de-icing
equipage to fly through a weak SLD area.

4.7.5 4 Dimensional-Contracts - Guidance and
Control

The 4DCo-GC project tries to solve the conformance monitoring
problem in ATM (The 4DCo-GC Consortium, 2013; Joulia and
Le Tallec, 2012). Nowadays, air traffic control is responsible for
monitoring the aircraft’s conformance with given instructions based
on the available information on ground. Depending on the source
of information (e. g., primary radar, SSR, ADS-B) position data is
less or more accurate.

Aircraft usually know better about their own position using
satellite-based positioning systems like United States’ Global Posi-
tioning System (GPS), Russian’s Globalnaja Nawigazionnaja Sput-
nikowaja Sistema (Glonass) and European’s Galileo. Furthermore,
aircraft know their intent and whether current deviations from given
instructions are on purpose (e. g., in order to fly a more efficient

4.7. APPLICATION IN PROJECTS 169

route) and therefore acceptable or if the guidance is physically
unable to follow the instructions, e. g., given by a 4D-trajectory.

4DCo-GC puts the conformance monitoring responsibility into
the aircraft. In order to distinguish between allowed and severe
deviations from a trajectory, a contract defining safety and freedom
margins is negotiated between ground control and aircraft. While
ground control ensures that contracts of no two aircraft intersect,
each aircraft has the task to stay in its assigned contract. For each
point in time, the contract defines allowed cross-track deviations
specified in nautical miles, along-track deviations as a time, and
vertical deviations as an allowed altitude offset. As soon as an
aircraft forecasts that it cannot comply anymore with the given
contract, a new contract is calculated by the ground module.

Figure 4.35 shows how a contract is defined in the 4DCo-GC
project. The whole blue area around each aircraft is called contract
bubble. An aircraft has a time-continuous contract bubble at each
time from start to end of flight. For each time, the contract bubble
is safe from conflicts with all other contract bubbles. Contract
bubble might touch each other, but not intersect. Contract bubbles
are smaller around airports and bigger in less dense traffic situation
like en-route areas.

Aircraft are prevented to fly to the border of their contracts
by the green safety bubble (SB). Safety bubbles must stay within
the contract bubble in order to avoid dangerous contract violations.
Thus, the allowed position of each aircraft is limited to the yellow
freedom bubble. The freedom bubble can be used by each aircraft
to optimize efficiency of flight.

Assuming constant contract margins along time, conflict de-
tection between contracts can be performed based on trajectories
using a separation adapted to the size of contract margins. Variable
contracts are much more difficult to handle, e. g., using morphing
volumes moving along a trajectory.

The NDMap was used within 4DCo-GC for generation of a
conflict free scenario based on the optimized Europe sample. Since
the optimized sample contains nearly 29 000 conflicts, effective
conflict resolution algorithms were necessary in order to create a

170 CHAPTER 4. CD IN 4D-AIRSPACE

Contract Bubble

Freedom
Bubble FB

SB

ContractBubble

Freedom

BubbleFB

SB

Figure 4.35 – Contract Definition in the 4DCo-GC Project

conflict free sample. Conflict resolution algorithms are described in
chapter 5.

Chapter 5
4D Conflict Resolution

As described in section 2.5, conflict resolution can either be per-
formed laterally, vertically or time-based. The NDMap implemen-
tation provides algorithms for all three types of conflict solution.
All procedures use the trial-and-error method taking advantage of
the high performance of the conflict detection algorithm.

Trial-and-error is not only facilitated by fast conflict detection
times (i. e., times for adding a new trajectory) but also by fast dele-
tion times of 0.4 milliseconds for the German and 1.6 milliseconds
for the European sample. Thus, trajectories can be probed for
conflicts in 2.0 ms (1.6 ms+0.4 ms) resulting in 500 trial-and-error
runs a second for the German sample and 1000 ms/(5.0+1.6) ms =
151 probes a second for the European sample. Deletion times are
that high for the European sample because, for instance, conflict
deletion in the 29 k entries conflict vector is slow. Probing speed
usually increases while reducing the number of remaining conflicts.

171

172 CHAPTER 5. 4D CONFLICT RESOLUTION

5.1 Global Trial-and-Error Conflict
Resolution

Conflict resolution is a complex task. Several issues need to be
taken into account when trying to solve a conflict:

• The right of way is either given by a set of predefined rules
(e. g., the EFR from section 2.5.6 on page 73) or dynamically
assigned based on optimization metrics.

• The maneuver avoiding a conflict may create new conflicts
on the remaining route further downstream. Decision rules
need to be defined if conflicts have different priorities (e. g.,
depending on the flight phase), and whether moving a con-
flict further downstream is an optimization and therefore a
potential solution.

• Calculation of ambitious resolutions with minimum trajectory
change is usually more efficient, but also increases computa-
tional effort.

• If multiple solutions are possible, the best solution needs to be
identified. Metrics are necessary to determine the preferred
solution.

Whether a conflict resolution is good or not needs to be well
defined. As for the global optimization of whole ATM, broadly
accepted metrics are necessary to define the global optimum. ICAO
(2005) defines following 11 expectations also known as Key Perfor-
mance Areas (KPA) for the global ATM in alphabetical order:

• Access and equity.

• Capacity.

• Cost-effectiveness.

• Efficiency.

• Environment.

5.1. GLOBAL TRIAL-AND-ERROR CR 173

• Flexibility.

• Global interoperability.

• Participation by the ATM community.

• Predictability.

• Safety.

• Security.

Since the expectations are not independent conflicts of interest
need to be solved by a trade-off. An exception from the trade-off
process is usually safety, since an acceptable safety is always highest
priority in aviation. Besides safety, keeping efficiency high is one
of the main factors when solving a conflict. However, also other
KPAs are relevant. Since the bottlenecks in ATM are usually the
airports, holding an earlier accepted required time of arrival at the
destination airport is essential, ensuring the KPA predictability.

Regarding conflict resolution responsibility, there is also a trade-
off between predictability and efficiency. Defining the right of way
aircraft according to a rule set like EFR increases predictability but
might not be the most efficient solution. The global optimum for
this decision might even be reached if both aircraft are responsible
to solve the conflict together, each solving a part of the conflict.

When performing trial-and-error conflict resolution, new probe
trajectories need to be generated. Calculations can be performed
with different accuracy. While the complexity of trajectories is not
a problem for the NDMap, it might be an issue for the (external)
trajectory prediction engine not being able to deliver aircraft specific
efficient trajectories fast enough.

It is not beneficial to use high accuracy trajectories for high
frequency conflict resolution testing for some reasons (Kuenz, 2011):

• Performance: The AFMS described in section 2.3.1 needs on
average ∼ 100 ms to calculate realistic and flyable trajectories
based on aircraft model, list of waypoints, altitude, speed and
time constraints, and profile parameter. That is already pretty

174 CHAPTER 5. 4D CONFLICT RESOLUTION

fast compared to commercial FMS. However, the prediction
of vertical and speed profiles is an iterative process. Thus,
if altitude or time (e. g., required time of arrival) constraints
are tricky and difficult to meet, the prediction process might
take up to 500 ms.

• Accuracy: Airborne trajectories are difficult to calculate by a
ground tool, considering a global ground based conflict resolu-
tion tool. An aircraft knows best about its own performance.
It provides up-to-date weather information by direct mea-
surement in flight. Current aircraft weight is only known in
aircraft, not on ground. Furthermore, airline specific proce-
dures might not be published for ground tools. A study by
Stell (2010) on estimating descent trajectories of real flights
with a ground based tool illustrates difficulties localizing top
of descent and predict meter fix times with high precision.

• Regeneration: When deviations occur in a flight, e. g., due to
bad weather forecast, aircraft adapt their trajectories. These
adaptations cannot be foreseen in the planning phase anyhow.

• Ambition: The best resolution maneuver is not the technical
smart solution exactly fulfilling separation minima at any time.
A more conservative approach with slightly worse efficiency
including some safety margins should be preferred to abate
remaining uncertainties.

Therefore, the NDMap provides built-in conflict resolution algo-
rithms generating simplified trial trajectories. Obstacle avoidance
maneuvers are generated

• Lateral, vertical and time-based.

• Based on performance indicators extracted from the initial
trajectory: Track-change, climb, descent, accelerate and de-
celerate capabilities.

• If no resolution is found, deviation from original path is
successively increased.

• If possible, avoidance maneuvers are generated for both con-
flicting objects. The better solution gets implemented.

5.2. LATERAL RESOLUTION 175

• Providing simple metrics for solution rating. In the current
version, route extension size and flight time are taken into
account.

Multiple conflicts are solved in chronological order. Result of the
resolution process is a list of avoidance maneuvers, each containing:

• Reference to the object implementing the solution.

• Reference to the first conflict being solved.

• Number of conflicts being solved. Especially lateral and
time based solutions might solve (but also create) subsequent
conflicts.

• Type of maneuver: climb x feet, descent x feet, avoid left
by x NM, avoid right by x NM, advance or delay flight by x
seconds.

• Trial trajectory.

Anyhow, once having selected the best solution out of all trial
trajectories, a more precise AFMS trajectory should be generated
in order to validate the solution.

No matter how a conflict is solved, trial trajectories are always
generated for the complete remaining route. This way, downstream
conflicts can be taken into account. In the probing process, the trial
trajectory replaces the original conflicting trajectory. The updated
conflict list is compared to the original list of conflicts. If the new
situation is rated better, the probe trajectory is considered to be a
solution. After probing with all foreseen trial trajectories is finished,
the best rated solution, if any, is assigned as the solution of conflict.

5.2 Lateral Resolution

A lateral conflict resolution is shown in fig. 5.1. Calculation of
the trial trajectories is mainly based on start and end of conflict.
Trial trajectories are generated by moving the trajectory segment
between start and end of conflict orthogonal to its direction. In

176 CHAPTER 5. 4D CONFLICT RESOLUTION

Figure 5.1 – Lateral Resolution of Conflict

order to keep the rest of trajectory stable, two additional points
are inserted before start of conflict and behind end of conflict. The
corresponding δ is set to 120 seconds in the current version.

Although the figure shows for simplicity only probe trajectories
deviating to the right for one aircraft, probe trajectories are always
calculated for both aircraft in both directions, aiming for the overall
best solution. The parallel route offset starts with 0.5 NM and is
increased by 0.5 NM until finding a solution or reaching a predefined
maximum.

Lateral conflict resolution has side-effects on the time. The
flight duration increases due to the lateral detour if speed stays
unchanged. Both altitude and speed are assumed to be unchanged
on the extra lateral segments. The resulting time variation produces
a non-symmetric situation concerning left and right detour. For
the conflict situation shown in fig. 5.1, the depicted solution is
an efficient candidate. Compared to the time of original lateral
intersection of trajectories, the aircraft from the south reaches the
new lateral intersection later due to the detour, and the aircraft
from the east earlier. A deviation to the left delays the lateral
intersection for both flights.

