Introduction to the ESMValTool

1. General Info
2. Installation
3. Selecting data and diagnostics
4. Recent developments in EMBRACE
5. Modify plots
6. Options to contribute your own diagnostics
7. How to create a new variable and a new diagnostic

Klaus Gottschaldt
Veronika Eyring (PI)

Martin Evaldsson
Klaus Wyser (PI)
1. General Info: This Tutorial

Goals:

- Enable you to install and use the ESMValTool
- Encourage you to contribute your own diagnostics to the ESMValTool

Practical matters:

- General hands-on session technically not possible
- Slides and live presentation of the ESMValTool
- Option for a hands-on session on a remote server for a limited number of users
1. General Info: ESMValTool

- Designed for comparing and plotting climate parameters from model, reanalysis and observational data, given in NetCDF format.

- General license for use: Open Source, no copyleft (see CCMValDiagTool_license.txt in the root folder of the tool) An additional list of references and acknowledgements for the parts used is generated during each run.

- Goal for EMBRACE: compile standard diagnostics for CMIP5 style data → model skill assessment at the push of a button
2. Installation

Software requirements:

• Python 2.*
 www.python.org

• NCL 6.1 or higher
 www.ncl.ucar.edu

• ESMValTool (not yet officially released → contact us): tarball or from svn repository

• CMIP5 style datasets
 e.g.: esgf-data.dkrz.de/esgf-web-fe
3. Selecting data and diagnostics: Primer

Model Output
- internal: ./reformat
- external: shell scripts, cdo ...

Observations
- internal: ./plot_type/input_data
- external: like another model

Basic control
- Set global flags
- Specify model / obs names, years and paths
- Specify diagnostic set

Diagnostics
- Plot type
- Variable, Input field type
- optional: additional models for individual diagnostics

Variable attributes
- set var_att_info@ ...; calculate derived variables

Plot attributes
- set plot_type_info@ ... parameters for each plot type

Output
- Plots, NetCDF files

Paths on this slide are relative to the root folder of the tool.
3. Selecting data and diagnostics: Primer

Model Output
- internal: ./reformat
- external: shell scripts, cdo ...

Basic control
- ./nml/namelist_*
 - Set global flags
 - Specify model / obs names, years and paths
 - Specify diagnostic set

Diagnostics
- ./diag_att/*.att
 - Plot type
 - Variable, Input field type
 - optional: additional models for individual diagnostics

Variable attributes
- ./var_att/*_att.ncl
 - set var_att_info@ …; calculate derived variables

Plot attributes
- ./plot_type_cfg/<diagn. set>/*.cfg
 - set plot_type_info@ … parameters for each plot type

Observations
- internal: ./plot_type/input_data
- external: like another model

Output
- ./plots
 - Plots, NetCDF files
4. Recent developments in EMBRACE

South Asian Monsoon Diagnostics: (MetOffice)

• **SAMonsoon_precip_basic** (_multipanel): Mean and standard deviation (across all years) for each model; Difference of the mean/stddev with respect to a reference model

• **SAMonsoon_precip_seasonal**: Climatology, seasonal anomalies and interannual variability

• **SAMonsoon_precip_intensity_multipanel**: Contour plot of summer (MJJAS) winter (NDJFM) difference normalized by climatology

• **SAMonsoon_precip_global_domain_multipanel**: Similar to the above but contours precipitation only above a cut off level to identify Monsoon domain areas
4. Recent developments in EMBRACE

South Asian Monsoon Diagnostics: (MetOffice)

- **SAMonsoon_wind_basic (_multipanel):**
 Mean and standard deviation (across all years) for each model; Difference of the mean/stddev with respect to a reference model.

- **SAMonsoon_wind_seasonal_index:**
 Various monsoon indicies computed over the monsoon season (JJAS) and as annual cycles.

- **SAMonsoon_wind_seasonal:**
 The components used when computing the above monsoon indicies
4. Recent developments in EMBRACE

Sea Ice Diagnostics:

- **SeaIce_polcon**: Polar stereographic plots of sea ice area concentration and extent for individual models or observational data sets, for Arctic and Antarctic regions, with flexible panelling.

- **SeaIce_polcon_diff**: Polar stereographic plots of sea ice area concentration difference between individual models and reference data, for Arctic and Antarctic regions, with flexible panelling. All data are transferred to a common grid (Gaussian 1° x 1°) before comparison.

- **SeaIce_tsline**: Time series line plots of total sea ice area and extent, for Northern and Southern hemispheres, with optional multi-model mean and standard deviation. One value is used per model per year, either annual mean or the mean value within a selected month.

