
 

1 

SENSOR CALIBRATION FOR CALCULATION OF LOADS ON A 

FLEXIBLE AIRCRAFT 

Marcus Vinicius P. Viana
1 

1
 Experimental fixed wing flight test engineer and PhD candidate at 

DLR, Institute of Flight Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany 

marcus.preisigheviana@dlr.de 

Keywords: Structural Health Monitoring (SHM), flexible aircraft, loads measurement, sensor 

calibration, structural load models, strain gauges, optical fibers, FBG (Fiber Bragg Grating). 

Abstract: In order to reduce costs of operation, new aircraft designs make vast use of light, 

flexible, and slender structures to achieve higher payloads and improved fuel consumption. At 

the same time, in order to reduce the amount of flight testing required for the certification of a 

new aircraft, the use of simulation models for certification purposes increases constantly. 

These models must be validated based on real flight data, for which airplanes must be 

instrumented adequately. Nowadays the test setups available for strain sensor calibration are 

highly sophisticated and instrumented, but also complex, time-demanding and expensive. 

Therefore, the ability to provide cost effective methodologies will be of great benefit with 

regards to the often overlooked and ever growing flexible small aircraft market. The current 

paper focusses on the strain sensor calibration methodology for both strain gauges and Fiber 

Bragg Grating sensors. The methodology is presented with many details and illustrated using 

a real application to the DLR Discus-2c sailplane. Various practical pitfalls are discussed as 

well as the issue of selecting the “best” combination of sensors for the development of the 

local structural load models. 

1 INTRODUCTION 

The measurement of structural loads on an aircraft in flight plays a crucial role for the 

certification of new airplanes. In CS 25.301 [1], it is established that “methods used to 

determine load intensities and distributions must be validated by flight load measurements 

unless the methods used for determining those loading conditions are shown to be reliable”. 

The goal of the flight test loads program is to demonstrate the load calculations and validate 

that the prediction process produces reliable loads for the flight certification cases [2]. Other 

applications for in-flight measurement of flight loads exist: these measurements can for 

instance also be used for aircraft structural health monitoring (SHM). The focus of this paper 

is to present a practical methodology, considering a restricted experimental scenario (e.g. 

limited budget and material support for a small aircraft), developed to allow the calculation of 

flight-loads based on a set of strain gauges and/or Fiber Bragg Grating (FBG) in order to 

provide accurate local information for the development and validation of structural loads and 

flight dynamics models of a flexible aircraft. The parameters of the loads equations are 

derived via a least-squares curve fitting algorithm using the strain gauge or optical fiber 

responses to a series of known point loads applied to the structure [3]. Important practical 

issues related to this sensor calibration process are addressed in this paper based on the 

example of the calibration performed for Discus-2c sailplane of DLR. In this context, it is 

presented with great detail the methodology that was used to determine the relationships 
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between the sensors that provide local information about structural loads, enabling flight-

loads monitoring and validation. The development of the regression loads model is detailed 

and the best selection of aircraft sensors is analyzed and discussed based on statistical 

regression model quality measures. Problems such as irrelevant and redundant sensors during 

the loads model development are also addressed. The quality of the loads equations can be 

deduced from a comparison between results from different sources (or technologies) and from 

dedicated check loads. 

In this context the loads model development process can be compared to the system 

identification approach [4]. As the current model building process pursues the best 

mathematical model; which contains unknown parameters that need to be determined 

indirectly from the measured data. A model providing a meaningful and accurate physical 

representation of the physical phenomena is searched, while being as simple as possible and 

providing insight to the engineers (no black-box model). These requirements are antagonist 

and therefore the corresponding model development requires making a compromise between 

them. 

2 METHOD 

2.1 Physical modelling 

2.1.1 General modelling and calibration of strain gauges 

Skopinski [3] established that the relationship between the strain gauge bridge output µ and 

the structural loads (shear force V, bending moment M and torque T) on a surface outboard of 

that bridge can be modelled with sufficient precision by a linear equation with coefficients αV, 

αM and αT. In a typical calibration involving j bridges and n different calibration load cases, 

the output µki of the i-th sensor to the k-th load case (defined by Vk, Mk, Tk) follows the 

following equation: 

∀(𝑘, 𝑖) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑗⟧ ,   𝜇𝑘𝑖 = 𝛼𝑉,𝑖 𝑉𝑘 + 𝛼𝑀,𝑖 𝑀𝑘 + 𝛼𝑇,𝑖  𝑇𝑘  (1) 

The linearity assumption implies that the principle of superposition can be applied, leading to 

consider that the strain at a particular location due to loads applied simultaneously to several 

points on the structure is the algebraic sum of the strains due to the same loads applied 

individually, a shear value V applied at some point with coordinates x, y would have a 

bending moment M = V*y and torque T = V*x. Substituting these equations into equation (1), 

and extending it by inclusion of additional terms involving the coordinates and using the 

inverse relation, a linear function of the outputs of j bridges is:  

{𝑉𝑥𝑟𝑦𝑠} = [𝛼]−1[𝜇] ⇒ ∀k ∈ ⟦1, 𝑛⟧,   {

𝑉𝑘
𝑀𝑘
𝑇𝑘

} = [

𝛽V,1 𝛽V,2 … 𝛽V,j
𝛽M,1 𝛽M,2 … 𝛽M,j

𝛽T,1 𝛽T,2 … 𝛽T,j

] {

𝜇𝑘1
𝜇𝑘2
⋮
𝜇𝑘𝑗

}  (2) 

Where { } represents a column vector; [ ] a matrix; [ ]
T
 the transpose of a matrix; [ ]

-1
 the 

inverse of matrix; and the superscripts (r,s) = (0,0) for shear force, (1,0) for torque and (0,1) 

for bending moment. Considering that j bridges are available and n calibrated loads are 

applied, the least-squares normal equation can be obtained, enabling the determination of the 

load coefficients [𝛽{𝑉,𝑀,𝑇},𝑖] by solving the following system of j equations: 
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𝛯𝑇 {

𝑉1
′

𝑉2
′

⋮
𝑉𝑛
′

} = 𝛯𝑇𝛯

{
 

 
𝛽V,1
𝛽V,2
⋮
𝛽V,𝑗}

 

 
 

(𝑤ℎ𝑒𝑛 𝛯𝑇𝛯  
  𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒) 
⇔         

{
 

 
𝛽V,1
𝛽V,2
⋮
𝛽V,𝑗}

 

 
= [𝛯𝑇𝛯]−1𝛯𝑇 {

𝑉1
′

𝑉2
′

⋮
𝑉𝑛
′

} 

where 𝛯 = [

𝜇11 𝜇12 … 𝜇1𝑗
𝜇21 𝜇22 … 𝜇2𝑗
⋮
𝜇𝑛1

⋮
𝜇𝑛2

⋱     ⋮
… 𝜇𝑛𝑗

] 

(3) 

Applying n different loads with known shear values 𝑉𝑛
′ at n different loading points, n values 

of bending moment and torque are provided by the equations M = V*y and T = V*x, allowing 

the determination of the values of {𝛽𝑀,𝑖} and {𝛽𝑇,𝑖} in equation (2), which are required to 

evaluate the bending moment and torque (load) equations. The least-squares solution equation 

(3) exists only if determinant of [𝛯𝑇𝛯]−1 is greater than zero, which requires that the bridges 

with similar response characteristics should not be used together in a same load equation 

determination.  

2.1.2 Fiber Bragg Grating (FBG) strain measurement principles 

FBG work as a wavelength selective mirrors reflecting a narrow band of wavelengths. An 

illuminated FBG will reflect a narrow band spectral component corresponding to the Bragg 

resonance wavelength of the grating (𝜆𝐵), while all other wavelengths outside the narrow 

reflection band will be transmitted. FBG measurement technology relies on the principle that 

any change of the FBG period and/or the refractive index result in a modification of the 

reflected Bragg wavelength 𝜆𝐵. A FBG responds to some physical parameters such as 

temperature (𝛥𝜆𝐵 ∝ 𝐾𝑇𝐸𝑀𝑃 ∗ 𝛥𝑇𝐸𝑀𝑃) and mechanical strain (𝛥𝜆𝐵 ∝ 𝐾𝑠𝑡𝑟𝑎𝑖𝑛 ∗ 𝛥𝑠𝑡𝑟𝑎𝑖𝑛). 