If and how this algorithm solves a conflict mainly depends on
intersection angle, phase of flights, and speeds of aircraft. Lateral

5.3. VERTICAL RESOLUTION 177

Figure 5.2 – Vertical Resolution of Conflict

conflict resolution is not applicable for conflicts in the vicinity
of airports. Obviously a lateral route offset is not possible on the
runway, but usually also not reasonable in the dense airspace around
airports.

5.3 Vertical Resolution

The vertical conflict resolution is depicted in fig. 5.2. Basically,
the same algorithm as for the lateral resolution is applied. The
trajectory segment between start and end of conflict is moved in
altitude. In order to leave the remaining trajectory unchanged,
extra points are inserted before start and after end of conflict. The
corresponding δ is set to 120 seconds per 1000 ft vertical deviation.

Again, probe trajectories are calculated for both aircraft in both
directions. In contrast to the lateral resolution, the horizontal route
length stays the same. Assuming not too large altitude steps, climb
and descend speeds are of low importance, and times nearly stay
unchanged. Altitude is increased and decreased by steps of 1000 ft
as long as no solution was found or a maximum is reached.

178 CHAPTER 5. 4D CONFLICT RESOLUTION

Figure 5.3 – Time-Based Resolution of Conflict

At the runway threshold, also the vertical resolution is not
applicable due to the fixed threshold elevation. Depending on envi-
ronmental constraints like noise sensitive areas, vertical resolutions
can be reasonable in the vicinity of airports. In the case the air-
craft is in climb or descent, the procedure needs small adaptations.
Climbing aircraft insert a level flight interrupting the climb in order
to dive below a conflict. Aircraft being close to their descent may
bring forward part of it in order to create a lower conflict-resolving
level flight.

5.4 Time-Based Resolution

The main idea about time-based conflict resolution is reaching the
conflict point’s original position at another conflict free time. The
overflight time of a 3D-position (e. g., the start of conflict position
in fig. 5.3) can be adapted by different means.

5.4. TIME-BASED RESOLUTION 179

Assuming the aircraft is already airborne, overflight times can
be revised by speed variations and path shortening or stretching.
As discussed before, path shortening requires doglegs in the initial
route to bypass, which are avoided in efficient route layouts. On
the other hand, path stretching creates such doglegs and makes
the initial efficient routing inefficient. Thus, speed adjustment is
the proper mean to delay or advance an aircraft to avoid conflicts.
However, assuming that original foreseen speeds are most efficient
for the given aircraft, adjustments also degrade overall performance.
Furthermore, the δ in fig. 5.3 needs to be rather large, e. g., at a
typical speed of 300 kts, δ needs to be ∼30 min to adjust overflight
time by 1 minute using a speed variation of 10 kts.

Assuming a strategic planning of air traffic where all aircraft
are still on ground, a good way for time-based conflict avoidance is
shifting the whole flight in time from departure to arrival.

5.4.1 Moving Whole Flights in Time

Shifting whole flights in time allows keeping flight duration constant.
If a flight is shifted by few minutes only:

• Speed and altitude profiles can be assumed to stay unchanged
compared to the original route.

• Wind may change slightly due to different flight time, however
the influence is marginal and therefore negligible.

• Trajectories are as efficient as the initial trajectories.

• New trajectories can be calculated by decreasing/increasing
times, no new profile needs to be calculated. Thus, prediction
of trajectories is much faster.

Trying to adjust all trajectories of a scenario to get the optimum
solution is too complex even with very fast conflict detection and
avoidance algorithms. Therefore, intelligent pre-selection of aircraft
is necessary.

Figure 5.4 demonstrates the high traffic density. It contains
Frankfurt/Main traffic with 1365 flights only (i. e. 4.1 %), extracted

180 CHAPTER 5. 4D CONFLICT RESOLUTION

from the European scenario. The coordinate system is time above
latitude and longitude. The plot shows the whole day of traffic,
with midnight on ground level and the end of day as upper delimiter.
Trajectories are drawn in blue, with the conflicting segments in
red. Figure 5.5 shows a close-up of the same data, scaling the
time-axis by factor 20 and moving the ground layer to t = 40 000 s.
Since aircraft always climb when flying in XYT-notation, the flight
direction is directly visible, and type of conflicts can directly be
extracted from the illustration.

Figure 5.4 – Flights from/to Frankfurt-Main as XYT-Diagram 24h

5.4.1.1 Global Algorithm

The global algorithm moves trajectories in time in order to reduce
scenario’s conflict count. First of all, conflicts of the scenario are
sorted chronologically. Cycling through all conflicting objects, time
shifts are implemented on the corresponding trajectories using steps
of 10 seconds up to a maximum shift time, e. g., 10 minutes. Af-
terwards, the trajectories are probed against the complete scenario.
As soon as a conflict is solved by the shifting operation and the
total number of conflicts for the corresponding flight is also reduced,
the solution is considered to be the new trajectory for this flight.

5.4. TIME-BASED RESOLUTION 181

Figure 5.5 – Flights from/to Frankfurt-Main as XYT-Diagram
around Noon

5.4.1.2 Recursive Algorithm

Also the recursive algorithm tries to solve conflicts chronologically.
Conflicting aircraft are moved in time in steps of 5 s in order to re-
solve the conflict. Having already applied the global algorithm, this
will typically not produce a proper solution because it is basically
the same procedure as above described global conflict solution algo-
rithm except from the finer granularity of 5 s. The main difference
is the handling of generated conflicts. Since the conflict detection
algorithm validates the whole trajectory for conflicts, follow-up
conflicts are well known for each probe trajectory.

Probe trajectories generating more follow-up conflicts than hav-
ing solved before are skipped by the global algorithm. In contrast,
the recursive algorithm validates if generated follow-up conflicts can
be avoided by time shift. As soon as conflict with a new aircraft
arises this aircraft is also shifted by 5 s in the appropriate direction.
Thus, that new conflict is immediately solved by re-establishing the
original distance. Since this might produce another conflict with
another aircraft, this algorithm is performed recursively and might
move several aircraft simultaneously. The recursion is stopped at a

182 CHAPTER 5. 4D CONFLICT RESOLUTION

Arrival 1

Arrival 2

Arrival 3 Arrival 4 Arrival 5Arrival 0

Arrival 1 Arrival 2 Arrival 3 Arrival 4 Arrival 5Arrival 0

Arrival Slots

Figure 5.6 – Solving Conflicts Recursively

predefined depth (e. g., 10). Since moving an aircraft by 5 s might
produce several conflicts all along the whole trajectory, recursive
conflict resolution may become computational complex for high
density scenario. As soon as a conflict cannot be resolved with the
given recursion depth, disadvantageous operations are undone.

Figure 5.6 shows the general idea using the example of an arrival
ladder. Above the arrival slot ladder, the conflict is displayed. Ar-
rival 2 is in conflict with arrival 1. However, due to bad distribution
of arrival 3 and arrival 4, there is no free slot for arrival 2. The
described algorithm delays arrival 2 until detecting a new conflict
with arrival 3. Since arrival 3 is the first aircraft producing a new
conflict, it is also delayed. This produces another conflict between
arrival 3 and arrival 4. By delaying all three arrivals furthermore, a
solution can be found that is depicted below the arrival slot ladder.
The solution implies that delaying the mentioned flights does not
generate new conflicts somewhere else.

If delaying arrival 3 had generated a new conflict at its departure
or in its en-route segment, the corresponding successor also would
have been delayed.

Summarizing, this algorithm does not only focus on aircraft in
conflict situations but also shifts aircraft non-involved in conflicts
in order to make room for conflict solutions.

Furthermore, this algorithm implements a shared conflict reso-
lution when possible. If no solution can be found for arrival 2
in fig. 5.6, the flight is nevertheless delayed as much as possible
without creating new conflicts. Thus, arrival 2 can already solve

5.5. DECONFLICTING OPTIMIZED TRAFFIC 183

one part of the conflict. The remaining part of the conflict can be
potentially solved by bringing forward arrival 1.

5.4.2 Flight Duration Adaptation

Another mean of solving conflicts time-based is changing the du-
ration of flight. Due to the assumption that the initial flight’s
efficiency is optimized, this degrades the performance. However,
if traffic density is too high, constant flight duration constrains
the number of solvable conflicts. In order to be still as efficient as
possible, small adaptations should be preferred.

Flight duration adaptations should also take into account:

• Overall flight duration: long haul flights can handle higher
adaptations than short haul flight.

• Aircraft model: some aircraft have a tight flight envelope
regarding speed. Others allow changing speed in a bigger
interval.

• Aircraft’s efficiency: concerning global efficiency, it is more
efficient to penalize efficient aircraft, and allow less efficient
aircraft to fly their optimum route. However, this would
privilege inefficient aircraft which does not sound like a fair
idea. A well balanced trade-off between the KPAs needs to
incorporate access and equity to ensure overall fairness.

5.5 Deconflicting European’s Opti-
mized Traffic

This section describes deconfliction trials based on the European
traffic sample described in section 4.2.2 on page 139. Figure 5.7
shows the conflicts of the optimized scenario where each aircraft
flies its preferred route. Conflicts are illustrated by red trajectory
segments. Thus, short conflicts (e. g., rectangular intersections) are
rather small, while two aircraft sharing the same route with a too
small time offset are quite long.

184 CHAPTER 5. 4D CONFLICT RESOLUTION

Figure 5.7 – 29k Conflicts in European Sample

The statistics in fig. 5.8 show that at least 9036 aircraft are free
of conflict. 9181 aircraft have one single conflict on their gate-to-
gate route. On average, a conflicting aircraft violates the separation
to 2.4 other flights. This proves the importance of probing whole
flights when solving conflicts.

The single flight generating 21 conflicts is non-experimental and
non-military. The Airbus A321 leaves Lisbon around 5 o’clock in
the morning with destination Munich. Only the cruise flight level
is striking with FL344, provoking conflicts with aircraft in FL340
and FL350.

As an airport example, fig. 5.9 shows the situation in and above
Munich. Also other big airports are visible in the background having
dense concentrations of conflicts. As explained before, different
conflict types can be solved in different ways. Therefore, conflicts
are classified as shown in table 3.5 on page 120.

