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This paper revisits the problem of tuning the density in a traffic bottleneck by reduction
of the arrival rate when the queue length exceeds a certain threshold, studied recently for

variants of TASEP and Burgers equation. In the present approach a simple finite queuing

system is considered and its contrasting ’phase diagram’ is derived. One observes one
jammed region, one low-density region, and one where the queue length is equilibrated

around the threshold. Despite the simplicity of the model the physics is in accordance

with the previous approach: The density is tuned at the threshold if the exit rate lies in
between the two arrival rates.
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1. Introduction

Queuing models have a long tradition as application to traffic flow problems 1,
2, 3. In those models one typically tries to explain the formation and dynamics

of a traffic jam. The most simple queuing model is the so-called M/M/1 queue
4. In this model, customers arrive at the queue at a certain constant rate α and

leave from the queue at a different constant service rate β. Obviously the stationary

distribution takes a very simple form. The process has recently been revisited in the

traffic context: Instead of modeling the dynamics of a compact jam, the M/M/1

queue serves in 5 as a model for a whole bottleneck in which the gaps between

cars as well as the length of the bottleneck are neglected, only the number of cars

(customers) is regarded. This was contrasted with the totally asymmetric exclusion

process (TASEP) in which the cars move unidirectionally through a row of cells

each of which is occupied by at most one car. For an extensive overview on TASEP

and related processes, see 6, 7 and references therein. It was shown in 5 that the

typical high- and low-density phases of the totally asymmetric exclusion process

(TASEP) have an analogy in the M/M/1 queue.

Recently, for a generalization of TASEP it has been investigated under which

circumstances the flow through a bottleneck in stochastic models of traffic flow can

be optimized 8. The strategy was to reduce (enhance) the arrival rate α, whenever

1



November 19, 2014 16:18 WSPC/INSTRUCTION FILE paper˙submission

2 Marko Woelki

the car density is above (below) a certain threshold while the exit rate β is kept

constant. This regulation, referred to in 8 as density-feedback control, serves as a

traffic-management strategy that tries to prevent for high volume of traffic. One

practical realization would be to demand a certain toll or to suggest different rout-

ings via the navigation system while the threshold density is exceeded. In this way

the arrival rate could be reduced. The simplest idea to model the situation is to

choose a bimodal arrival rate that switches between two constant values (α− if the

density ρ fulfills ρ < ρ∗ and α+ otherwise). The threshold ρ∗ is typically the density

where the flow becomes maximal. In 8 the problem was studied on the example

of the totally asymmetric exclusion process (TASEP) by solution of its mean-field

equations which in turn are a discretization of the noisy Burgers equation with

Diffusion constant 1/2, namely ∂ρi/∂t = ρi−1(1− ρi)− ρi(1− ρi+1). The equation

describes the time evolution of the density at site i (i = 1, 2, . . . L) for a system with

length L with right-hand reservoir-density 1− β and modified left-hand density α.

The diagram in Figure 1 summarizes most conveniently the corresponding results

Fig. 1. Phase diagram for a threshold density ρ∗ = 1/2 resulting from mean-field theory for the

TASEP. Shown is the average number of cars 〈N〉 in certain ranges of parameter space.

from 8 for ρ∗ = 1/2. The region where 〈N〉 ∼ α−L is a low-density phase and

where α− and β are larger than 1/2 is a maximum-current phase (there the flow

takes its maximal value 1/4). Without regulation of the arrival rate the remaining

two phases would be one high density phase. However due to the regulation mech-

anism a part of the high-density phase is transformed into a so-called coexistence

phase where a shock moves through the system that separates a lattice part on the

left at low-density from a high-density on the right. Here one has 〈N〉 ∼ N∗, thus

the average car density is equilibrated at the threshold and the control mechanism

leads to a maximization of the flow. Note that the grey shaded area is physically

unreasonable in the present context but has applications in Langmuir kinetics 9.

Here we choose a simpler approach, namely a queuing model, in order to see

whether the parameter range in which one finds the equilibration of the system at



November 19, 2014 16:18 WSPC/INSTRUCTION FILE paper˙submission

Queuing model of a traffic bottleneck with bimodal arrival rate 3

the threshold density can be reproduced. We consider a bottleneck where the arrival

rate αN depends on the actual queue length N = 0, 1, . . . , L while the exit rate β

is constant.

The queue-length dependence of the arrival rate can be interpreted as a sort of

capacity constraint that has been studied in various socio-economic and biological

applications ?, 10, 11. However the special realization and the viewpoint of regula-

tion in traffic management are completely different from previous investigations and

results give a closer understanding of what happens physically to a traffic system

under feedback control. The model is also related to the problem of two queues with

finite capacity, for example two checkouts which together can hold L customers at

most. For an overview of related problems, see 12.