Considering a mechanical strain applied to a FBG, expansions and compressions of the 

grating region will occur, thus changing the FBG period resulting in a modified refractive 

index [5]. 

2.2 Statistical tools and metrics 

Before describing in more details the complete calibration methodology, a few statistical tools 

and metrics that are used in this methodology are introduced hereafter. 

2.2.1 Statistical metrics of quality of Multiple Ordinary Least-Squares (OLS) regression 

and of Regression Through the Origin (RTO) 

The traditional analysis of variance decomposition for the OLS case is expressed by: 

∑(𝑌𝑘 − 𝑌̅)
2

𝑛

𝑘=1

=∑ (𝑌𝑘 − 𝑌𝑘̂)
2𝑛

𝑘=1
+∑ (𝑌𝑘̂ − 𝑌̅)

2𝑛

𝑘=1
⇒ 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 (4) 

Where 𝑌 are the response measurements, 𝑌̂ are the fitted values, SST is the sum of squares 

total, SSE is the sum of squares due to error and SSR is the sum of squares due to regression. 

Thus, the OLS multiple coefficient of determination is defined by the ratio of SSR and SST: 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=
∑ (𝑌𝑘̂ − 𝑌̅)

2𝑛
𝑘=1

∑ (𝑌𝑘 − 𝑌̅)
2𝑛

𝑘=1

 (5) 
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This metric of quality of the fit measures the proportion of variation in the dependent variable 

that is explained by the dependent variable´s relationship to all the independent variables in 

the model. However, in order to compare different models with different numbers of 

predictors, R
2
 is not a sensible criterion to select the best model, because it does not penalize 

the excessive use of unimportant independent variables. 

Regression through the origin is a special case of ordinary least-squares (OLS) regression, 

where the intercept (constant term) is zero. As mentioned by Eisenhauer [6], the RTO 

residuals will usually have a nonzero mean, due to the fact that forcing the regression curve 

through the origin causes generally incompatibility with the best fit. The inappropriate use of 

the R
2
 expression obtained for the OLS case can lead to an uninterpretable negative value of 

coefficient of determination as well as negative F ratio [6]. Therefore, in the case of a 

regression through the origin, equation (5) takes the form expressed by equation (6). It is 

obvious these new definitions influence the adjusted R
2
 and, F and t statistics, but the sum of 

squared error (SSE) and the standard error of the regression (√𝑀𝑆𝐸) remain unchanged, 

except by the change of number of degrees of freedom. 

R2=
SSR

SST
=
∑ Ŷk

2n
k=1

∑ Yk
2n

k=1

 (6) 

2.2.2 Additional metric of quality for general multiple linear regression models 

As addressed by Yan et al. [7], the Akaike Information Criterion (AIC) is derived from 

information theory as a data-based approximation for the Kullback-Leibler discrepancy 

function between a candidate model and the true model. The approximation in equation (7) is 

possible for Gaussian or normal models [7]: 

𝐴𝐼𝐶 = 𝑛 ∗ log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 ∗ 𝑝

≈ 𝑛 ∗ log(𝑆𝑆𝐸) + 2 ∗ 𝑝
 (7) 

The interpretation for this formula is that the first term measures the quality of fit of the 

regression model, penalized by model complexity depicted in the second term 2 p, which is 

frequently denominated as complexity or penalty parameter [7] and the coefficient 2 was 

selected by Akaike in his formulation development [8], [9]. So the model selection is adjusted 

by penalizing complex models with several predictors that do not fit much better than simpler 

models with fewer predictors. Therefore a smaller AIC represents better potential model [7]. 

This alternative approach is suitable to measure the quality of fit of OLS regressions as well 

as regressions through the origin (RTO), taking into account the number of regressors 

included in the potential model. 

As a summary, taking into account large samples, a model selection criterion could be 

classified as efficient, when the model with minimum mean squared error (MSE) is pursued, 

or consistent, when the true model with probability one is selected. There is no criterion that 

satisfies both characteristics. In this context, MSE, adjusted R
2
 and AIC are all asymptotically 

efficient criteria while BIC (Bayesian Information Criterion) is a consistent one [7]. It is 

advised that AIC is suitable for moderately-sized sample and BIC is most suitable for large 

samples with relatively strong signals [7]. In the AIC approach, the candidate models are 

straightforward classified from best to worst based on the available empirical data. AIC is a 

simple and compelling metric, based on deep theoretical foundations as entropy, Kullback-
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Leibler information and likelihood theory. In this sense, the model development is pursued by 

the minimization of the information loss, separating the noise (entropy or residuals) from the 

data signal. That is, the efforts are not to model the data, but the model is developed by the 

modeling of the information contained in the data [8]. This issue about the optimization 

criterion will be addressed in a little more detail in section 4.5. 

2.2.3 Standard statistics applied to Multiple Ordinary Least-Squares regressions (OLS) 

Due to the fact that the regression model is built based on a sample of data from the 

population, being subject to sampling error, it is necessary to test the statistical significance of 

the overall regression and also each estimated coefficients of the regression model. The F-test 

statistic is used to evaluate the overall significance of the model. Large values of F indicate a 

bigger evidence that the regression model explains a significant portion of the variation in Y 

(i.e. at least one independent variable affects Y). To solve the problem of irrelevancy, the t-test 

statistic is useful to determine the individual predictor significance. This test verifies if there 

is a linear relationship between each specific predictor and Y. One observation about the F-

test and t-test statistics (p-value) as well as the previously presented OLS R
2
 and adjusted R

2
 

is that these approaches are evaluated under the assumption that the model has a constant term 

(intercept). So, it is not correct to apply these statistical approaches for regressions through 

the origin (RTO) and perform a straightforward comparison with the OLS results. 

2.3 Methodology used 

The strain measurement sensors, namely FBG and strain gauges, were calibrated by a specific 

ground calibration procedure [10]. The objective of this sensor calibration was to enable the 

calculation of loads on a flexible aircraft through the strain measurements. To fulfill this 

objective, a comprehensive calibration setup was planned and performed considering the 

different type of loads to be measured and the respective number of sensors and their 

positions. The calibration has pursued to cover a significant and optimal range of positions 

and magnitudes of loads that could be experienced during flight, in order for the loads 

equation to be able to determine the flight loads later on and avoiding extrapolations due to 

unaddressed load cases. A series of suitable and known loads were applied at different 

chordwise and spanwise positions. The magnitude of these loads was varied and did cover the 

range of loads that shall be expected in flight. 

After performing the calibration tests and gathering the strain sensor measurements, the 

model building is the process of selection of predictors in order to include only the significant 

predictors, which are informative about the measurement response Y. The aim is to build a 

reliable regression model that fits the data well and predicts loads well in practice, while 

being as simple as possible. As pointed out by Sauerbrei et al. [11], model selection in general 

is still an open question. Although advances in the computational power and statistical 

sophistication permits to fit almost a model to any dataset, obtaining a “good” model is not a 

straightforward task. On the one side, a simple model can present smaller variance of the 

approximation error, but with biased or inaccurate estimation, but on the other hand a 

complex model can provide unbiased estimation or better quality of fit to the data, but with 

larger variance or imprecise estimation [7]. Considering that there are two possibilities for 

each regressor (each strain sensor can be either included or omitted), in the case of j+1 

regressors, (2
j+1

 – 1) potential subsets will exist (excluding the null model with the intercept 

term only). The methodology of the present work for model building is divided into two parts: 
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1. First, all combinations of predictors that provide OLS regression models are evaluated. 

The predictors that include the intercept (constant term different of null) are subjected 

to the F-test statistic to check if the OLS regression model is able to explain a 

significant portion of the variation in the load. One of the benefits of using the least-

squares solution for the determination of load coefficients is the possibility of 

stipulating the reliability and relevancy of any equation by standard statistical methods. 