The distribution of conflicts to phases of flight is depicted in
fig. 5.10. Even if nearly half of all conflicts are en-route, the
conflicts in the vicinity of airports are more severe in terms of
resolution. Since original departure times are taken into account

5.5. DECONFLICTING OPTIMIZED TRAFFIC 185

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

90
36

91

81

60
45

38

69

22
89

12

92

69
8

32
6

16
5

83

45

17

10

7
4

0 1 0 0 0 0 1

N
um

be
r o

f a
irc

ra
ft

Number of conflicts

Figure 5.8 – Conflicts per Flight

Figure 5.9 – Conflicts in Vicinity of Munich (Example)

186 CHAPTER 5. 4D CONFLICT RESOLUTION

7994

1150

6467

13375

Arrival
Departure
 Arr/Dep
Other

Figure 5.10 – Conflicts by Flight Phase

when optimizing the scenario, flights are separated at the departure
runway threshold and thus the number of departure conflicts is low.
Having departure conflicts at all can be reasoned by:

• Misinterpreted departure runways from the original data.
Especially departures (and also arrivals) from parallel runways
are difficult to distinguish.

• Inaccurate data with insufficient resolution.

• Too conservative conflict metrics. ICAO (2007) defines special
procedures for, e. g., parallel or near-parallel runways (chapter
6.7: Operations on Parallel or Near-Parallel Runways) allow-
ing a separation below 3 NM. This accounts for departure
and arrival traffic.

Arrival and departure/arrival conflicts are as expected because
arrival times changed with more direct routes and optimized speed
profiles.

Depending on a conflict’s classification different solution methods
can be applied. As described before, there are obvious restrictions
for conflict resolution close to runway threshold:

• Since the threshold height is fixed, it is not possible to provide
a vertical solution.

• Lateral solution is feasible only for airports with multiple
runways and when the arrival runway is not fixed.

5.5. DECONFLICTING OPTIMIZED TRAFFIC 187

• Time-based solution is the most promising way to solve con-
flicts on the thresholds.

The limited possibilities for conflict resolution at the runway thre-
sholds advises to solve threshold conflicts first using time-based
shifting of trajectories as described in section 5.4.1.1.

5.5.1 Airport-Focused Conflict Resolution

A significant reduction of conflicts already can be reached with a
maximum time shift of [-30 s, +30 s]. The number of airport located
conflicts reduces to ∼64 %. Figure 5.11 depicts the remaining
conflicts for each category. Even though the algorithm focuses on
conflicts in airport vicinity, also en-route conflicts are reduced as a
spin-off from trajectory movement.

5670
525

3757

11881

Arrival
Departure
 Arr/Dep
Other

Figure 5.11 – Conflicts after
Shift of ±30 seconds

791 97 484

7253

Arrival
Departure
 Arr/Dep
Other

Figure 5.12 – Conflicts
after Shift of ±10 minu-
tes

Allowing a time shift of [-10 min, +10 min], airport conflicts are
reduced to ∼9 % (fig. 5.12), still without touching the scenario’s
efficiency. Figure 5.13 illustrates how the number of airport related
conflicts can be reduced with the corresponding maximum allowed
time offset. The top of the blue bars represents the number of
remaining airport-related conflicts.

Applying the recursive time shift described in section 5.4.1.2,
conflicts at the airport can be further reduced to ∼6 % of initial
airport conflicts (fig. 5.14) with a maximum recursion depth of 10.

188 CHAPTER 5. 4D CONFLICT RESOLUTION

0

5000

10000

15000

20000

25000

30000

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

N
um

be
r o

f C
on

fli
ct

s

Maximum Time-Offset in Seconds

Other Arr/Dep Departure Arrival

Figure 5.13 – Airport-Focused Reduction in Relation to Time-Shift

452 81
410

6305

Arrival
Departure
 Arr/Dep
Other

Figure 5.14 – Recursive Op-
timization Level 10

404
59
366

6132

Arrival
Departure
 Arr/Dep
Other

Figure 5.15 – Recursive Op-
timization Level 20

Figure 5.15 shows the results for an extended recursion depth of 20
leaving 829 remaining conflicts close to airports.

5.5.2 Global Conflict Resolution

For a global conflict resolution, all conflicting trajectories are probed
by movement in time without focusing on airport conflicts. Starting
scenario is the outcome from the airport-related conflict resolution

5.5. DECONFLICTING OPTIMIZED TRAFFIC 189

described before. In order to avoid creation of new airport related
conflicts as a possible side-effect from multiple en-route resolutions
a weighting of conflicts is introduced. Therefore, airport-related
conflicts are defined to be 10 times more severe than en-route
conflicts. This ensures that no trade-off is done between en-route
and airport conflicts in favor of en-route conflicts. In contrast,
the weighting factor even supports solving further airport-related
conflicts with the trade-off of generating new en-route conflicts.

0

1000

2000

3000

4000

5000

6000

7000

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

N
um

be
r o

f C
on

fli
ct

s

Maximum Time-Offset in Seconds

Other Arr/Dep Departure Arrival

Figure 5.16 – Global Reduction in Relation to Time-Shift

The progress of the global time shifting is shown in fig. 5.16. The
total number of conflicts can be reduced drastically. The weighting
of conflicts does not only preserve resolutions for airport related
conflicts but even allows further reduction. The distribution of
conflicts with a time shift of ±10 minutes is depicted in fig. 5.17.
After applying the recursive algorithm with a maximum recursion
depth of 20, the final distribution shown in fig. 5.18 is achieved.
Thus, initially ∼29 k conflicts can be reduced to 1647 without
decreasing aircraft’s efficiency.

190 CHAPTER 5. 4D CONFLICT RESOLUTION

347
26

181 1470
Arrival
Departure
 Arr/Dep
Other

Figure 5.17 – Conflicts after
Global Shift of ±10 minutes

316
23

156 1152

Arrival
Departure
 Arr/Dep
Other

Figure 5.18 – Global Recur-
sion Optimization Level 20

5.5.3 Resolution of En-Route Conflicts

En-route conflicts can be reduced further with lateral and vertical
maneuvers. Due to the weighting of airport versus en-route conflicts
this even further reduces the number arrival conflicts. The result
after lateral and vertical resolution leaving less than 500 conflicts is
shown in fig. 5.19.

319
23
144 10

Arrival
Departure
 Arr/Dep
Other

Figure 5.19 – Conflicts after
Lateral and Vertical Resolu-
tion

Figure 5.20 – Very Short
En-route Conflict in Red

Obviously, not all conflicts are solvable with the algorithms
applied. Figure 5.20 shows one example for a remaining en-route
conflict. Flight DLRLC departed from Paris-Charles-de-Gaulle, is
still in climb and heads for the United States. Flight DLR9MW
departed from London-Stansted, already reached cruise FL370, and
heads for Murcia-San Javier. Both flights have a conflict according
to the selected conflict metrics for as short as 0.7 seconds. The
closest point of approach is reached when DLR9MW passed the
path intersection

5.5. DECONFLICTING OPTIMIZED TRAFFIC 191

Figure 5.21 – Remaining Conflicts

All remaining conflicts are depicted in fig. 5.21. Conflicts are
concentrating on major European airports like Paris-Charles-de-
Gaulle, Amsterdam Schiphol, London-Heathrow, Rome-Fiumicino,
Frankfurt Main, Zurich, and Munich Franz Josef Strauss. Most
of the mentioned airports have a parallel or near-parallel runway
system allowing reduced separation for parallel approaches and
departures. Thus, at least some of the remaining conflicts are no
conflicts in real life thanks to special operations allowing closer
separation.

Since this work focuses on conflict detection and resolution
while the exact specification of a conflict is done by the user by the
external conflict function, this adaptation is not handled here.

Furthermore, not all effort was put yet into solving conflicts.
One parameter not adapted yet is the flight duration. Thus, trying
to solve an arrival conflict by delaying an arrival by 10 seconds

192 CHAPTER 5. 4D CONFLICT RESOLUTION

relies on the freedom to simultaneously delay the departure by also
10 seconds so far. Allowing to change the flight duration offers
a good potential to solve the remaining conflicts. However, the
aforementioned improvement on conflict specification should be
done first in order to guarantee that a conflict-free solution exists
in terms of airport load.

In order to get a conflict free scenario for the 4DCo-GC project,
another conflict resolution method was applied. The remaining 496
conflicts were solved by flight cancellation. Although deletion of
one aircraft from each conflict reduces the total number of aircraft
to 32 573, it ensures a still big and conflict-free scenario.

Chapter 6
Verification and Validation

This chapter describes a verification and validation of the software
module developed in this work. According to Boehm (1979), vali-
dation and verification formulate different questions concerning the
quality of a software project:

• Validation: "Are we building the right product?"

• Verification: "Are we building the product right?"

Since the product generated in this work was not created according
to explicitly defined product requirements it is nevertheless difficult
to distinguish between verification and validation. The development
of the NDMap started with the rough idea of subdividing airspace in
all 4 dimensions in order to allow efficient conflict detection. While
the basic concept remained, promising results with big scenarios led
to an extensive usage in projects all formulating their own require-
ments. Verification (or according to Popper (1974) falsification) of
the software is usually done on programming via testing software
invariants.

In order to validate that the software is reasonable for its opera-
tional purpose, several use cases are checked below. Each use case
contains the scenario description in a Keyhole Markup Language

193

194 CHAPTER 6. VERIFICATION AND VALIDATION

(KML) like style1, a screenshot showing the result, and a printout
from the corresponding NDMap object. All scenarios are completely
fictional and do not represent reality. The trajectories are artificial
and do not necessarily take aircraft performance parameter into
account. Conflict detection is done with the aforementioned metrics
of 5 NM lateral and 1000 ft vertical.

6.1 Nominal Case

The scenario described in listing 6.1 defines one trajectory from West
to East at 50° latitude and three additional trajectories crossing
the first in different angles. Figure 6.1 depicts the resulting three
conflicts. As expected, the rectangular intersection results in a
short conflict, while the most pointed intersection has a much
bigger extension.

Listing 6.2 shows the corresponding NDMap output.
Thus, the NDMap object uses 119.5 KiB of memory with a total

number of 415 generated tiles. Average time to add a trajectory was
0.48 ms. Three conflicts were detected with duration from 13.9 s to
57.5 s.