The paper is organized as follows: First, we define the model and present its sta-

tionary distribution. We derive the average queue length and the flow and identify

the phase diagram. Those results will finally be compared to recent investigations
8.

2. Model definition

We study a queue with length N , maximum length L (the length of the street) and

a threshold N∗. The process is further defined by its transition rates: a constant

output rate β and queue-length dependent arrival rate αN . We consider continuous

time, that is realized in a computer simulation as a random-sequential update by

first flipping a coin to decide whether it is tried to insert or to remove a particle.

Afterwards one draws a random number and decides according to the rate whether

the move is executed or not.

The time evolution of the probability PN,L(t) to find a queue length N at time

t is governed by

Ṗ0,L(t) = − α0P0,L(t) + βP1,L(t), (1)

ṖN,L(t) = − (αN + β)PN,L(t) + αN−1PN−1,L(t) (2)

+ βPN+1,L(t), for 0 < N < L, (3)

ṖL,L(t) = − βPL,L(t) + αL−1PL−1,L(t). (4)

Note that the αN and β are rates rather than probabilities. To obtain probabilities

they have to be multiplied by a sufficiently small time interval ∆t. However from

now on we assume without loss of generality that they are already normalized so

that all rates are smaller or equal than 1. Now we are going to analyze one choice

of the arrival rate in more detail:

αN =

{
α−, for 0 ≤ N < N∗

α+, for N∗ ≤ N < L
(5)

and we restrict ourselves to α+ < α− (The case α+ > α− makes no sense in

the present context). Hence the probability that a car arrives at the queue takes a
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smaller (or larger) value if the actual queue length N is above (or below) a threshold

N∗.

3. The stationary distribution

Since (1-4) are the evolution equations of a disordered random walk, the exact

solution in the long time limit is well-known 13,14. One finds with (5) and the more

convenient variables

x− = α−/β and x+ = α+/β (6)

the probability distribution

PN,L =

{
Z−1
L xN− , for N < N∗,

Z−1
L xN

∗

− xN−N∗

+ , for N ≥ N∗,
(7)

with the normalization

ZL =
(1− x+)(1− xN∗

− ) + (1− x−)xN
∗

− (1− xL−N
∗+1

+ )

(1− x−)(1− x+)
(8)

where the latter follows from probability conservation 1 =
∑L
N=0 PN,L. Note that

for a better readability, we skip the subscript N∗ in all the quantities. Eq. (7)

says that if there are N cars in the queue then each car below the threshold N∗

contributes a factor x− while other cars contribute a factor x+ to the stationary

distribution. It is convenient to rescale the queue length and its distribution to

obtain with the help of the scaling variable z = N/N∗ an expression independent

of N∗ and L:

F (z) := (ZL · PN,L)
z/N

=

{
xz−, for z < 1

x−x
z−1
+ , for z ≥ 1.

(9)

The results can nicely be distinguished if we define a large (low) rate as larger

(smaller) than 1/2 and reference to the change in arrival rates from α− to α+.

Then we obtain the following three cases:

Case 1: Arrival rate changed from large to small (α+ < 1/2 < α−)

For α+ < 1/2 < α− one has 1 − α− < 1/2 and therefore α+ < β ≤ 1 − α− is ac-

cessible for β. In this region one has x+ < 1 ≤ x−. Therefore queues with N < N∗

tend to increase (positive drift) and queues with N ≥ N∗ tend to decrease (negative

drift). This case is illustrated in Figure 2 (left). The green curve marks the border

to the unphysical region. Here one has x+ = 1 and the rescaled distribution takes

the value α−/α+ for N ≥ N∗.

Case 2: Small arrival rate reduced further (α+ < α− < 1/2)

For the choice α+ < α− < 1/2 one has for α+ < β < α− a positive drift (x− > 1),

i.e. queues smaller than N∗ tend to increase and for α− < β < 1 − α− a negative

drift (x− < 1), thus queues smaller than N∗ tend to shrink. Note that queues larger
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Fig. 2. x-axis: the rescaled queue length z = N/N∗. y-axis: the rescaled queue-length distribution
F (z). Case 1 left (α− = 0.6) and case 2 right (α− = 0.4), both for α+ = 0.2. The curves correspond

from top to bottom to β = 0.2, β = 0.25, β = 0.4 and on the right additionally β = 0.6.

Fig. 3. Flow J versus β for α+ = 0.2 with α− = 0.6 (left, case 1) and α− = 0.4 (right, case
2). From bottom to top the curves correspond to different threshold densities: Straight (red) line:

ρ∗ = 0, squares (green): ρ∗ = 1/20, diamonds (blue): ρ∗ = 1/2. The maximal queue length is

L = 100. Note that the rounding of the transition at β = α− is a finite site effect that vanishes if
one increases L.

than N∗ also tend to shrink (x+ < 1). See Figure 2 (right).