Thus, considering that the expansion of the RTO shear expression in equation (2) 

requires j bridges and the load coefficients 𝛽𝑉,0, 𝛽𝑉,1, 𝛽𝑉,2, … , 𝛽𝑉,𝑗 were obtained by 

least-squares, a OLS shear preliminary calibration equation Vpreliminary (𝛽𝑉,0 ≠ 0) can be 

represented by: 

 𝑉𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦 = 𝛽𝑉,1𝜇1 + 𝛽𝑉,2𝜇2 +⋯+ 𝛽𝑉,𝑗𝜇𝑗 + 𝛽𝑉,0 (8) 

In the case of equation (8), 𝛽𝑉,2 is the coefficient with the largest magnitude and 𝛽𝑉,0 is 

the intercept term. Performing the factorization of equation (8), the OLS shear final 

calibration equation Vfinal can be obtained, being a direct measure of shear alone: 

𝑉𝑓𝑖𝑛𝑎𝑙 = 𝛽𝑉,2 (
𝛽𝑉,1

𝛽𝑉,2
𝜇1 + 𝜇2 +⋯+ 

𝛽𝑉,𝑗

𝛽𝑉,2
𝜇𝑗 +

𝛽𝑉,0

𝛽𝑉,2
) = 𝛽′𝜌𝑉  (9) 

Passing this first test, in the second stage the coefficients are evaluated by the t-test 

statistic, where their individual significances are checked. The t-values and p-values 

provide a guide for making decisions about selecting determined combination as a 

candidate model. If any coefficient does not pass this t-test statistic, the combination is 

rejected. If the intercept coefficient 𝛽𝑉,0 is significant, the selection of the best model is 

reached by the set of coefficients that provides the highest adjusted R
2
, the lowest 

standard error of the load, the lowest Akaike Information Criterion (AIC), the lowest 

Bayesian Information Criterion (BIC) and the highest F value. In case it is impossible 

to satisfy all these conditions (criteria for measuring the quality of estimation) at the 

same time, an architecture of hierarchy (i.e. a list of priority between these different 

optimization criteria) has been developed in order to reach the desired model. 

2. The second part of the methodology is only applicable in the case when the intercept 

coefficient 𝛽𝑉,0 is classified as insignificant in the t-test statistic. In this situation 

(𝛽𝑉,0 = 0), the model is obtained by a regression through the origin (RTO). Therefore 

all combinations of potential (i.e. not previously rejected) predictors in a RTO are fitted 

and the selection of the best model is achieved by the optimization of two different 

criteria: smallest standard error of the load and the lowest AIC.  

Equations (8) and (9) represent the preliminary and final shear load equations, respectively. 

Similar load equations can be obtained for the bending moment and torque. The 𝛽′ final 

coefficients (also evaluated by least-squares) are determined by a final calibration 

(recalibration) through the application of a set of calibrated loads at different chordwise and 

spanwise locations as in the preliminary equation. This final calibration should include both 

symmetrical and asymmetrical loading conditions. Summarizing each explained part of this 

methodology is applied separately for each load type (shear, torque and bending moment) at 

each load station for each calibration step (preliminary and final calibrations). The difference 

is that each preliminary load equation uses only the shear and bending moment sensors 

installed at its specific load station and each final load equation uses combinations of final 

shear, torque and bending moment sensors installed at any load station (see the next 

paragraph and equation (10) for more details). 
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If the number of installed bridges is limited, the use of the previous explained procedure (see 

equations (8) and (9)) can restrict the number of loads which are possible to be measured. In 

this case, Skopinski [3] suggests to apply a procedure in which the data obtained during 

preliminary and final calibrations are used to combine bridges with the same primary 

sensitivity, that is, the shear-sensitive bridges on one side of the structure are combined into a 

single channel, the moment-sensitive bridges on one side into a single channel and torque-

sensitive bridges into a single channel. This approach was adopted in the methodology used in 

this work. Finally the following OLS final calibration equation (compare with equation (9)) is 

acquired, for a simple example considering only one load station at each wing (L: left wing 

load station; R: right wing load station): 

{
 
 

 
 
𝑉𝐿
𝑀𝐿
𝑇𝐿
𝑉𝑅
𝑀𝑅
𝑇𝑅 }
 
 

 
 

𝑓𝑖𝑛𝑎𝑙

=

[
 
 
 
 
 
 
 
 
𝛽𝑉𝐿 ,0
′ 𝛽𝑉𝐿 ,𝜌𝑉𝐿

′
𝛽𝑉𝐿 ,𝜌𝑀𝐿
′ 𝛽𝑉𝐿,𝜌𝑇𝐿

′ 𝛽𝑉𝐿 ,𝜌𝑉𝑅
′ 𝛽𝑉𝐿,𝜌𝑀𝑅

′ 𝛽𝑉𝐿 ,𝜌𝑇𝑅
′

𝛽𝑀𝐿 ,0
′ 𝛽𝑀𝐿,𝜌𝑉𝐿

′
𝛽𝑀𝐿,𝜌𝑀𝐿
′ 𝛽𝑀𝐿,𝜌𝑇𝐿

′ 𝛽𝑀𝐿 ,𝜌𝑉𝑅
′ 𝛽𝑀𝐿,𝜌𝑀𝑅

′ 𝛽𝑀𝐿,𝜌𝑇𝑅
′

𝛽𝑇𝐿 ,0
′ 𝛽𝑇𝐿 ,𝜌𝑉𝐿

′

𝛽𝑉𝑅,0
′ 𝛽𝑉𝑅 ,𝜌𝑉𝐿

′

𝛽𝑀𝑅,0
′ 𝛽𝑀𝑅,𝜌𝑉𝐿

′

𝛽𝑇𝑅,0
′ 𝛽𝑇𝑅,𝜌𝑉𝐿

′

𝛽𝑇𝐿 ,𝜌𝑀𝐿
′

𝛽𝑉𝑅,𝜌𝑀𝐿
′

𝛽𝑀𝑅,𝜌𝑀𝐿
′

𝛽𝑇𝑅,𝜌𝑀𝐿
′

𝛽𝑇𝐿 ,𝜌𝑇𝐿
′ 𝛽𝑇𝐿𝜌𝑉𝑅

′ 𝛽𝑇𝐿 ,𝜌𝑀𝑅
′ 𝛽𝑇𝐿 ,𝜌𝑇𝑅

′

𝛽𝑉𝑅 ,𝜌𝑇𝐿
′ 𝛽𝑉𝑅 ,𝜌𝑉𝑅

′ 𝛽𝑉𝑅,𝜌𝑀𝑅
′ 𝛽𝑉𝑅,𝜌𝑇𝑅

′

𝛽𝑀𝑅 ,𝜌𝑇𝐿
′ 𝛽𝑀𝑅 ,𝜌𝑉𝑅

′ 𝛽𝑀𝑅,𝜌𝑀𝑅
′ 𝛽𝑀𝑅,𝜌𝑇𝑅

′

𝛽𝑇𝑅,𝜌𝑇𝐿
′ 𝛽𝑇𝑅 ,𝜌𝑉𝑅

′ 𝛽𝑇𝑅 ,𝜌𝑀𝑅
′ 𝛽𝑇𝑅,𝜌𝑇𝑅

′

]
 
 
 
 
 
 
 
 

{
  
 

  
 
1
𝜌𝑉𝐿
𝜌𝑀𝐿
𝜌𝑇𝐿
𝜌𝑉𝑅
𝜌𝑀𝑅
𝜌𝑇𝑅}
  
 

  
 

 (10) 

As suggested by Kvålseth [12] and Eisenhauer [6], a precautionary approach was adopted in 

the current work, considering initially the problem as an OLS regression and applying the p-

values (Student’s t-test statistic) for the OLS constant. If the significance of this constant is 

low and does not pass in the mentioned test, the use of a regression through the origin (RTO) 

is justified. In the last part of the process to select the best load equation, the standard errors 

of the OLS and RTO are compared in order to define the final fit quality. This precautionary 

approach states that zero-intercept models (RTO) should only be used when both theoretical 

justification and empirical data analysis indicate that they are indeed appropriate [12]. The 

final set of coefficients in the best load equation is determined by evaluating all the possible 

combinations of the available sensors in each stage of the preliminary and final calibrations.  

As already mentioned, in the current work, all possible combinations are analyzed instead of 

dropping or adding the bridges one by one and recalculating the coefficients, as performed for 

example by the backward and forward selection methods of [7] and [11]. The final task when 

building a multiple linear regression model is to evaluate how well it performs. From the plot 

of the residuals, several analyses can be visually made, such as the check of the aptness of the 

model and the goodness of fit. 