6.2 Pseudo-Parallel Case

The scenario described in listing 6.3 defines two trajectories going
exactly from South to North with a constant longitudinal distance
of 0.1°. Both trajectories start at the Equator where a tenth of a
degree approximates conflict-free 6 NM. Going further to the North,
the corresponding distance to a tenth of degree decreases, and
therefore results in a conflict beginning at the latitude where cos ϕ =
5/6. Thus, the conflict should start at arccos(5/6) = 33.56° =
33°33.6′ on a sphere. However, the implementation uses Vincenty’s
formula based on WGS84 ellipsoid where the Equatorial radius
is slightly bigger compared to common sphere models (compare

1Note that altitudes are defined in meters in KML but converted to feet in
the NDMap, latitudes and longitudes are converted from degree to radian

6.2. PSEUDO-PARALLEL CASE 195

Listing 6.1 – Nominal Case Scenario

<Placemark id="EASTWEST"> <name>EASTWEST</name> <
coordinates>

60,50,10000,10000
0,50,10000,16000
</coordinates> </Placemark>

<Placemark id="SOUTHNORTH"> <name>SOUTHNORTH</name> <
coordinates>

10,0,10000,10000
10,60,10000,16000
</coordinates> </Placemark>

<Placemark id="DEG45"> <name>DEG45</name> <coordinates>
61,0,10000,9900
1,60,10000,15900
</coordinates> </Placemark>

<Placemark id="DEG10"> <name>DEG10</name> <coordinates>
28,45,10000,12100
-10,55,10000,18100
</coordinates> </Placemark>

196 CHAPTER 6. VERIFICATION AND VALIDATION

Listing 6.2 – Nominal Output

TrajectoryMap containing 4 trajectories 0 polygons 4D
incl. time,

Pen: 399 FlyBy: 243
Sep: (0.001454441043, 0.001454441043, 1000, 90)
119.5 KByte, Add: 0.4849243164 ms
0:1, 1:2, 2:2, 3:4, 4:10, 5:11, 6:18, 7:56, 8:29,

9:31, 10:65, 11:67, 12:65, 13:54, [=415];
3 conflicts:

1 t[14993.1, 15007] between EASTWEST/Crs and SOUTHNORTH
/Crs at (0.1745241984, 0.872673367, 32808.39895,
15000.1)(Other)

2 t[14891.7, 14908.3] between DEG45/Crs and EASTWEST/
Crs at (0.1920385843, 0.8726384604, 32808.39895,
14899.7)(Other)

3 t[15071.3, 15128.8] between DEG10/Crs and EASTWEST/
Crs at (0.1570368765, 0.8726689937, 32808.39895,
15100.3)(Other)

Figure 6.1 – Four Trajectories with Conflicts

6.2. PSEUDO-PARALLEL CASE 197

Listing 6.3 – Pseudo-Parallel Scenario

<Placemark id="EAST"> <name>EAST</name> <coordinates>
10,0,10000,10000
10,60,10000,16000
</coordinates> </Placemark>

<Placemark id="WEST"> <name>WEST</name> <coordinates>
9.9,0,10000,10000
9.9,60,10000,16000
</coordinates> </Placemark>

Listing 6.4 – Pseudo-Parallel Output

TrajectoryMap containing 2 trajectories 0 polygons 4D
incl. time,

Pen: 5014 FlyBy: 1661
Sep: (0.001454441043, 0.001454441043, 1000, 90)
1.1 MByte, Add: 7.225585938 ms
0:1, 1:2, 2:1, 3:3, 4:5, 5:9, 6:18, 7:66, 8:64, 9:134,

10:542, 11:459, 12:854, 13:1574, [=3732];
1 conflicts:

1 t[13380.1, 16000] between EAST/Arr and WEST/Arr at
(0.173660256, 1.047040501, 32808.39895, 15999.1)(
Arrival)

section 2.6.1). Therefore, based on the more precise WGS84 model,
the conflict starts at ∼33°50′ and remains active until reaching end
of trajectories.

Figure 6.2 depicts the resulting conflict. Listing 6.4 holds the
results from the corresponding NDMap.

As discussed earlier, nearly identical trajectories cause creation
of many nodes, 3732 in total. Also the memory usage of 1.1 MiB
and detection times of 7.2 ms are above typical average.

198 CHAPTER 6. VERIFICATION AND VALIDATION

Figure 6.2 – Pseudo-Parallel Trajectories

6.3 Conflict Jitter Case

This use-case is supposed to validate the anti-jitter functionality
described in section 3.5.3. Therefore, the scenario described in
listing 6.5 defines two trajectories flying mostly parallel from West
to East, one with a constant latitude of 50° while the other one
varies between 49.9° and 49.95°. A tenth of degree latitude approx-
imates conflict-free 6 NM, while a twentieth degree approximates to
conflicting 3 NM. As defined by the input file, conflict distance is
underrun three times. However, the first two conflicts are merged
into one because the distance in-between is too short. The third
conflict is too far away to get merged.

Figure 6.3 depicts the resulting conflicts. Listing 6.6 shows the
results from the corresponding NDMap.

As experienced with the pseudo parallel case, conflict detection
is rather slow and memory consuming due to nearly identical routes.
The first conflict starting at t =10 133 s is the union of the first two
separation violations.

6.3. CONFLICT JITTER CASE 199

Listing 6.5 – Jitter Scenario

<Placemark id="NORTH"> <name>NORTH</name> <coordinates>
0,50,10000,10000
60,50,10000,16000
</coordinates> </Placemark>

<Placemark id="SOUTH"> <name>SOUTH</name> <coordinates>
0,49.9,10000,10000
1,49.9,10000,10100
2,49.95,10000,10200
3,49.95,10000,10300
4,49.9,10000,10400
5,49.95,10000,10500
6,49.95,10000,10600
7,49.9,10000,10700
11,49.9,10000,11100
12,49.95,10000,11200
13,49.95,10000,11300
14,49.9,10000,11400
60,49.9,10000,16000
</coordinates> </Placemark>

200 CHAPTER 6. VERIFICATION AND VALIDATION

Listing 6.6 – Jitter Output

TrajectoryMap containing 2 trajectories 0 polygons 4D
incl. time,

Pen: 654 FlyBy: 434
Sep: (0.001454441043, 0.001454441043, 1000, 90)
184.0 KByte, Add: 1.068359375 ms
0:1, 1:2, 2:1, 3:2, 4:3, 5:6, 6:13, 7:44, 8:84, 9:22,

10:41, 11:66, 12:228, 13:126, [=639];
2 conflicts:

1 t[10133.6, 10666.5] between NORTH/Crs and SOUTH/Crs
at (0.05229006584, 0.8722282946, 32808.39895,
10299.6)(Other)

2 t[11133.5, 11366.4] between NORTH/Crs and SOUTH/Crs
at (0.2095267825, 0.8722282946, 32808.39895,
11200.5)(Other)

Figure 6.3 – Jitter in Conflict

6.4. SINGULARITY CASE 201

Listing 6.7 – Pole Scenario

<Placemark id="POLE1"> <name>POLE1</name> <coordinates>
-90,50,10000,10000
-90,90,10000,16000
</coordinates> </Placemark>

<Placemark id="POLE2"> <name>POLE2</name> <coordinates>
90,50,10000,10000
90,90,10000,16000
</coordinates> </Placemark>

Listing 6.8 – Pole Output

TrajectoryMap containing 2 trajectories 0 polygons 4D
incl. time,

Pen: 1380 FlyBy: 3317
Sep: (0.001454441043, 0.001454441043, 1000, 90)
803.2 KByte, Add: 4.845458984 ms
0:1, 1:3, 2:4, 3:6, 4:8, 5:12, 6:52, 7:100, 8:99,

9:204, 10:413, 11:609, 12:1006, 13:272, [=2789];
1 conflicts:

1 t[15993.8, 16000] between POLE1/Arr and POLE2/Arr at
(0, 1.570773099, 32808.39895, 15999.8)(Arrival)

6.4 Singularity Case

The scenario described in listing 6.7 defines two trajectories flying
exactly from South to North, starting at a latitude of 50° and ending
at the North Pole 90°. The trajectories are located on opposite
sides of Earth at longitudes of −90° and 90°. Both trajectories
reach North Pole in same altitudes at the same time.

Figure 6.4 depicts the resulting conflict above North Pole. The
corresponding NDMap output is shown in listing 6.8.

202 CHAPTER 6. VERIFICATION AND VALIDATION

Figure 6.4 – Conflict at North Pole

As already explained in section 4.1.1 the optimal representation
contains only one longitudinal tile at the Poles. Due to the tree
structure each tile contains its children, and multiple tiles are
generated close to the Poles. Thus, the NDMap generates a rather
high total number of 2789 nodes. However, the conflict at the North
Pole is detected reliably.

6.5 Discontinuity Case

The scenario described in listing 6.9 defines three trajectories. Two
aircraft fly exactly from South to North at longitudes 179.98° East
and West respectively. The third trajectory intersects the dateline
at the Equator.

Figure 6.5 depicts the two resulting conflicts. The pseudo parallel
routes are in conflict constantly. The East-West trajectory is in
conflict with the flight at longitude 179.98° East. The NDMap
output is shown in listing 6.10.

6.5. DISCONTINUITY CASE 203

Listing 6.9 – Discontinuity Scenario

<Placemark id="WEST"> <name>WEST</name> <coordinates>
-179.995,-50,10000,10000
-179.995,50,10000,15950
</coordinates> </Placemark>

<Placemark id="EAST"> <name>EAST</name> <coordinates>
179.995,-50,10000,10000
179.995,50,10000,15950
</coordinates> </Placemark>

<Placemark id="EASTWEST"> <name>EASTWEST</name> <
coordinates>

178,1,10000,12500
-178,-1,10000,13500
</coordinates> </Placemark>

Listing 6.10 – Discontinuity Output

TrajectoryMap containing 3 trajectories 0 polygons 4D
incl. time,

Pen: 4041 FlyBy: 8300
Sep: (0.001454441043, 0.001454441043, 1000, 90)
2.3 MByte, Add: 5.306966146 ms
0:1, 1:4, 2:6, 3:13, 4:17, 5:29, 6:55, 7:102, 8:102,

9:392, 10:788, 11:1410, 12:2679, 13:2546, [=8144];
2 conflicts:

1 t[10000, 15950] between EAST/Dep and WEST/Dep at (0,
-0.8726646304, 32808.39895, 10000)(Departure)

2 t[12975.9, 12980.9] between EAST/Crs and EASTWEST/Crs
at (3.140681647, 0.0009402631346, 32808.39895,

12978.9)(Other)

204 CHAPTER 6. VERIFICATION AND VALIDATION

Listing 6.11 – Internal Representation of EASTWEST Trajectory

Trajectory for EASTWEST(6 Points)
(3.106686115, 0.01745329238, 32808.39895, 12500)
(3.14158637, 3.141596834e-06, 32808.39895, 12999.91)
(3.14158637, 3.141596834e-06, 1e+30, 12999.911)
(-3.14158637, -3.141596834e-06, 1e+30, 13000.089)
(-3.14158637, -3.141596834e-06, 32808.39895, 13000.09)
(-3.106686115, -0.01745329238, 32808.39895, 13500)

Figure 6.5 – Conflicts at Date Line

As experienced earlier, the NDMap generates a rather high
amount of nodes due to parallelism of EAST and WEST. Listing 6.11
shows a dump of the internal EASTWEST trajectory. The first
and last points are the original points of the trajectory, while points
2-5 are automatically generated. Point 2 and point 5 hold the
interpolated positions just before and after passing the date-line.
Point 3 and point 4 hold the connection between point 2 and point 5
not lying in the NDMap’s interval at an altitude of 1030 ft.