Case 3: Reduction to a still large arrival rate (1/2 < α+ < α−)

In this case one has β < 1 − α− < 1/2 < α− and therefore the queue length is of

order L (for finite L or unbounded otherwise) for all β in this range.

4. Flow and average queue length

In this section we calculate the average queue length 〈N〉 and the flow which will

lead in the next section to an interesting phase diagram. This is compared to a

corresponding diagram for a recent approach to the same problem 8. In Figure 3

the flow J = β(1−P0) is plotted in dependence of β for various threshold densities

ρ∗ = N∗/L and for finite length L = 100 of the bottleneck. For the M/M/1 queue

the flow is constantly equal to the arrival rate. Instead here one sees that the flow

obeys

J =

{
β , for α+ < β ≤ α−,

α−, , for α− < β ≤ 1.
(10)

The left plots shows case 1. Here the model is obviously not able to reach the flow

of the simple M/M/1 queue with arrival rate α−. However in case 2 (right plots)

one sees that the maximum flow is reached for α− < β ≤ 1 − α−. Concluding one

can say that the switch to a lower arrival rate yields in general to a reduction of the



November 19, 2014 16:18 WSPC/INSTRUCTION FILE paper˙submission

6 Marko Woelki

flow. However, if a small arrival rate (α− < 1/2) is reduced further then for β in the

range β ∈ [α−, 1− α−] the maximum flow is kept alive for large N∗. The reason is

the negative drift x− < 1 that leads to the fact that queues smaller than N∗ tend

to shrink so that the system is dominated by α− (which equals the maximum flow).

The average queue length 〈N〉 =
∑L
N=1NPN,L can easily be calculated from the

stationary distribution which yields

〈N〉 = Z−1
L

x−
(x− − 1)2

+ Z−1
L

xN
∗

− [N∗(x− − 1)− x−]

(x− − 1)2

+ Z−1
L

xN
∗

− xL−N
∗+1

+ [L(x+ − 1)− 1]

(x+ − 1)2

− Z−1
L

xN
∗

− [N∗(x+ − 1)− x+]

(x+ − 1)2
. (11)

5. Limiting behaviour of large systems

Now the limit of large N∗ and L is considered. For N∗, L sufficiently large, one

finds for the average queue length from (11):

〈N〉 is dominated by


Third term , for 0 < β ≤ α+,

Second and fourth term , for α+ < β ≤ α−,

First term, , for α− < β ≤ 1.

(12)

Those three regions define the different regions in the parameter space (α−, β), the

’phase diagram’:

〈N〉 ∼


L− β

α+−β , for 0 < β < α+,
β−α+

α+−α−

N∗(α−−β)−α−
β−α−

+ β−α−
α−−α+

N∗(α+−β)−α+

β−α+
, for α+ < β < α−,

α−
β−α−

, , for α− < β < 1.

(13)

Here we assumed that N∗ is not close to 0 or L and β is not close to α+ or α−. So it

turns out that in the regime given in the second line the average number of particles

depends only on N∗, not on L. This is true as long as xL−N
∗+1

+ can be neglected.

The other results follow from similar arguments. The first region is a high-density

region where the queue has typically maximal length. The region given in the lowest

line is of low density and recovers the usual M/M/1 queue with 〈N〉 = α/(β − α)

for α := α−. Results can be summarized most easily with the help of Figure 4. The

diagram shows the parameter space of exit rate β and arrival rate α− for a reduced

arrival rate α+ < 1/2. In this way cases 1 and 2 can be described altogether. Again,

the grey-shaded area not covered by the model definition. One distinguishes three

regions: one high-density phase where α− < β < 1, one low-density phase where

0 < β < α+ and one phase at optimized density where α+ < β < α−.
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Fig. 4. Different regimes in parameter space resulting from (13) the average queue length 〈N〉 in

the queuing model. Grey shaded: physically unreasonable.

One observes that the different regimes and the physics of the average number of

cars 〈N〉 from the approach in 8 (see Figure 1) are in accordance with the queuing

model in the physical range β ≤ 1− α−. In the region where 〈N〉 ∼ α−(β − α−)−1

(the low-density phase) the flow is J = α− and in TASEP J = α−(1 − α−). In

the region where 〈N〉 ∼ L (the high-density phase) the flow is J = β (in TASEP:

J = β(1 − β)). However, one main difference in TASEP is that one is able to

maximize the flow by reduction of the arrival rate. This is possible since the flow-

density relation is J = ρ(1−ρ); reducing a high density to 1/2 thus increases the flow

to its maximum. In the corresponding regime in the queuing model one has J = β

instead, since the simple queuing dynamics does not allow for flow optimization.