The contribution of this methodology is to enable the development of a reconfigurable health 

monitoring system. The robustness, sensitivity, degradation and long term stability of the 

strain sensors can be constantly monitored by the cross check and cross validation of each 

load in each load station through different load equations. The probable errors of the estimates 

of a specific load from different load equations are used to verify if there is intersection 

between their load predictions in a specific position. In the case of disagreement of any load 

estimate with the other estimates, this questionable load equation is neglected in order to 

exclude this faulty strain sensor from the loads monitoring system. Subsequently, a valid 

model for this specific load becomes effective on the health monitoring system, restoring the 

ability of predicting an accurate load on this airframe position. Therefore this process of auto 

check, monitoring and validation of the loads predictions provides an enhanced capability of 

reconfiguration and reparability of the SHM system associated with high levels of reliability 

and robustness. As a final contribution of this current methodology is the calibration of 
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different types of strain sensors installed in different structural aircraft components (like 

wings and horizontal tailplane) in several spanwise positions in order to prove the feasibility 

and reliability of practical applications of structural loads monitoring systems.  

3 APPLICATION CONSIDERED 

3.1 Aircraft description – test platform 

The Discus-2c is a single-seat high performance sailplane manufactured by Schempp-Hirth 

Flugzeugbau GmbH. The sailplane is constructed from fiber reinforced plastic (FRP), 

featuring a T-tail, as shown in Figure 1. The DLR Discus-2c has a wing span of 18 meters and 

additional information is presented in Table 1. 

 
Figure 1: DLR Discus-2c 

 

Table 1: Discus-2c technical data 

3.2 Test instrumentation for the strain sensor calibration 

 
Figure 2: Specialized structural flight test sensors installed on Discus-2c sailplane 

Span (m) 18 Length (m) 6.78 Empty mass approx. 280

Area (m
2
) 11.39 Width (m) 0.62 Maximum all-ups mass 565

Aspect ratio 28.5 Maximum water ballast 200

Mean aerodynamic chord - MAC (m) 0.685 Wing loading (kg/m
2
) 31.2 – 50.0

Wing Fuselage Mass (kg)

Height (m) 0.81
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For developing a structural loads monitoring system, spread at different aircraft positions, 20 

optical fibers (FBG) were installed to measure calibrated flight loads. Additionally, to validate 

the structural-loads calculations from the FBG and also for structural displacement 

measurements, 46 four-active-arm strain gauges were placed on strategic internal aircraft 

stations. The complete instrumentation setup for the structural model identification purpose, 

i.e. measurements of the modal displacements, modal accelerations, modal shapes and 

structural loads, is illustrated in Figure 2 and Figure 3, and detailed in Table 2. 

 

Table 2: Characteristics of the flight test instrumentation for calculation of loads on a flexible aircraft 

3.3 Calibration setup and test points 

Nowadays the test setups available for strain sensor calibration are highly sophisticated and 

instrumented, as can be seen in [13], but also very complex and expensive. However, the aim 

of the current strain sensor calibration was to demonstrate how to perform a straightforward 

process with the simplest hardware. The work core was to develop a calibration test focused 

on a methodology that could be easily applied since on a basic sailplane until a complex 

modern large transport aircraft, using accessible equipment setup, without neglecting the 

quality of the results. In order to perform the calibration, the equipment test scenario was 

composed by the equipment presented in Table 3. 

  
Figure 3: Strain gauge types used during this calibration test: (a) CEA-06-250-US-350 type (Rosette strain 

gauge); (b) CEA-06-125WT-120 type (T strain gauge); (c) EA-06-250MQ-350 type (Double strain gauge); (d) 

Standard setup for the strain gauge full bridges installation at the spar of the elevator 

 

Aircraft 

Structure
Strain Sensor Load Sensitivity

Spanwise Position (W and HT) or x-axis Position 

behind the ring frame (FUS)

Architectures of full-bridge strain 

gauges / characteristic FBG 

wavenlength

3 FBG +663, +705 and +737 (SP0) mm 1524.850, 1532.361 and 1540.672 nm

13 strain gauges ±820 (SP1), ±4400 (SP4) and ±6890 (SP6) mm CEA-06-250US-350 (1x)

7 FBG
+820 (SP1), +2010 (SP2), +3205 (SP3), +4400 (SP4), 

+5600 (SP5), +6890 (SP6) and +7885 (SP7) mm 

1523.918, 1532.972, 1542.893, 1552.832, 

1562.860, 1524.121, 1533.060 nm

15 strain gauges ±820 (SP1), ±4400 (SP4) and ±6890 (SP6) mm
EA-06-250MQ-350 (2x) and CEA-06-

125WT-120 (2x)

3 FBG Temperature +900, +4400 and +7300 mm 1523.996, 1532.848 and 1543.071 nm

3 FBG 300 mm behind the ring frame (SP3) 1542.858, 1533.030 and 1564.238 nm

2 strain gauges 250 mm behind the ring frame (SP2) CEA-06-250US-350 (1x)

3 FBG 150 mm behind the ring frame (SP1) 1548.110, 1556.290 and 1562.923 nm

2 strain gauges 250 mm behind the ring frame (SP2)
EA-06-250MQ-350 (2x) and CEA-06-

125WT-120 (2x)

1 FBG Temperature 300 mm behind the ring frame (SP3) 1552.511 nm

8 strain gauges Shear force
-120 (SP1), +230 (SP6), +240 (SP9), +267 (SP3), +414 

(SP4), +475 (SP7), +560 (SP5) and +720 (SP8) mm
CEA-06-250US-350 (1x)

6 strain gauges Bending Moment
-120 (SP1), +230 (SP6), +267 (SP3), +414 (SP4), +475 

(SP7) and +560 (SP5) mm
EA-06-250MQ-350 (2x)

Horizontal 

Tail (HT)

Bending Moment

Shear force

Bending Moment

Wing (W)

Rear 

Fuselage 

(FUS)

Shear force
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Calibration Equipment 
25 sand bags to apply up and down loads over the wings and fuselage (as shown by Figure 

4). Mass of each sand bag was between 11.71 and 12.03 kg, size: 30 x 60 cm 

Metal bars to apply up and down loads over the horizontal tailplane 
Rubberized fabrics to prevent damage to the aircraft surface 
Clamp to apply torsion in the right wing (see Figure 4) 
Trestle with foam at the top in order to avoid small wing oscillations and ease the 

stabilization of the wing after the load application and before the measurement recording 
Prepared belts and crane to hold the aircraft in the upside down position (up loads) 
Spirit level 
Laser equipment to measure the vertical displacements of the wing and tailplane  
Data Acquisition System: strain gauge four-active-arm bridges and optical fibers (FBG) 

Table 3: Equipment setup for the calibration of the strain sensors of the Discus-2c 

 
Figure 4: (a) (b) Down loads; (c) (e) Torque application using a specially designed clamp (aircraft in the normal 

and upside down conditions); (d) Up loads (aircraft held in the upside down condition by prepared belts) 

During the period between of May 21
st
 and of June 10

th
 2014, 46 four-active-arm strain gauge 

bridges installed on the wings, rear fuselage and horizontal tail; and 20 optical fibers (FBG) 

installed on the right wing and rear fuselage were calibrated. For the calibration of these load 

sensors 532 test points were performed, distributed as summarized in Table 4. 

 

Table 4: Load cases performed for calibration of the load sensors 

Number of 

Load Cases

Aircraft 

Structure

Amount of Strain 

Sensors
Type of Load

Direction of Load 

Application

Upward

303 Wings
Downward and 

Upward

4
Wings and 

Horizontal Tail

- No load (components disassembled for the 

determination of the reference conditions)
-

28 strain gauges

13 optical fibers

4 strain gauges

7 optical fibers

42 strain gauges

13 optical fibers

- Symmetric and Asymmetric Shear and Torque

- Only Symmetric bending moment

- Symmetric and Asymmetric Shear and Torque

- Only Symmetric bending moment
175 Horizontal Tail 14 strain gauges

Downward and 

Upward

50 Rear Fuselage -
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4 RESULTS AND ANALYSIS 

4.1 Reference conditions for the strain sensor calibration 

For a proper strain sensor calibration, the load cases are required to encompass the most 

comprehensive load spectra experienced during the flights. For the success of this work it was 

fundamental to consider a correct reference condition for each aircraft orientation, namely in 

the normal and upside down conditions, which should be measured in a stabilized condition 

on the ground with all aircraft components assembled and without external loads application. 