6.6. POLYGON VOLUME CASE 205

6.6 Polygon Volume Case

The scenario described in listing 6.12 defines three objects. Two
flights are defined by trajectories. DLR1 departs from Nuremberg
with direction South-East. DLR2 crosses the Southern part of
Germany from West to East.

The third object called Germany is a polygon volume approxi-
mating the German borders. The scenario importer uses minimum
and maximum altitudes for a volume object as lower and upper
boundaries. Thus, the German polygon has a lower boundary of
8000 meters and goes up to 11 300 meters.

Figure 6.6 depicts the three resulting conflicts. The trajectories
are not in conflict with each other. DLR1 has a conflict between
8000 and 11 300 meters with the polygon volume. DLR2 has two
conflicts with the German polygon interrupted by the non-German
part of Lake Constance. The NDMap output is shown in listing 6.13.

The NDMap generates a rather low amount of nodes (35), uses
10.1 KiB of memory only. The average detection time per object
is 0.11 ms. This good performance is reached by means of the full
containment technique described in section 3.3.5.

Adding the lines from listing 6.14 to the German polygon volume
makes the volume move in time. The polygon volume appears at
time zero (i. e., midnight). At time 36 000 s (i. e., ten o’clock) the
polygon is supposed to be 5000 meters lower. At noon (43 200 s),
the polygon is still 5000 meters below start condition. Thereafter,
the polygon is no more valid and disappears. Between the given
times, the polygon state is linearly interpolated. Thus, the whole
polygon descends continuously between midnight and ten o’clock
and stays there until noon.

This modification has two effects that are visible in the NDMap
output (listing 6.15). The volume is already below DLR2 when it
enters the polygon’s boundaries laterally. Therefore, there are no
more conflicts with DLR2. The conflict with DLR1 starts earlier
because of the reduced altitude and has a shorter duration because
the aircraft climbs while the volume descends.

206 CHAPTER 6. VERIFICATION AND VALIDATION

Listing 6.12 – Polygon Volume Scenario

<Placemark id="DLR1">
<name>DLR1</name>
<coordinates>
11.103056,49.493333,548.6,303.0
12.603611,49.085278,9022.1,973.0
13.360278,48.750833,11338.6,1257.0
13.490833,48.659444,11704.3,1318.0
13.606667,48.561944,11856.7,1379.0
15.108611,47.255000,11887.2,2195.0
</coordinates>

</Placemark>
<Placemark id="DLR2">

<name>DLR2</name>
<coordinates>
5.544444,48.245278,11277.6,3957.0
15.106944,46.899167,11277.6,6733.0
</coordinates>

</Placemark>
<Placemark id="GERMANY">

<name>GERMANY</name>
<LinearRing>
<coordinates>

6.499999, 54.999989,11300
7.999998, 54.999989,8000
8.333332, 55.066655
...
[many points skipped to increase readability]
...
6.499999, 53.666656
6.499999, 54.999989

</coordinates>
</LinearRing>

</Placemark>

6.6. POLYGON VOLUME CASE 207

Listing 6.13 – Polygon Volume Output

TrajectoryMap containing 2 trajectories 1 polygon 4D
incl. time,

Pen: 52 FlyBy: 0
Sep: (0.001454441043, 0.001454441043, 1000, 90)
10.1 KByte, Add: 0.1146647135 ms
0:1, 1:3, 2:4, 3:5, 4:6, 5:16, [=35];
3 conflicts:

1 t[892.1825376, 1252.267736] between DLR1/Clb and
GERMANY/Poly at (0.2168154297, 0.8575587731,
26246.71916, 892.1825376)(Polygon)

2 t[4673.562491, 4806.546029] between DLR2/Crs and
GERMANY/Poly at (0.1398495709, 0.8359744606,
36999.99872, 4673.562491)(Polygon)

3 t[5140.595825, 5807.581754] between DLR2/Crs and
GERMANY/Poly at (0.1679282864, 0.8320218268,
36999.99872, 5140.595825)(Polygon)

Figure 6.6 – Conflicts with Germany Volume

208 CHAPTER 6. VERIFICATION AND VALIDATION

Listing 6.14 – Trajectory for German Polygon Volume

<LineString>
<coordinates>

0,0,0,0
0,0,-5000,36000
0,0,-5000,43200

</coordinates>
</LineString>

Listing 6.15 – Moving Polygon Volume Output

TrajectoryMap containing 2 trajectories 1 polygon 4D
incl. time,

Pen: 46 FlyBy: 0
Sep: (0.001454441043, 0.001454441043, 1000, 90)
8.6 KByte, Add: 2.865722656 ms
0:1, 1:2, 2:2, 3:3, 4:6, 5:16, [=30];
1 conflicts:

1 t[882.6, 1231.3] between DLR1/Dep and GERMANY/Poly at
(0.2164564936, 0.857656381, 25865.7097, 883)(

Polygon)

Chapter 7
Conclusions and Outlook

This document describes a new and high performance method for
conflict detection between multi-dimensional objects. Allowing
to model problems with an arbitrary number of dimensions, the
proposed algorithm offers a wide range of applications. The basic
idea of the algorithm is an N -dimensional bisection of (air)space
until reaching a given separation size. In order to achieve a good
performance regarding calculation times and memory usage, several
techniques were applied:

• Special handling of a selectable common time/reference dimen-
sion reduces overall memory usage and increases performance.

• Instead of considering neighborhood of tiles, the algorithm
distinguishes between fly-through and fly-by objects already
when building the tree.

• The algorithm is optimized to detect symmetric situations
once only. This especially applies for fly-by situations where
one fly-by object is already omitted when building the tree.

• Large polygons are optimized by the full containment check
in order to avoid unnecessary subdivisions.

209

210 CHAPTER 7. CONCLUSIONS AND OUTLOOK

• Conflict detection is sped up by checking bounding boxes first.

• Monotony of dimensions is used beneficially, for example, by
applying binary search.

• Trials with different input value balancing techniques did not
improve performance.

• If the user has a focus on a subset of objects, preselection func-
tionality of objects is provided increasing conflict detection
speed significantly.

• Running the algorithm on a system with low memory is facili-
tated by both static and dynamic memory saving mechanisms.

Conflict detection can be performed for N -dimensional trajecto-
ries and N -dimensional polygon volumes. Furthermore, a trajectory
can be assigned to a polygon volume in order to model a volume
movement. The result of the tiling algorithm is a list containing all
detected conflicts.

Furthermore, a mapping is described from Earth-coordinates
to the Cartesian coordinate system used in the tiling algorithm. A
special Earth mode implemented in the NDMap respects further
adaptations like non-uniform size of longitudes and avoidance of
singularity issues at Poles and date line.

Based on a German and European traffic scenario, performance
tests yield 1.6 ms detection time using 68 KiB per trajectory and
5 ms detection time using 120 KiB per trajectory respectively.

Based on these promising results, conflict resolution was per-
formed in a trial-and-error manner with 151 probes a second on
the European traffic sample. Since conflicts at the airports offer
limited possibilities for resolution (i. e., usually only time-based), a
focus was put onto solving airport related conflicts first.

Conflict solving was performed on an optimized European traf-
fic sample flying most direct routes with aircraft-optimized flight
profiles containing ∼29 000 conflicts initially. Allowing a maximum
time shift of ±10 minutes, conflicts were reduced to 1647 without
degrading aircraft’s efficiency. Applying lateral and vertical reso-

211

lution algorithms on the remaining conflicts, overall conflict count
can be reduced to 496.

Further freedom to solve conflicts lies in the adaptation of
flight times that are still untouched. However, a better modeling
of separation minima for arrival and departure traffic should be
integrated first in order to respect, for example, relaxed separation
requirements in independent parallel runway operations.

One main goal at implementation level was to keep the solution
as generic as possible. This also applies for further enhancements.
Thus, parallel runway and in-trail detection for wake-turbulence
separation should be possible without an underlying static runway
database. On the other hand, detection needs to be fast without
a significant downgrade of current conflict detection times. In
order to help the user with in-trail and independent parallel runway
situations, corresponding generic information shall be predicted
within the NDMap and provided to the external conflict function.
This could be implemented, for example, by means of an internal
3-dimensional NDMap holding latitude, longitude and bearing of
departure and arrival positions. As soon as a new departure or
destination does not collide with an entry in the NDMap a new
runway is generated.

Another more sophisticated option in terms of realism leaves the
generic approach and uses real world airport/runway information.
Integration of airport specific data should not be implemented in
the NDMap though, but should be provided by the external conflict
function. One method performing this in an automated way is
described by Geister (2012).

Expectations from the more accurate modeling close to airports
are an improved calculation of conflicts. Using real wake-turbulence
separation instead of 3 NM below 5000 ft increases the number of
conflicts. Since each pair of flights is forced already in the current
version to have 5 NM separation until diving below 5000 ft and
remaining route length to catch up is usually short, effects are
limited though. Using wake-turbulence separation instead of 5 NM
standard above 5000 ft for in-trail flights in the TRACON typically
decreases number of conflicts.

212 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Since many of the remaining conflicts are close to airports with
independent parallel runways, the number of remaining conflicts
is expected to decrease significantly with the implementation of
independent parallel runway separations.

Concerning the algorithm’s performance, improved data struc-
tures may be beneficial for storing relevant information. Especially
for big scenarios, the vector data type holding the conflicts seems
to be a bottleneck and decreases performance.

Another option to further increase performance is parallel pro-
cessing. Especially in the last decade, single CPU performance
increased moderately, only. In the same time period, the number of
processing cores increased significantly. In order to get performance
improvements from the increased number of cores, algorithms need
to be adapted to allow distribution on multiple CPUs.

In order to allow parallel processing without blocking of sema-
phores, multiple instances should handle different, non-overlapping
sub-spaces. One main instance could distribute trajectories or parts
of trajectories on a number of sub-space instances. One major
issue is the dynamic assignment of sub-spaces to process instances.
Without analyzing the traffic scenario prior conflict detection, it
is difficult to estimate a well balanced load distribution. Another
challenge is holding all information consistent across multiple in-
stances, especially when considering that the processing order may
be different from the input data sequence.

An easier to implement approach for distributing the algorithm
to multiple CPUs uses smaller sub-tasks, e. g., testing if an object
penetrates a given tile. Thus, multiple tiles can be checked at the
same time. When a tile necessitates subdivision, the 2N children
could be checked in parallel. However, tasks should have comparable
calculation effort, the management overhead gets more significant
with smaller tasks, and the high frequent synchronization may
further reduce expected benefits.

Especially the results from shrinking the root tile in section 4.5.6
illustrate that the proposed balancing algorithms still do not reach
the optimum. Although the issue is complex, further effort might
result in a beneficial input balancing.