With (12) one finds for N∗, L large from (7):

P0,L = Z−1
L =


x+−1

xN∗
− xL−N∗+1

+

, for 1 < x+ < x− (0 < β < α+),

(x−−1)(1−x+)

xN∗
− (x−−x+)

, for x+ < 1 < x− (α+ < β < α−),

1− x−, , for x+ < x− ≤ 1 (α− < β < 1),

(14)

and

PN,L =


x+−1

xL−N+1
+

1 < x+ < x−,

(x−−1)(1−x+)
(x−−x+)

[
x−∆N
− θ(∆N) + x−∆N

+ θ̄(∆N)
]
, x+ < 1 < x−,

(1− x−)xN− , x+ < x− ≤ 1,

(15)

with ∆N = N∗−N , the discrete Heaviside function θ(n) = 0 for n ≤ 0 and θ(n) = 1

for n ≥ 1, and θ̄ = 1− θ. Here it was assumed that the particle number in the low-

density (high-density) regime never increases (falls short of) the threshold N∗.

Finally consider the even stronger ’thermodynamic’ limit N∗, L → ∞ while keep-

ing ρ∗ := N∗/L fixed: Note that the normalization ZN∗/ρ∗ =
∑N∗

N=0 x
N
− +

(x−/x+)N
∗ ∑N∗/ρ∗

N=N∗+1 x
N
+ diverges in the high-density regime 1 ≤ x+ < x− and
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no stationary state exists. Therefore a stationary flow can formally not be defined.

That is the reason why in (10) the lower bound on β is explicitly given. Conclud-

ing, the high-density region is formally transferred into a physically unreachable

region. However the same argument holds for the regime with optimized density

(x+ < 1 < x−), where
∑N∗

N=1 x
N
− diverges so that no stationary optimization takes

place. So in the thermodynamical limit the process is defined only in the low-density

region x+ < x− ≤ 1. As a consequence, there is a critical line that cuts the sta-

tionary regime towards the (non-stationary) optimized density regime at x− = 1

(α− = β), see next section.

6. Relaxation times

Figure 5 shows the time evolution of the queue length when starting from an empty

queue (see Figure caption) for one stochastic realization each. In general queues

grow with velocity x−/2 from N = 0 at t = 0 until N = N∗. The sample from

the high-density regime then continues growth with velocity x+/2 until the queue

saturates at 〈N〉. The corresponding time is T = 2N∗/x− + 2(〈N〉 −N∗)/x+. The

other samples obviously lack the second kink – they grow with velocity x−/2 and

saturate at 〈N〉 after T = 2N∗/x−. However, as expected on the critical line between

divergent and convergent phases, for the second lowest curve (with pink squares,

β = α− = 0.6) one observes very large fluctuations. The queue length takes any

value between 〈N〉high density and 〈N〉opt. density with the same frequency so that

on average one has approximately 〈N〉crit. line = N∗/2. One sees that for the right

Fig. 5. Five individual realizations of the dynamics: Development of the queue length for α− =

0.6, α+ = 0.2. From top to bottom graphs correspond to β = 0.1 (high density phase), β = 0.2 (line
between high density and optimized density phase), β = 0.4 (optimized density phase), β = 0.6

(critical line between optimized density and high density phase) and β = 0.8 (high density phase).
Left: L = 100, N∗ = 50 and right L = 10000 and N∗ = 5000.

realization the process struggles to reach the average queue length of 2500 which

underlines that on this critical line the relaxation time diverges.
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7. Conclusion

This paper studied a queueing model of a traffic bottleneck. While typically in

queuing theory the queue length is unbounded, here a maximum possible size L

was considered that represents the length of the bottleneck itself. At the left end

cars arrive at a lower rate α+ (instead of α−) if the queue length N exceeds a certain

value N∗ and always leave at the right end of the system at constant exit rate β.

For the TASEP it was shown recently 8 that this mechanism leads to regions in

parameter space in which the density approaches the threshold N∗/L. It has been

shown in the course of this paper that this regime can also be obtained from the

simple queuing approach. The density can be tuned if the unreduced arrival rate is

larger than the exit rate. Then choosing the reduced arrival rate smaller than the

exit rate (but otherwise arbitrary) leads to the desired queue length. However in

contrast to TASEP the flow can not be maximized by the simple queuing model

since the queuing approach neglects the distribution of cars and empty space. The

distribution of queue lengths has been obtained exactly and turns out to be sharply

peaked at the threshold N∗ where it takes its maximum value. Further the average

queue length and flow have been calculated. For large system sizes the queueing

process turned out to provide different density regimes that remind on the phase

diagram found for the TASEP. However if the maximum possible queue length is

taken to infinity then the region that is stationary accessible shrinks considerably.

It was argued that the remaining convergent phase is separated from a divergent

phase by a critical line on which the relaxation time diverges.
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