So strain sensors calibrated according to the methodology described in this paper calculate 

structural loads relative to these reference conditions. Figure 5(a) and Figure 5(b) show the 

plots between bending moment and the strain gauge response, respectively, without and with 

compensation based on the reference condition. Failure to consider the proper reference 

conditions would prevent from properly interpreting the sensor measurements and from 

determining the applied loads. 

 

Figure 5: Strain gauge responses of the SG-WR1B1 sensor from the applied bending moment: (a) without a 

reference condition; (b) taking into account a reference condition 

4.2 Transformation of FBG sensor measurements in pure mechanical strains 

 

 Figure 6: (a) Raw FBG sensor measurements at the right wing spanwise 1 (bending moment load cases); 

(b) Compensated FBG sensor measurements at the right wing spanwise 1 (bending moment load cases) 

During the analysis of the optical fiber measurements, considerable variation of the 

wavelength values plotted against the applied loads was verified, as shown in Figure 6(a). A 

well-known fact that could be verified during the FBG calibration is that the temperature 

effects are important and the strain measurements need to be corrected accordingly. In order 

to be able to correct this effect, the temperature was measured during all the calibration tests. 

Even for the relatively small temperature changes that were experience during the calibration 

(less than 7°C), the strong influence of the temperature on the strain measurements was 
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clearly noticeable. Note that the temperature variations are expected to be significantly larger 

in flight than during the calibration, which would lead to even stronger variations of the strain 

measurements. Considering the outputs of the FBG temperature sensors and their references, 

the contribution of the temperature changes into the strain values can be subtracted, leading to 

a pure structural deformation caused by only the known applied loads. At the end, a well-

defined relationship between aircraft deflections and applied loads was obtained, as shown in 

Figure 6(b). 

4.3 Influence of the structural position on the sensor sensitivity 

One important topic of this work was to investigate the influence of the structural position of 

the strain gauge sensors on their strain sensitivity. 28 strain gauge sensors were installed on 

the wings. The 303 load cases applied at the wings were used to conduct this analysis. The 

scope of this investigation encompasses the relation between the type of the strain gauge 

sensor and its structural position with the quality of the load sensitivity regarding shear force, 

bending moment and torque. There are three types of strain gauge sensors installed at the 

wings, shown by Figure 3. For shear force and torque measurements the strain gauge CEA-

06-250-US-350 type, also called as Rosette strain gauge, was used. Only one set of this strain 

gauge type is necessary to compose a full bridge. There are two options for bending moment 

measurements. First, the CEA-06-125WT-120 type, also called T strain gauge, was used 

twice either on the lower or upper shell internal surface to compose a full bridge. The second 

option is the EA-06-250MQ-350 type (called as double strain gauge), where two sets are 

required to constitute a full bridge. Thereby, one set was installed on the upper surface and the 

other on the lower surface. 

 
Figure 7: Relationship between the applied bending moments and the strain measurements from the sensors 

installed at the right wing in the spanwise 1: (a) sensor SG-WR1B1 (double strain gauge) at the spar; (b) sensor 

SG-WR1B2 (T strain gauge) at the spar; (c) sensor SG-WR1B3 (T strain gauge) at the spar; (d) sensor SG-

WR1B4 (T strain gauge) at the inner side of the wing lower shell (behind the spar) 

There are six strain gauge full bridges installed at spanwise location #1 (SP1 or WR1, see 

Figure 2) of the right wing that encompass the three available types. These sensors are 

positioned in three different chordwise locations. There are four sensors for bending moment 
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measurements in two different chordwise, one over the wing spar and other behind the spar. 

Starting the analyses with the two sensor types on the wing spar, one can verify that the 

double strain gauge type (EA-06-250MQ-350 – sensor SG-WR1B1) has enhanced sensitivity 

for bending moment. The other type (T strain gauge or CEA-06-125WT-120) installed at the 

spar, represented by the sensors SG-WR1B2 and SG-WR1B3, present significant scatter, 

showing small or apparently negligible sensitivity for bending moment measurements. 

However, installing this type of sensor (in this case named as SG-WR1B4) on the wing shell 

(out of the stiff wing spar), its sensitivity becomes noticeable, but still smaller than that for the 

EA-06-250MQ-350 type. These evaluations are provided by the analyses of Figure 7. Another 

important investigation is the verification of how well the four-active-arm architecture of a 

strain gauge full bridge works in compensating the temperature effects on the strain 

measurements. Comparing Figure 6(b) and Figure 7(a), it can be concluded that the strain 

gauge sensors cancel the thermal effects on the strain measurements quite well. 

Considering the shear force and torque sensitivities, there is only one type of sensor, CEA-06-

250-US-350 or Rosette strain gauge, installed in two main different chordwise positions: wing 

spar (vertical web) and wing shell (in different horizontal positions). The sensor installed in 

the vertical web (SG-WR1S1) presents better sensitivity than that installed on the horizontal 

wing shell (SG-WR1S2). However, in this case, the sensor installed in the horizontal wing 

shell provides a meaningful signal that represents a mix of shear force and torque 

measurements. 

The previous observations provide valuable information permitting to select sensor locations 

which are well suited for the development or the validation of a load model. The correct 

choice of the sensor types and their positions on the structure are key drivers for the success 

or the failure of any calibration almost regardless how sophisticated is the employed 

calibration technique itself. Other important issues are that the compounding of different 

information sources from different sensor types installed in different structural locations can 

be important for the development of comprehensive loads models, even if the plots of the 

sensor outputs against the applied loads seem to be not meaningful at first glance. This results 

from the fact that the coupling between different load types may not be easily identified by a 

graphical analysis from the strain sensor outputs against the applied load cases. This issue can 

be demonstrated by the preliminary load models that use these apparent weak signals to 

constitute the loads equations. That is, the methodology proposed in this paper identifies these 

apparent secondary sensors as essential to compose a more accurate loads equation. 

Therefore, the results of these evaluations provide a valuable guide for the practical 

applications where there is a restriction of the number of strain sensors that can be installed. 

So the priority is to install the most sensitive sensors for each type of load in the main 

structural locations as discussed previously. Afterwards, in the case of additional available 

strain gauges or optical fibers, these other sensor types applied to different structural locations 

can then be used in order to improve the accuracy and quality of the loads regression models, 

or to provide redundancy and cross-checking possibilities. 

4.4 Influence of number of strain sensors in the quality of the loads regression models 

From the calibration of the strain gauges and optical fibers sensors installed on the fuselage, 

important analyses can be done. In possession of these results, it is possible to investigate the 

minimum number of each sensor type-sensitivity necessary to develop a suitable load 

regression model. Figure 8 and Figure 9 contrast the differences between a final load 

regression model using three sensors for each type of load (3 FBG for shear and 3 FBG for 
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bending moment measurements) against another using only two sensors (2 strain gauges for 

shear and 2 strain gauges for bending moment measurements). It is clear from these plots and 

the values of probable errors of load estimates that the FBG load models have more power to 

explain the variation of shear force and torque separately than the strain gauge load models. 

Only two shear-type sensors are unable to decouple the influences of shear and torque on the 

respective individual torque and shear load models. Adding a third shear-type sensor 

improves the accuracies of both shear and torque regression models, as shown by the 

evolution of the quality of the fitted load models in Figure 8(a) to Figure 8(b) and Figure 9(a) 

to Figure 9(b), respectively. 

 
Figure 8: Final shear force load model determined from: (a) the strain gauge sensors (2 shear-type and 2 

bending-moment-type); (b) the FBG sensors (3 shear-type and 3 bending-moment-type). Using all load cases 

This investigation was possible due to the fact that the load application on the rear fuselage of 

the sailplane can provide a very close case of pure shear and torque loads. Because the load 

application did not have the possibility to drift so far from the sailplane centerline, due to the 

small width of the rear part of the fuselage (represented by the load cases 1 to 25 applied in 4 

different x-axis positions in Figure 8 and Figure 9). To obtain the torque load cases, point 

loads were applied on different spanwise positions of the horizontal tailplane (variation of 

torque values with a constant shear force applied in 6 different spanwises in each side, 

represented by the load cases 26 to 35 for increasing left spanwise positions and load cases 36 

to 45 for increasing right spanwise positions in Figure 8 and Figure 9). Subsequently two 

different regression models for each load type were developed, one considering all data and 

other considering the pure shear and torque data applied for the respective shear and torque 

load regression models. That is, load cases applied on the rear fuselage were used for the 

development of the shear regression model and the load cases applied on the horizontal 

tailplane for the torque regression model. From the comparison of these two models, 

significant variations of the probable errors of the load estimates and the graphical quality of 

the fitted models (especially because the bad results from the load cases 6 and 7) were noticed 

for the shear and torque strain gauge regression models, signaling that considerable influence 

of torque still affecting the shear regression model (developed with all load cases) and vice 

versa. 