213

Further research can also be spent on conflict resolution algo-
rithms. For example, a time-based conflict resolution adapting the
speeds is not integrated yet, but is beneficial especially for a more
tactical conflict resolution. However, current results illustrate that
improvement of separation definitions in the vicinity of airports
should be implemented first in order to concentrate on real conflicts
only.

Several past and ongoing projects at DLR already have proven
that this work is the technical enabler for conflict detection and
resolution on huge traffic scenarios. The high performance and
flexibility concerning support of different object types opens a new
field of applications. Thus, the NDMap will help to make future air
traffic more predictable, efficient, and environmental friendly.

214 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Chapter 8
Update after Disputation

Since the disputation took place ∼18 months after submission of
this thesis, several work proposed in the outlook already has been
performed when passing to press. Because most of the new features
confirm the high value of the presented algorithms, this chapter
gives a brief summary on what has been achieved since submission.

8.1 Conflict Metric

The conflict metric has been extended to cover parallel runway con-
figurations for approach mode as defined in section 2.4. Furthermore,
the dynamic wake turbulence separation has been implemented.
As a result, it was possible with the presented conflict resolution
algorithms to get the European scenario free of conflict.

Since resolution of the European scenario worked very well, I
furthermore extended the separation requirements from 5 NM to
6.5 NM, 8 NM, 10 NM, and even 12 NM. The idea was to use the
well known 5 NM as safety separation, and leave the remaining
space for allowed deviations from the trajectory. These allowed
deviations may be used pro-actively by the aircraft to optimize the

215

216 CHAPTER 8. UPDATE AFTER DISPUTATION

trajectory furthermore. They also give freedom when deviations
occur, e. g., due to a bad weather forecast.

Even with the increased separation requirements, generation
of a conflict free traffic scenario was always possible. Results
are summarized in table 8.1. The last three rows hold necessary
adaptations to get the optimized scenario resolved:

• The average Time Shift describes the average absolute time
shift each aircraft was shifted from its initial departure time;

• The average Add. Climb specifies how many extra feet each
aircraft has to climb compared to its initial route on average;

• The average Add. Dist states how many extra distance each
aircraft has to fly compared to its initial route on average.

More detailed information is available from Kuenz (2014).

Table 8.1 – Results from Trials with Increased Separation

Scenario

5 NM 6.5 NM 8 NM 10 NM 12 NM

Separation 5 NM 6.5 NM 8 NM 10 NM 12 NM
Freedom 0 NM 0.75 NM 1.5 NM 2.5 NM 3.5 NM
Conflicts 24 162 28 328 33 115 40 562 48 942

En-Route 11 137 15 303 20 088 27 534 35 912
Airport 13 025 13 025 13 027 13 028 13 030

Time Shift 93.9 s 120.8 s 143.4 s 192.2 s 200.2 s
Add. Climb 16.9 ft 40.8 ft 59.8 ft 159.2 ft 220.0 ft
Add. Dist. 3.7 m 68 m 137 m 1.3 NM 3.5 NM

8.2 Performance

Improved data structures have been integrated in the algorithm
especially increasing the conflict detection speed for large scenarios.
New links from objects to their conflicts increase coordination effort

8.2. PERFORMANCE 217

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
To

ta
lC

on
fli

ct
D

et
ec

ti
on

T
im

e(
s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories in Thousand

Detection Time
Memory Usage

Figure 8.1 – Improved Detection Times with New Data Structures
for Europe

slightly only, but increase significantly the speed to validate if the
conflict already exists. Furthermore, hash maps were added to find
objects much quicker than before. Figure 8.1 shows the increased
speed of the NDMap with improved data structures. With about
82 s the algorithm halves the original detection time. Even for the
smaller German traffic sample, the NDMap performs about 20 %
better, compare fig. 8.2.

218 CHAPTER 8. UPDATE AFTER DISPUTATION

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
ta

lC
on

fli
ct

D
et

ec
ti

on
T

im
e(

s)

M
em

or
y

U
sa

ge
(G

B
)

Number of Trajectories

Detection Time
Memory Usage

Figure 8.2 – Improved Detection Times with New Data Structures
for Geramy

Bibliography

Abam, M., M. Berg, S.-H. Poon, and B. Speckmann (2006). Ki-
netic collision detection for convex fat objects. In Y. Azar and
T. Erlebach (Eds.), Algorithms - ESA 2006, Volume 4168, pp.
4–15. Springer Berlin Heidelberg.

Adam, V. and R. Kohrs (1992). On board planning of 4D-
trajectories. AGARD CP 504, 16.1–16.12.

Basch, J., J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang
(1999). Kinetic collision detection between two simple polygons.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’99, Philadelphia, PA, USA, pp. 102–
111. Society for Industrial and Applied Mathematics.

Beckmann, N., H. P. Kriegel, R. Schneider, and B. Seeger (1990).
The r*-tree: an efficient and robust access method for points and
rectangles. In Proceedings of the 1990 ACM SIGMOD interna-
tional conference on Management of data - SIGMOD ’90, pp.
322.

Bentley, J. L. (1975). Multidimensional binary search trees used
for associative searching. Communications of the ACM 18(9),
509–517.

219

220 BIBLIOGRAPHY

Bentley, J. L. and T. A. Ottmann (1979). Algorithms for reporting
and counting geometric intersections. IEEE Transactions on
Computers C-28 (9), 643–647.

Birkmeier, B., B. Korn, and D. Kügler (2010, October). Sectorless
ATM and advanced SESAR concepts: Complement not contra-
diction. In 29th Digital Avionics Systems Conference.

Bode, S. and P. Hecker (2013, August). Efficient 4D trajectory
conflict detection for large scale atm simulations using bounding-
volume hierarchies and time-spatial indexing. In Proceedings of the
AIAA Modeling and Simulation Technologies (MST) Conference.

Boehm, B. (1979). Guidelines for verifying and validating software
requirements and design specifications. In Euro IFIP 79.

Boguhn, O. (2007). Internal Project Leiser Flugverkehr II. Technical
report, Institute of Aerodynamics and Flow Technology, DLR
Göttingen.

Central Intelligence Agency (2007). The CIA World Factbook.
United States.

Chazelle, B. (1988). A functional approach to data structures and
its use in multidimensional searching. SIAM J. Comput. 17,
427–462.

Chazelle, B. (1991). Triangulating a simple polygon in linear time.
Discrete & Computational Geometry 6, 485–524.

Cohen, J. D., M. C. Lin, D. Manocha, and M. Ponamgi (1995).
I-collide: An interactive and exact collision detection system for
large-scale environments. In In Proc. of ACM Interactive 3D
Graphics Conference, pp. 189–196.

Coming, D. S. and O. G. Staadt (2005). Kinetic sweep and prune
for collision detection. In F. Ganovelli and C. Mendoza (Eds.),
Workshop On Virtual Reality Interaction and Physical Simulation.

Czerlitzki, B. (1994). The experimental flight management system:
Advanced functionality to comply with atc constraints. Air Traffic
Control Quarterly Vol. 2(3), 159–188.

BIBLIOGRAPHY 221

Czerlitzki, B. and R. Kohrs (1994). 4D Flight Management -
Planungsfunktionen zur Einhaltung von Zeitvorgaben. ZFW
- Zeitschrift für Flugwissenschaften und Weltraumforschung 18,
Heft 1, 40–47.

de Muynck, R., T. Bos, A. Kuenz, C. Edinger, L. Rappich, and
S. Törner (2011). Real time ATC simulation of time based CDA
operations. In CEAS 2011.

Deutsches Institut für Normierung (1999, Oct). DIN ISO 9613-2:
Dämpfung des Schalls bei der Ausbreitung im Freien.

DFS Deutsche Flugsicherung (2011). Luftverkehr in Deutschland -
Mobilitätsbericht 2011.

Dobkin, D. P. and D. G. Kirkpatrick (1983). Fast detection of
polyhedral intersection. Theroretical Computer Science 27, 241–
253.

Douglas, D. and T. Peucker (1973). Algorithms for the reduction
of the number of points required to represent a digitized line or
its caricature. The Canadian Cartographer 10(2), 112–122.

Dougui, N., D. Delahaye, S. Puechmorel, and M. Mongeau (2010).
A new method for generating optimal conflict free 4D trajectory.
Proc 4th International Conference on Research in Air Transporta-
tion 4, 185–191.

Duong, V., E. Hoffman, L. Floc’hic, J.-P. Nicolaon, and A. Bossu
(1996). Extended flight rules (EFR) to apply to resolution of
encounters in autonomous airborne separation. http://www.a
sas-tn.org/library/asassworksdonesbysrdsbod/freer/fre
er/rules-02.pdf (March 2013), Boston.

Durand, N., J.-M. Alliot, and J. Noailles (1996). Automatic aircraft
conflict resolution using genetic algorithms. In Proceedings of
the 1996 ACM symposium on Applied Computing, SAC ’96, New
York, NY, USA, pp. 289–298. ACM.

Dworkin, P. and D. Zeltzer (1993). A new model for efficient
dynamic simulation. In Proceedings of the Eurographics Workshop
on Animation and Simulation, pp. 135–147.

222 BIBLIOGRAPHY

Edelsbrunner, H. and H. A. Maurer (1981). On the intersection of
orthongonal objects. Information Processing Letters 13, 177–181.

Ericson, C. (2005). Real Time Conflict Detection. Morgan Kauf-
mann.

Erzberger, H., T. A. Lauderdale, and Y.-C. Chu (2010). Automated
conflict resolution, arrival management and weather avoidance
for atm. In 27th Congress of the Internation Council of the
Aeronautical Sciences, Volume 27.

Erzberger, H., R. A. Paielli, D. R. Isaacson, and M. M. Eshow
(1997). Conflict detection and resolution in the presence of
prediction error. In Proc. 1st USA/Eur. Air Traffic Manage. Res.
Development Seminar, pp. 50–56.

Eurocontrol (2010). DDR reference manual. http://www.eur
ocontrol.int/services/demand-data-repository-ddr (Jan.
2013).

Eurocontrol (2011). Base of aircraft data (BADA) version 3.9.
http://www.eurocontrol.int/eec/public/standard_page/p
roj_BADA.html (Jan. 2013).

Eurocontrol (2012). Airborne collision avoidance system ii. http:
//www.eurocontrol.int/dossiers/acas-ii (Jan. 2013).

Federal Aviation Administration (2012). Implementation plan.
http://www.faa.gov/nextgen/media/ng2011_implementati
on_plan.pdf (Jan. 2013).

Federal Aviation Administration (2013). Next generation air trans-
portation system. http://www.faa.gov/nextgen (Jan. 2013).

Foudil, C., D. Noureddine, C. Sanza, and Y. Duthen (2009). Path
finding and collision avoidance in crowd simulation. In Journal
of Computing and Information Technology.

Fuchs, H., Z. M. Kedem, and B. F. Naylor (1980). On visible
surface generation by a priori tree structures. In SIGGRAPH ’80
Proceedings of the 7th annual conference on Computer graphics
and interactive techniques, pp. 124–133.

BIBLIOGRAPHY 223

Fuller, B. (1943, March). Life Presents R. Buckminster Fuller’s
Dymaxion World, pp. 41–55. Henry Luce.

Gargantini, I. (1982). Linear octrees for fast processing of three-
dimensional objects. Computer Graphics and Image Processing 20,
365–374.

Geister, D. (2012). Constraint Generierung für domänenspezifis-
che Modellierungssprachen. Ph. D. thesis, Leibniz Universität
Hannover.

Golas, A., R. Narain, S. Curtis, and M. C. Lin (2013). Hybrid long-
range collision avoidance for crowd simulation. IEEE Transactions
on Visualization and Computer Graphics 1, 29–36. Early Access.

Guibas, L. J. (2001). Kinetic data structures. In Chapman and
Hall/CRC (Eds.), Handbook of Data Structures and Applications,
pp. 23–1–23–18. Mehta, Dinesh P.; Sahni, Sartaj.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In SIGMOD ’84 Proceedings of the 1984 ACM SIG-
MOD international conference on Management of data, Volume
1984, pp. 47–57.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). A formal basis
for the heuristic determination of minimum cost paths. 4 (2),
100–107.

Hildum, D. W. and S. F. Smith (2004). Scheduling safe movement
of air traffic in crowded air spaces. The Knowledge Engineering
Review 27, 309–331.

Hopcroft, J. E., J. Schwartz, and M. Sharir (1983). Efficient detec-
tion of intersections among spheres. Internat. J. Robot Res. 2,
77–80.

Houthuys, P. (1987). Box sort, a multidimensional binary sorting
method for rectangular boxes, used for quick range searching.
The Visual Computer 3, 236–249.

ICAO (2002). Annex 10 to the convention on international civil
aviation: Aeronautical telecommunications. Technical report,
International Civil Aviation Organization.

224 BIBLIOGRAPHY

ICAO (2004a). Annex 14 to the convention on international civil avi-
ation: Aerodromes. Technical report, International Civil Aviation
Organization.

ICAO (2004b). Doc 9643: Manual on simultaneous operations on
parallel or near-parallel instrument runways (SOIR). Technical
report, International Civil Aviation Organization.

ICAO (2005). Doc 9854: Global air traffic management opera-
tional concept. Technical report, International Civil Aviation
Organization.

ICAO (2007). Doc 4444: Air traffic management. Technical report,
International Civil Aviation Organization.

ICAO (2008). Guidance on A380-800 wake vortex aspects. Technical
report, International Civil Aviation Organization.

Jardin, M. (2003). Real-time conflict-free trajectory optimization.
In 5th USA/Europe ATM R&D Seminar.

Jardin, M. (2005). Grid-based strategic air traffic conflict detection.
In AIAA Guidance, Navigation, and Control Conference and
Exhibit, San Francisco, California.

Jeck, R. K. (2002). Icing design envelopes (14 cfr parts 25 and
29, appendix c) converted to a distance-based format. Technical
report, Federal Aviation Administration.

jen Chiang, Y., J. T. Klosowski, C. Lee, and J. S. B. Mitchell
(1997). Geometric algorithms for conflict detection/resolution
in air traffic management. In Proceedings of the 36th IEEE
Conference on Decision and Control, Volume 2, pp. 1835–1840.

Joulia, A. and C. Le Tallec (2012). Aircraft 4D contract based
operation: The 4DCo-GC project. In 28th Congress of the Inter-
national Council of the Aeronautical Sciences.

Kelly, M., K. Gould, B. Pease, S. Winner, and A. Yen (1994).
Hardware accelerated rendering of CSG and transparency. In
SIGGRAPH’94 Proceedings of the 21st anual conference on Com-
puter graphics and interactive techniques, pp. 177–184.

BIBLIOGRAPHY 225

Kelly, W. E. and M. S. Eby (2000). Advances in force field con-
flict resolution algorithms. In AIAA Guidance, Navigation and
Control Conference and Exhibit.

Klosowski, J. T., M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan (1998). Efficient collision detection using bounding
volume hierarchies of k-dops. 4 (1), 21–36.

Koeners, J. and M. de Vries (2008). Conflict resolution support for
air traffic control based on solution spaces: Design and imple-
mentation. In Proc. IEEE/AIAA 27th Digital Avionics Systems
Conf. DASC 2008.

Kohrs, R. (1992). Planung von 4D-Trajektorien an Bord eines
Flugzeugs. DGLR Jahrbuch 2, 943–952.

Korn, B., C. Edinger, S. Tittel, D. Kügler, T. Putz, O. Hassa, and
B. Mohrhard (2009). Sectorless ATM — a concept to increase
en-route efficiency. In Proc. IEEE/AIAA 28th Digital Avionics
Systems Conf. DASC 2009.

Korn, B. and A. Kuenz (2006, Oktober). 4D FMS for increasing
efficiency of TMA operations. In Proc. IEEE/AIAA 25th Digital
Avionics Systems Conf. DASC 2006.

Kremer, H., W. Vertegaal, and R. Jansen (1999). Phare advanced
tools conflict probe - final report. Technical report, Programme
for Harmonised ATM Research in EUROCONTROL.

Kuenz, A. (2011). A global airspace model for 4D-trajectory-based
operations. In Proc. IEEE/AIAA 30th Digital Avionics Systems
Conf. DASC 2011.

Kuenz, A. (2012, Juni). Optimizing tomorrows ATM using 4D-
trajectory-based operations. In ODAS 2012.

Kuenz, A. (2014). Increasing the margins - more freedom in
trajectory-based operations. In Proc. IEEE/AIAA 33rd Dig-
ital Avionics Systems Conf. DASC 2014.

Kuenz, A., H. Becker, C. Edinger, and B. Korn (2008, Septem-
ber). Performance-based TMA handling for mixed traffic using

226 BIBLIOGRAPHY

a ground based 4D-guidance for unequipped aircraft. In 26th
ICAS Congress (Ed.), 26th Congress of the International Council
of the Aeronautical Sciences, Number 26 in ICAS.

Kuenz, A. and C. Edinger (2010a, September). Future air ground
integration: A scalable concept to start with green approaches
today. In 27th Congress of the Internation Council of the Aero-
nautical Sciences.

Kuenz, A. and C. Edinger (2010b, Oktober). Green approaches
without trade-off: Final results from the FAGI-project. In Proc.
IEEE/AIAA 29th Digital Avionics Systems Conf. DASC 2010.

Kuenz, A., V. Mollwitz, and B. Korn (2007, Oktober). Green
trajectories in high traffic TMAs. In Proc. IEEE/AIAA 26th
Digital Avionics Systems Conf. DASC 2007.

Kuenz, A. and N. Peinecke (2009, Oktober). Tiling the world -
efficient 4D conflict detection for large scale scenarios. In Proc.
IEEE/AIAA 28th Digital Avionics Systems Conf. DASC 2009,
Volume 28 of DASC Conference.

Kuenz, A. and N. Peinecke (2011, February). Effiziente 4D-Konflikt-
Erkennung für großräumige Szenarien, Verfahren zur Ermittlung
einer potenziellen Konfliktsituation. Patent (EP 2 457 224 A2).

Kuenz, A. and N. Peinecke (2012, June). Method for determining
a potential conflict situation. Patent (US20120158278).

Kuenz, A. and G. Schwoch (2012). Global time-based conflict
solution towards the overall optimium. In Proc. IEEE/AIAA
31st Digital Avionics Systems Conf. DASC 2012.

Kuenz, A., G. Schwoch, and F.-E. Wolter (2013). Individualism in
global airspace - user-preferred trajectories in future ATM. In
Proc. IEEE/AIAA 32nd Digital Avionics Systems Conf. DASC
2013.

Lewis, G. N., N. J. Boynton, and F. W. Burton (1981). Expected
complexity of fast search with uniformly distributed data. Inform.
Proc. Let. 13, 4–7.

BIBLIOGRAPHY 227

Manolopoulos, Y., A. Nanopoulos, and Y. Theodoridis (2006).
R-trees: Theory and applications. Springer. ISBN 978-1-85233-
977-7 1, 15–34.

Mount, D. M. (1997). Geometric intersection. In J. E. Goodman
and J. O’Rourke (Eds.), Handbook of Discrete and Computational
Geometry (2 ed.)., Chapter 38, pp. 857–876. CRC Press LLC,
Boca Raton, FL.

Naylor, B. (1993, May). Constructing good partitioning trees. In
Graphics Interface (annual Canadian CG conference).

Osborne, P. (2008). The mercator projections. Technical report,
University of Edingburgh, Edinburgh.

Popper, K. (1974). Autobiography: The philosophy of Karl Popper,
Volume Abschnitt 8. P. A. Schilpp.

Prautzsch, H., W. Boehm, and M. Paluszny (2002). Bezier- and
B-spline techniques. Springer.

Ramer, U. (1972). An iterative procedure for the polygonal ap-
proximation of plane curves. Computer Graphics and Image
Processing 1, 244–256.

Reichling, M. (1988). On the detection of a common intersection of
k convex objects in the plane. Informa. Process. Lett. 29, 25–29.

Rosenberg, J. (1985). Geographical data structures compared:
A study of data structures supporting region queries. IEEE
Transaction on CAD Integrated Circuits Systems 4(1), 53–67.

Roussos, G. P., G. Chaloulos, K. J. Kyriakopoulos, and J. Lygeros
(2008). Control of multiple non-holonomic air vehicles under
wind uncertainty using model predictive control and decentralized
navigation functions. In Proc. 47th IEEE Conf. Decision and
Control CDC 2008, pp. 1225–1230.

Samet, H. (1990). The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley.

228 BIBLIOGRAPHY

Schlager, H., H. Mannstein, B. Weinzierl, F. Linke, and T. Mühl-
hausen (2012). Projektplan volcanic ash impact on the air trans-
port system. Project plan.

Schumacker, R. A., B. Brand, M. G. Gilliland, and W. H. Sharp
(1969). Study for applying computer-generated images to visual
simulation. Technical report, U.S. Air Force Human Resources
Laboratory.

Schwoch, G. (2008, June). Konflikterkennung und -lösung in zukün-
ftigen Luftfahrtszenarien basierend auf 4D-Flugbahnen. Technical
report, Technische Universität Braunschweig.

SESAR Consortium (2007). The ATM target concept D3. Technical
report, SESAR Consortium.

SESAR Consortium (2008). Sesar master plan D5. Technical report,
SESAR Consortium.