Nevertheless, performing the same comparison for the shear and torque FBG regression 

models, only small variations are observed, leading to the conclusion that setups with at least 

three sensors for each load type are able to provide reasonably accurate load regression 

models (as observed by the improvements obtained from the now good match for the load 

cases 6 and 7). These small increases in the probable errors of shear and torque estimates 

from the regression models considering only the relevant data for each load type to that one 

considering all data mean that the predictors (strain sensors) are powerful enough to decouple 
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great parts of the interactions between different load types and to represent properly the 

variation of the load of interest. 

 
Figure 9: Final torque load model determined from: (a) the strain gauge sensors (2 shear-type and 2 bending-

moment-type); (b) the FBG sensors (3 shear-type and 3 bending-moment-type). Using all load cases (all data) 

Finally, but not least, it is necessary to point here the importance of the strain sensor 

redundancy to enable a successful calibration as well as reliable structural heath monitoring. 

Because without a well-planned redundancy, in case of a strain sensor failure during the flight 

testing program, big monetary losses could arise due to the interruption of the certification 

process and need of installation of new sensors followed by the recalibration of all sensors 

and repetition of flight tests. For the air carriers this faulty SHM could bring impairments in 

the maintenance processes, which mean additional costs, flight delays and loss of revenue 

flights. The harsh environment of flight is subject to factors like temperature, humidity and 

demanding load cycles that can affect the sensitivity and long term stability of these sensors. 

Subsequently, drifts and degradations could impair their measurements, as noticed in [14]. 

These issues were addressed in the current work by the considerable number and type 

diversity of strain sensors installed at various structural locations. Furthermore, this strategic 

planning of the strain sensor setup will be especially valuable and required for in-flight 

investigations of the SHM operation regarding reliability, robustness and capability of 

reconfiguration in face of a sensor failure, as commented in section 2.3. 

4.5 Comparisons between the strain gauge loads models developed from three different 

optimization criteria: MSE, AIC and optimized AIC 

In order to evaluate different metrics and strategies to develop the most accurate load 

regression model, a study case was performed using the calibration of the 28 strain gauges 

installed on the wings, which are distributed in 6 spanwise positions to measure 3 types of 

load (that is, 18 predictors available for the final load equations). Three different strategies 

were evaluated for the purpose of selecting a final load regression model from all the possible 

combinations for these 18 predictors and the constant term (2
19

 – 1 = 524287 possibilities):  

1. Mean Squared Error (MSE) strategy: the statistical tests were applied eliminating the 

models with redundant and irrelevant sensors and from this set of potential models the one 

with the smallest mean squared error (MSE) was selected. 

2. Akaike Information Criterion (AIC) strategy: use the minimization of the likelihood 

function as the sum square error (SSE) penalized by the number of predictors (sensors) in 

the model to develop the final load regression model.  
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3. Optimized AIC strategy: similar to AIC strategy, the difference is that engineering 

judgment and experience were used to select the list of potential predictors that can be the 

most important to explain the variation of each load of interest.  

From the final load regression models as presented in Table 5, an increase in probable errors 

of load estimates from strategy 1 to strategy 2 can be noticed. However, the significant 

reduction in the number of sensors required for each load model should be noticed as well. 

Therefore the strategy 2 demonstrated the effectiveness of the AIC to deal with the bias-

variance tradeoff principle and, consequently, to select a model as simple as possible but as 

complex as necessary. In the current study case, AIC prevented overfitted models, which 

present inflated variances. Analyzing these results, it was verified that the regression quality 

metric of adjusted R
2
 is not as effective as AIC to reach the best model regarding bias-

variance tradeoff. For example, considering the changes from strategy 1 to 2 (Table 5), the 

final load regression model for bending moment at right spanwise 4 presents a reduction of 

AIC (improvement of the metric of the strategy 2) and number of required predictors (12 to 8 

regressors). But this was followed by a reduction of adjusted R
2
 (degradation of the metric). 

That is, using the adjusted R
2
 metric the final load regression models still having redundant 

sensors. 

 

Table 5: Final loads equations for the right wing at the spanwise 4 provided by the strain gauge (SG) sensors 

The use of engineering judgment as in the third strategy is essential for at least two reasons. 

Firstly, it minimizes the workload in load model development by reducing the set of potential 

combinations. Secondly, an in-depth examination of the final load models can avoid basic 

errors and check the overall physical meaning of these models, which cannot be performed by 

an automatized approach. To exemplify the types of errors, in the current calibration, an issue 

related to the load cases will be addressed: symmetric and asymmetric load cases were 

planned, but due to restrictions of the available calibration equipment, it was only possible to 

apply symmetric bending moment load cases. During the load model development through 

strategies 1 and 2, the final left bending moment models are significantly influenced (biggest 

coefficient values) by the predictors (strain sensors) of the right wing, what does not 

correspond with the physical phenomenon that is induced by these load cases. So the 

limitation of only symmetric bending moments caused errors on the loads model 

development, due to the situation where those right wing sensors were more able to model the 

bending moment load cases of the left wing (which are the same load cases applied on the 

right wing). 

In strategy 3 (optimized AIC), each load type potential model considers only the final shear 

force, bending moment and torque predictors for the corresponding wing (all its three 

spanwises: e.g. WR1, WR4 and WR6 for the right wing showed in Figure 2) and the final 

shear force and torque predictors for the opposite wing close to the root (spanwise 1). That is, 

for the strategy 3, there are twelve possible predictors (eleven final combined strain sensors 

F ratio

AIC

BIC 1326.70517 1319.79118 1339.21733

Number of predictors 12 8 4

Probable Error Load Estimate (N.m)

R
2

Adjusted-R
2

21797.22278 32398.50834 52251.89109

1321.06730 1316.03260 1337.33804

0.99892 0.99889 0.99861

0.99887 0.99886 0.99859

Metric of Regression Model 

Quality

Probable Error of Load 

Estimate or MSE

Akaike Information 

Criterion (AIC)

Optimized Akaike 

Information Criterion (AIC)

6.33152 6.36042 7.08192
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plus the intercept) available to develop the load models from 4095 (2
12

 – 1) potential 

combinations (compared to 524287 (2
19

 – 1) potential combinations for strategies 1 and 2). 

In this section the problem about the selection of the most suitable optimization criterion to 

develop the best loads model was addressed. There is no doubt that engineering judgment is 

crucial in this process and will probably never be completely replaced.  

However, the correct choice of the metric of the optimization criterion is also very important. 

Methods available in the literature like the T-value [15] could not be suitable, because they 

could not be effective in eliminating the bad conditioning of the mathematical problem. There 

is no absolute stop criterion of the irrelevant and redundant sensor elimination process and 

also no guarantee that the selected direction of elimination will provide the final loads model 

that encompasses all the physically important predictors. The AIC metric was selected based 

on its suitable correspondence of the problem physics. The evaluations of the empirical 

calibration data showed the practical effectiveness of the AIC, which is based on a simple 

relationship between expected Kullback-Leibler information and Fisher´s maximized log-

likelihood function, for developing parsimonious models. Comparing the magnitude of the 

load equation coefficients of the selected strain sensor predictors with the several strain sensor 

responses due to the applied loads, it was possible to verify the trustworthy representation of 

the involved physical phenomenon by the developed loads models. The investigations 

performed in sections 4.3 and 4.4 about the influence of structural location and number of the 

strain sensors in the quality of the loads models worked to ratify and justify the technical-

based choice of the AIC as the best tested metric in most part of the cases, regarding the 

sample space of different metrics considered in section 2.3, to develop the loads models. In 

the current work, the AIC metric worked in a proper way to develop best loads models 

regarding the trade-off between accuracy and complexity. The architecture of hierarchy 

(prioritization) between the optimization criteria worked as a feature to drive the process of 

loads model development based on technical reasons (i.e. engineering evaluation of the 

quality of the models provided by the different metrics). That is, to select the minimal 

(optimal) number of the strain sensor predictors that are essential to explain the variation of 

the considered load. 

The penalizing term (2*p in the AIC metric) can certainly be improved and be based on both 

technical and economic considerations, such as: workload to install a strain sensor, difficulty 

to access certain aircraft locations, installation time required depending of the type and 

location of the sensor, cost for different sensor types, accuracy of different technologies and 

architectures, changes (positive or negative) maintenance-induced costs, additional weight 

(for sensors, cables, power supply, data acquisition and processing), etc. These new problem 

variables would lead to a more complex cost function that could be more representative and 

effective in obtaining the “best possible” loads models for that specific ongoing calibration. 

4.6 Comparison between the optical fibers and strain gauge loads models 

All 46 full bridge strain gauge measurements were recorded concurrently as were the signals 

for the temperature and strain FBG sensors for the different applied loads. For the right wing 

only one structural position for the bending moment FBG sensors was selected, namely the 

junction between the vertical web and the horizontal part of the spar. This position was 

chosen as it is the main structural component of the wing, where it is expected to obtain the 

largest bending moment sensitivity. This can be proven by the straightforward relationship 

between the applied loads and the FBG sensor outputs presented in Figure 10(a). The shear 
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force FBG sensors are limited to three sensors forming a triangle installed at the wing root in 

only one structural location, namely the wing shell behind the spar. In the rear fuselage case, 

three bending moment FBG and three shear force FBG sensors are available. For the bending 

moment, three locations at the fuselage shell were selected: the upper and lower parts for 

vertical bending moment measurements, and the left lateral midpoint for lateral bending 

moment measurements. The fuselage FBG sensors for the shear force type are again arranged 

in a triangle shape positioned in the superior quadrant of the left fuselage side. In this 

chordwise, each sensor has a different rotation regarding to the fuselage reference line, in 

order to measure both shear force and torque influences.  

 
Figure 10: Relationship between the applied bending moments and the strain measurements from: (a) the 

bending-moment sensor FBG-W1B (spanwise 1); (b) the shear-force sensor FBG-W03S (spanwise 0) 

 
* SG: strain gauges; FBG: Fiber Bragg Gratings or simply optical fibers; SFUS1: loads model for shear force at the 

rear fuselage in the station 1 (150 mm behind the ring frame); SFUS2: loads model for shear force at the rear fuselage 

in the station 2 (250 mm behind the ring frame); SWR1: loads model for shear force at the right wing spanwise 1. 

** B1 and B2 represent two different types of strain gauge sensors for bending moment measurements, respectively, 

EA-06-250MQ-350 and CEA-06-125WT-120 types (see Figure 2 and Figure 3). 

Table 6: Comparisons of the probable errors of load estimates and AIC values from the final calibration loads 

models obtained from the FBG and strain gauge sensors installed on the wing and fuselage, considering all data 

The load models from the FBG sensors can be compared with those from the strain gauge 

sensors at the positions where there are both strain gauges and FBG sensors, namely: right 

wing spanwises 1, 4 and 6, and rear fuselage (shown in Figure 12(a)). Table 6 summarizes the 

comparisons between the loads models from FBG and strain gauge sensors installed at the 

rear fuselage and right wing. Considering the wing final loads models, Table 6 provides a 

good summary of the results that support the conclusion that the strain gauge sensors can be 

used in the development of more accurate loads regression models in comparison with those 

from the FBG sensors. However these comparisons are not based on the same level of 

equivalency, because in the case of the strain gauge models the number of sensors positioned 

in different chordwise and structural positions is significantly superior. So the strain gauge 

network of information is more comprehensive and improves the capability to develop loads 

models with an improved quality. Because complex instrumentation architectures, like these 

composed by the strain gauges, are able to transform the sensor measurements constituted by 

mixed loads types into pure loads measurements. However, the fuselage final loads models 

presented in Table 6 aid to achieve the final conclusion about the FBG technology validation. 

From these results of probable errors of load estimates and AIC values, the developed FBG 

loads regression models present a better accuracy than those from the strain gauge sensors. In 

Load 

Model

Probable Error of 

Shear Force (S) 

Estimate (N)

AIC

Number of Sensors at the 

corresponding wing spanwise 

(W) or longitudinal fuselage 

axis (FUS)

Load Type 

Sensitivity (S-Shear 

Force; B-Bending 

Moment)

Amount of 

different 

chordwise 

positions

Amount of 

different 

structural 

positions

SWR1_FBG 62.51 1894.76 1 B 1 1

SWR1_SG 7.99 1366.32 6 2 S / 1 B1 / 3 B2 3 1 B1 / 2 B2 / 2 S

SFUS1_FBG 22.85 218.27 6 3 S / 3 B 2 1

SFUS2_SG 68.72 256.68 4 2 S / 1 B1 / 1 B2 1 1
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the case of the rear fuselage, there is an inversion regarding the situation of the right wing 

loads models. Now FBG loads models are developed based on a largest number of sensors 

than those available of strain gauges. 

 
Figure 11: Comparison between the applied and the fitted bending moments provided by: (a) the strain gauge 

sensors at the right wing spanwise 1; (b) the FBG sensors at the right wing spanwise 1 

Moreover the plots of the strain measurements from the strain gauges against the applied 

bending moments show considerably similarity with those from the FBG. Figure 10(a) 

presents a bigger scatter of the FBG-W1B results than those from Figure 7(a) (SG-WR1B1). 

However the results from Figure 10(a) show smaller scatter than those from Figure 7(b) (SG-

WR1B2) and Figure 7(c) (SG-WR1B3). The explanation is that the sensor SG-WR1B1 is 

installed on the upper and lower horizontal part of the double-T-spars, while the sensor FBG-

W1B is installed only at the intersection between the vertical and horizontal parts of the 

double-T-spars, which provided a limited sensitivity for this FBG sensor. However the 

sensors SG-WR1B2 and SG-WR1B3 are installed in a similar way as the sensor FBG-W1B, 

that is, only in one region of the horizontal part of the wing spar. In this case, one can notice 

that, considering the same installation architecture the FBG sensor presents improved bending 

moment sensitivity. All these results validate the FBG strain measurements with the strain 

gauge measurements for the same structural positions. The information provided by the FBG 

sensors is sufficient to develop accurate loads models. The level of accuracy of these models 

is in great part a matter of strategic planning of the instrumentation architecture. The number 

and types of sensors positioned in different chordwise and structural components are two of 

the key points for a successful loads calibration. All these conclusions are confirmed by the 

plots of the fitted loads against the applied loads for the strain gauge and FBG sensors, given 

in Figure 11(a) and Figure 11(b), respectively. 

4.7 Sources of errors and inaccuracies for the loads regression models development 

From the results obtained in this particular calibration, it is evident that the methodology is 

practicable. Some improvements for the developed loads models can certainly be achieved. 

For example, scatter of the strain sensor outputs around their linear relationship with the 

applied bending moments are noticeable, shown in Figure 10(a) and Figure 10(b) and also by 

the plots of the influence coefficients. To explain these inaccuracies, practical limitations 

during the calibration performance caused some sources of errors, such as: 

1. The load cases applied on the wings and fuselage: sand bags were used that have 

dimensions of 30 x 60 cm, and metal bars of 5 x 10 cm for the horizontal tail. Considering 

the limitation of the exact position determination of the load application, significant errors 
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can be made, for example, considering reasonable inaccuracies of the applied loads 

position of the order of the half of smallest dimensions (i.e. 15 and 2.5 cm, respectively). 

2. The calibration tests were performed inside of a closed hangar in order to obtain a well 

stabilized condition before the recording of the strain sensor measurements. However, 

during several test points, the hangar doors were opened and the wind slightly disturbed 

the aircraft, impairing the quality of the measurements. 

3. Due to a missing of a suitable support on the wing root to stabilize and level the aircraft, it 

was used a support position at an outboard wing spanwise. However, the sailplane wing is 

very flexible and this is not a proper position for this stabilizing support, because the wing 

can touch this support and transfer part of the applied load.  