SESAR Consortium (2010). Sesar brochure: Modernising the euro-
pean sky. Technical report, SESAR Consortium.

SESAR Joint Undertaking (2013). Sesar. http://www.sesarju
.eu (Jan. 2013).

Shamos, M. I. and D. Hoey (1976). Geometric intersection problems.
In Proc. th Annual Symp. Foundations of Computer Science, pp.
208–215.

Smedt, D. D. and G. Berz (2007). Study of the required time of
arrival function of current FMS in an ATM context. In Proc.
IEEE/AIAA 26th Digital Avionics Systems Conf. DASC 2007.

Smith, S. F. (2008). Constraint-based techniques for managing
movement in crowded airspaces. In 7th INO Workshop.

Snyder, J. P. (1987). Map projections: A working manual. USGS
Professional Paper 1395, 243–248.

Stell, L. (2010). Analysis of flight management system predictions of
idle-thrust descents. In Proc. IEEE/AIAA 29th Digital Avionics
Systems Conf. DASC 2010.

BIBLIOGRAPHY 229

Tavares, D. L. M. and J. L. D. Comba (2007). Broad-phase col-
lision detection using delaunay triangulation. Technical report,
Universidade Federal do Rio Graqnde do Sul (UFRGS).

Teschner, M., B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross (2003). Optimized spatial hashing for collision detection
of deformable objects. In Proceedings of the Vision, Modeling,
and Visualization Conference, pp. 47–54.

Teschner, M., S. Kimmerle, B. Heidelberger, G. Zachmann,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-
Thalmann, W. Strasser, and P. Volino (2005). Collision detection
for deformable objects. In Computer Graphics Forum, Volume 24,
pp. 61–81.

The 4DCo-GC Consortium (2013). 4DCo-GC project. http:
//www.4dcogc-project.org/ (Jul. 2013).

The CGAL Project (2015). CGAL User and Reference Manual
(4.6.1 ed.). CGAL Editorial Board.

Vincenty, T. (1975). Direct and inverse solutions of geodesics on the
ellipsoid with application of nested equations. In Survey Review,
Volume XXIII.

Voggenreiter, H. and W. Etzenbach (2012). DLR@UNI - Die insti-
tutionalisierte Zusammenarbeit zwischen DLR und Universitäten.
9-22.

Vujasinovic, R. (2012a). ATM and volcanic ash: An advanced ap-
proach to adverse event. In International Conference on Research
in Air Transportation - ICRAT, Volume 5.

Vujasinovic, R. (2012b). Volcanic ash events: When the role of
decision maker is assigned to a pilot. In Proc. of Integrated Com-
munications Navigation and Suerveillance (ICNS) Conference.

Wald, I. and V. Havran (2006). On building fast kd-trees for ray
tracing, and on doing that in O(NlogN). In In Proceedings of the
2006 IEEE Symposium on interactive ray tracing, pp. 61–70.

230 BIBLIOGRAPHY

Woo, M., J. Neider, T. Davis, and D. Shreiner (1999). OpenGL
Programming Guide: The Official Guide to Learning OpenGL,
Version 1.2 (3rd ed.). Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc.

Zachmann, G. (1998). Rapid collision detection by dynamically
aligned dop-trees. In Proceedings of Virtual Reality Annual In-
ternational Symposium, Atlanta, GA, USA, pp. 90–97.

Zachmann, G. and R. Weller (2006). Kinetic bounding volume
hierarchies for deformable objects.

Index

4D-Trajectory, 24
4DCo-GC, 168

Affected Tiles, 92
Aircraft Related Restrictions, 46
Airport-Focused Conflict Prob-

ing, 187
Alternative Earth Mapping, 134
Aviation Conflicts, 59

Bézier Curves, 39
Balancing, 102
Binary Tree, 28
Bounding Boxes, 38, 99
Bounding Volume Hierarchy, 38
Broad Phase, 33, 104
BSP, 28

Comparison with Octrees, 159
Complex Scenarios, 33
Conclusions and Outlook, 209
Conflict Detection, 81
Conflict Detection in 4D-

Airspace, 125
Conflict Detection Mechanisms,

32
Conflict Resolution, 171

Conflict-Jitter, 198
Continuous Motion, 33
Convex Polygon, 34
Crowd Simulation, 72

Date Line, 131, 202
Definitions, 83
Delauney Triangulation, 44
Detection, 81
Discontinuity, 131, 202
Discrete Motion, 33
Douglas Peucker Algorithm, 130

Earth-Mode, 126
Earth-Shape Support, 126
European Traffic Sample, 139
Extended Flight Rules, 73

FAGI, 161
Flight Duration, 183
Focus Objects, 121
Focus on Aircraft, 156
Full Containment, 98

Gauss-Krüger, 78
Geodesic Dome, 136
Geodetic Earth Systems, 73

231

232 INDEX

German Traffic Sample, 137
Global Conflict Probing, 188
Global Shifting Algorithm, 180
Great Circle Connections, 129

Hashing, 44
Hyperrectangle, 90

Intersection Searching, 37
Introduction, 23

k-d tree, 30
Key Performance Areas, 172
Kinetic Data Structures, 41

Lateral Resolution, 175
Lateral Resolution Probing, 190
Lateral Tile Size Optimization,

149
Light Propagation, 72
Line Segment, 83
Luftraummanagement 2020, 163

Mathematics and Algorithms, 27
Memory Limitation, 105
Mercator Projection, 77
Merging of Conflicts, 118

N-Dimensional Conflict Detec-
tion, 113

N-Dimensional Conflicts, 87
N-Dimensional Moving Polygon

Volumes, 109
N-Dimensional Polygon Vol-

umes, 107
N-Dimensional Trajectories, 106
Narrow Phase, 33, 104
Nominal Case, 194

Object, 85

Penetration, 93
Performance Indicators, 145
Performance Optimization for

CD, 148
Plane Sweep, 36
Poles, 131, 201
Polygon Volume, 205
Potential Fields, 71
Pseudo-Parallel Trajectories, 194

R-tree, 30
Ramer Algorithm, 130
Range Searching, 37
Recursion, see Recursion
Recursive Shifting Algorithm,

181
Related Work, 27
Resolution, 171
Results from Conflict Detection,

141
Right of Way, 73
Root Tile, 157

Sectorless ATM, 163
Simple Polygon, 35
Simplex, 85
Singularity, 131, 201
Sinusoidal Projection, 77
Spatial Hashing, 44
Spatial Subdivision, 44
Suladi, 167
Supported Objects, 106
Sweep and Prune, 43
Sweepline, 36
Symmetric Simplification, 97

Tesseract, 90
Tile Knowledge, 105
Tiling Algorithm, 89

INDEX 233

Time-Based Resolution, 178
Time-based Tile Size Optimiza-

tion, 151
Time-Shift, 179
Traffic Samples and Conditions,

137
Trajectory, 83
Trajectory Prediction, 46
Transverse Mercator projection,

78
Trial-and-Error, 172
Triangulation, 44

Validation, 193
Verification, 193
Vertical Resolution, 177
Vertical Resolution Probing, 190
Vertical Tile Size Optimization,

149
Vicinity, 95
Volume, 86

234

Lebenslauf

Name Dipl.-Inform. Alexander Kuenz

Anschrift In den Grashöfen 50
38110 Braunschweig
Telefon Beruf: (0531) 295 3008
Alexander.Kuenz@dlr.de

Geburtsdatum und -ort
08. 09. 1974 in Bad Harzburg

Familienstand
verheiratet, ein Sohn (� 2008) und eine Tochter
(� 2014)

Ausbildung
8/1981-6/1994 Schulausbildung, Abitur am Werner-von-Sie-

mens Gymnasium Bad Harzburg

9/1994-3/1997 Ausbildung zum Mathematisch-Technischen As-
sistenten (MaTA) beim DLR Braunschweig

3/1997-10/1997 Arbeit als MaTA beim DLR Braunschweig

10/1997-10/2001 Informatikstudium an der Technischen Universi-
tät Braunschweig mit der Gesamtnote sehr gut

Studienschwerpunkte: Theoretische Infor-
matik, Rechnerstrukturen, Telematik, Da-
tenbanken, Signalverarbeitung

Studienarbeit: Entwicklung einer Client/
Server-Applikation für eine Navigations-
datenbasis

235

Diplomarbeit: An Architectural Model for
Heterogeneous Hardware/Software Plat-
forms

Berufliche Erfahrung
10/1997-10/2001 Studienbegleitende Arbeit am Institut für Flug-

führung, DLR Braunschweig, Abteilung Anthro-
potechnik und Simulation

seit 11/2001 Wissenschaftlicher Mitarbeiter in der Abteilung
für Pilotenassistenz

2001-2004 Mitarbeit an den Projekten ASSIST, ATTAS
Upgrade und Wasla Hale

2004-2007 Arbeitspaketleitung im DLR-internen Projekt
Leiser Flugverkehr II

2005-2008 Arbeitspaketleitung im BMBF-Projekt Leise
An- und Abflüge (LAnAb) im Forschungsver-
bund Leiser Verkehr

2007-2009 Projektleitung des DLR-internen Projektes Fu-
ture Air Ground Integration (FAGI)

2007-2009 Verantwortung für die Arbeitsanteile des Insti-
tuts für Flugführung am DLR-internen Projekt
Future Aeronautical Communications Traffic
Simulator (FACTS)

2007-2011 Projektleiter des DLR-Anteils im FP6-Projekt
Environmentally Responsible Air Transport
(ERAT)

2007-2009 Mitarbeit im europäischen Trajectory Predicti-
on Gremium

seit 2008 Dozent bei CCG-Seminaren

2010-2013 Projektleiter des DLR-Anteils und Leiter des
Arbeitspakets Integration im FP7-Projekt
4 Dimensional-Contracts - Guidance and Con-
trol (4DCo-GC)

236

seit 2011 Projektleiter für die Arbeitsanteile des Instituts
für Flugführung im HGF-Projekt Supercooled
Large Droplets Icing (SuLaDI)

Sprachkenntnisse
Englisch fließend in Wort und Schrift

Grundkenntnisse in Französisch, Spanisch und
Italienisch

Fortbildungen
Scientific Skills z.B. Noise Abatement Procedures Workshop

GBAS-Workshop
WakeNet Workshop
Gate-to-Gate Open Days
Courage Trajectory Prediction Workshop
Genspace-Workshop (Lotsentraining)
BZF und AZF Funksprechzeugnisse
Teilnahme an und Beiträge zu diversen Konfe-
renzen

Soft Skills z.B. Moderation von Gesprächsrunden
Verständliche und überzeugende Gesprächsfüh-
rung mit Kollegen und Kunden
Intensivkurs Projektmanagement

Braunschweig, 21. September 2015