4. Due to restriction of unknown structural limits of the sailplane components, only few load 

cases with relatively low magnitude values were applied. This conservative approach 

impaired the quality and the proper development of the loads models. 

5. The sand bags lost some grains during the calibration process. Resulting in a slight 

variation of weight of the sand bags that influences the accuracy of the applied loads and 

thereby of the developed loads models. 

6. The limitation of number of strain sensor types in certain positions degraded the quality 

and accuracy of the obtained loads models. 175 load cases were applied on the horizontal 

tail, nevertheless, the predictions of the left side loads models did not present a good fit 

with them due to the small number of available predictors. Comparing these loads models 

with the similar models in the right side, the quality differences are noticeable. This ratifies 

the conclusions of the item 4.4 about the necessary minimal number of each sensor type.  

7. Several load cases are applied considerably close to spanwise 4 of the wings, the loads 

models at this position present some inaccuracies, derived from the fact that in real 

applications the strain gauges are affected by loads acting inboard regions near to the 

sensor position. Moreover, due to the large application surfaces of the loads, sometimes 

only part of these loads are measured by the sensors, because of part of their applications 

were acting in the inboard region, causing errors in the loads regression models. The 

inclusion of an uncertainty parameter in the loads regression identification could lead to 

erroneous coefficients for the loads models, with nonphysical meaning. 

8. Due to the hardware restriction in applying downward loads at the rear fuselage, the 

fuselage loads models are limited to predict only upward loads. 

9. In some structural components, the number of strain sensors installed was limited and not 

enough in order to ensure an adequate redundancy for the objectives addressed in sections 

2.3 and 4.4. This limits the reliability of the developed load models and restrains desired 

capabilities of the SHM. Additional in-flight investigations of the sensor operation under 

influencing flight factors (e.g. temperature) are required for the proper evaluation of the 

loads models regarding the all the issues considered during the instrumentation architecture 

design.  

It should be kept in mind that the main objective of this work was to develop a methodology 

to build adequate loads monitoring models applicable with limited budget, and 
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straightforward and accessible even for small airplanes. More expensive setups or equipment 

would eliminate or drastically reduce most of the aforementioned sources of uncertainties. 

4.8 First insight into the quality of the obtained load regression models 

Structural loads are composed by inertia and aerodynamic loads. Changes in strain sensor 

responses from the ground to flight at 1 g are exclusively proportional to the aerodynamic 

load. With the sailplane undergoing accelerating flight conditions the loads measured by the 

strain sensors are structural loads, which should be corrected by the inertia loads if the 

interests are the aerodynamic loads. Therefore, to develop a proper aerodynamic loads model 

it is essential to know the inertia of the structural components, which will be monitored. In 

order to anticipate this future need, each part of the wings (outer and inner wings) was 

removed one by one, allowing the determination of their individual CG positions (x and y 

axes) and masses. Considering that this data was available, it will be used here to evaluate the 

quality of the developed load equations.  

Taking into account this objective, these direct measurements were compared with the 

predictions from the developed loads models, as shown in Table 7. Figure 12(a), Figure 12(b), 

Figure 12(c) and Figure 12(d) show the sailplane configurations with the sensor, whose 

measurements can be still be used. Indeed, applying the strain gauge and FBG final loads 

regression models to the measured load reference conditions with all aircraft structural 

components disassembled and supported in a level condition, the masses of these wing 

components can also be deduced from the changes in the measured loads and compared with 

the direct mass measurements, as given by the respective differences highlighted in red color 

in Table 7. The good match between the deduced and measured masses reinforces the 

confidence level that both values were determined with adequate precision. Moreover, the 

small differences between the measurements and the values predicted from the loads 

regression models provided by both strain gauge and FBG sensors are an additional indication 

of the accuracy and quality of the calibrated models. 

 

Figure 12: (a) Sailplane instrumentation for strain measurements; Sailplane weighing: (b) determination of the 

CG positions of the right outer wing; (c) determination of the CG positions of the right inner wing as well as of 

the whole right and left wings; (d) determination of the CG positions of the left inner and outer wings 
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Table 7: Comparisons between the measured values of mass and CG positions (x and y axes from the leading 

edge of the wing root and centerline, respectively) of each wing part outboard of the corresponding spanwise 

locations, where the strain gauge and FBG sensors are installed, and those values deduced by the loads 

regression models developed from the strain gauge (SG) and FBG sensors 

Specifically in order to validate the developed loads regression models, point and distributed 

loads different to those used for the preliminary and final calibrations were applied to the 

aircraft structural components. The distributed check loads are used to simulate loads in 

flight. The comparisons between the applied loads and the respective predictions from the 

developed models for bending moment on the right wing spanwise 1 from the strain gauge 

and FBG sensors are given in Figure 13(a) and Figure 13(b), respectively. Similar results are 

obtained for the strain gauge and FBG sensors installed at the other wing, rear fuselage and 

horizontal tailplane positions. From the analyses of the differences between the applied and 

calculated check loads, and from the values of probable errors of the load estimates, the 

quality of the developed load models can be assessed from the different used strain sensors. 

 
Figure 13: Check-loads validation of the: (a) strain gauge; (b) FBG bending moment models at the spanwise 1 

In general, considering the restricted hardware (material support) used in this calibration and 

the sources of errors addressed in section 4.7, the developed loads models showed suitable 

quality and accuracy, as can be verified by the results presented in this section. In spite of the 

-6 -4 -1 1 4 6

Value measured in the sailplane 

weighing (kg)
7.00 26.22 79.24 79.67 26.22 7.00

Value calculated from the SG 

shear force model (kg)
6.61 26.89 85.58 87.09 28.02 5.21

Difference (%) -5.52 2.56 8.01 9.32 6.87 -25.49

Value calculated from the FBG 

shear force model (kg)
- - - 83.90 22.91 -

Difference (%) - - - 5.31 -12.63 -
Value measured in the sailplane 

weighing (mm) -7897.23 -6004.05 -3205.31 3205.31 6004.05 7897.23

Value calculated from the SG 

bending moment model (mm)
-7780.33 -6167.92 -3213.66 3118.33 6155.82 7753.80

Difference (%) -1.48 2.73 0.26 -2.71 2.53 -1.82

Value calculated from the FBG 

bending moment model (mm)
- - - 2902.83 6254.89 -

Difference (%) - - - -9.44 4.18 -

Value measured in the sailplane 

weighing (mm)
549.60 400.79 387.15 387.15 400.79 549.60

Value calculated from the SG 

torque model (mm)
718.80 465.30 352.91 371.39 447.23 587.33

Difference (%) 30.79 16.10 -8.84 -4.07 11.59 6.86

Value calculated from the FBG 

torque model (mm)
- - - 392.68 458.94 -

Difference (%) - - - 1.43 14.51 -

Mass of the wing outboard part 

of the given spanwise from the 

measurements and from the 

shear force models

Lateral CG (y-axis) of the wing 

outboard part of the given 

spanwise from the 

measurements and from the 

bending moment models

Longitudinal CG (x-axis) of the 

wing outboard part of the given 

spanwise from the 

measurements and from the 

torque models

Spanwise
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presence of quite a few sources for inaccuracies in the experimental setup that impact the final 

load models, the results obtained in this application are still very satisfying and in line with 

the expectations. 

5 SUMMARY AND FUTURE WORK 

The developed load models show promising quality to fulfill the development of the 

integrated model of structural, loads and flexible aircraft flight dynamics, even for the 

application of the presented calibration methodology to a sailplane with a limited budget and 

limited material support. Future work will consider the use of the obtained load regression 

models with the flight test data gathered during the Discus-2c flight test program that took 

place in the second semester of 2014 [16]. The presented calibration methodology and the 

resultant loads regression models are essential parts of a project with the objective to 

contribute to the development and consolidation of structural health monitoring (SHM) 

technologies with regards to feasibility and reliability in an embedded, integrated system for 

multi-site sensing of flexible aircraft structures. The results presented in this paper and 

detailed in [17] provide clearance to move forward to the next steps of the mentioned project. 

As calibrated strain sensors will work to support the development and validation of the local 

aerodynamic load models identified from the flight parameters. A longer-term goal of these 

load models will be the design of the SHM system running onboard during every flight and 

during the entire aircraft lifecycle.  
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