- **SeaIce_ancyc**: As above, but for the annual cycle (multi-year monthly mean values).
5. Modify plots

Model Output
- **internal**
 - ./reformat
- **external**
 - shell scripts, cdo …

Observations
- **internal**
 - ./plot_type/input_data
- **external**
 - like another model

Basic control
- Set global flags
- Specify model / obs names, years and paths
- Specify diagnostic set

Diagnostics
- Plot type
- Variable, Input field type
- optional: additional models for individual diagnostics

Variable attributes
- set var_att_info@ …; calculate derived variables

Plot attributes
- set plot_type_info@ … parameters for each plot type

Output
- Plots, NetCDF files
6. Options to contribute your own diagnostics:

1. Join the core development team with full access to:
 - Subversion repository
 - Mantis bug tracker
 - Teamsite & Wiki

2. Implement your changes in a snapshot of the ESMValTool (tarball or checkout from repository)

3. Give us your diagnostics „as is“ (if they are written in NCL)

Your contribution is very welcome!
Please contact us.
7. How to create a new variable and a new diagnostic: Code components
7. How to create a new variable and a new diagnostic

Adjust template files

- **./nml/namelist_MyDiag.xml**: Global flags, diagnostic sets to do, and models that shall be evaluated by all those diagnostics are specified here.
- **./diag_att/diag_MyDiag.xml**: This in general contains a collection of diagnostics. Each diagnostic is defined by a plot type, a variable and the corresponding (input) field type. Data that shall be evaluated by specific diagnostics only may be added with `<model>` specifiers (as in ./nml/namelist_MyDiag.xml) to the respective diagnostics.
- **./plot_type_cfg/MyDiag/MyDiag.cfg**: This file contains plot specific control parameters in NCL syntax, specified as attributes of the variable `plot_type_info`. All *.cfg files for a diagnostic set need to be in the same folder, as specified in ./diag_att/diag_MyDiag.xml.
- **./var_att/MyVar.att**: Variable specific parameters are defined here in NCL syntax, as attributes of the variable `var_att_info`. Derived variables require a `calculate function`. Here temperature at 200 hPa is extracted from the CMIP5 `ta` variable and defined as `MyVar`.
- **./plot_type/MyDiag.ncl**: This is the actual plotting routine, as specified by a `<plot_type>` entry in ./diag_att/diag_MyDiag.xml.
- **./doc/MASTER_authors-refs-acknow.txt**: This is the central lookup table for references & acknowledgements that might be selected within the plot_type routines.
7. How to create a new variable and a new diagnostic

- Please take existing code from the ESMValTool as template that comes close to your needs, and consult the NCL website (http://www.ncl.ucar.edu/)

Good to know about NCL …
- Parameters are global by default and available in all routines, even if not explicitly passed
- Parameters need to be deleted explicitly before changing dimensions or type
- Parameter exchange with Python is via environment variables and temporary text files
- Index count starts from 0
8. Hands on session

To try out ESMValTool at the test server, (note: max eight users), see separate paper for login procedure

Getting started:

1. ssh from your own machine
2. unpack the tarball, `tar xf ESMValTool_revision780.tar.gz`
3. try running one of the shorter namelists,
 1. `./main.py nml/namelist_MyDiag.xml`
 2. `./main.py nml/namelist_standardized.xml`
4. examine and edit the configuration files, rerun namelist
 1. `diag_att/` - collection of diagnostics in namelist
 2. `var_att/` - variable specific settings/transforms
 3. `plot_type_cfg` – plot specific settings
5. The `display` command is available to visualize the figures in the plots/-directory
<table>
<thead>
<tr>
<th>Connect with</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssh <code>wp4-tutorial-1@54.217.232.211</code></td>
<td><code>wp4-two-1</code></td>
</tr>
<tr>
<td>ssh <code>wp4-tutorial-2@54.217.232.211</code></td>
<td><code>wp4-two-2</code></td>
</tr>
<tr>
<td>ssh <code>wp4-tutorial-3@54.217.232.211</code></td>
<td><code>wp4-three-3</code></td>
</tr>
<tr>
<td>ssh <code>wp4-tutorial-4@54.217.232.211</code></td>
<td><code>wp4-four-4</code></td>
</tr>
<tr>
<td>Connect with</td>
<td>Password</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ssh wp4-tutorial-1@54.217.232.212</td>
<td>wp4-two-1</td>
</tr>
<tr>
<td>ssh wp4-tutorial-2@54.217.232.212</td>
<td>wp4-two-2</td>
</tr>
<tr>
<td>ssh wp4-tutorial-3@54.217.232.212</td>
<td>wp4-three-3</td>
</tr>
<tr>
<td>ssh wp4-tutorial-4@54.217.232.212</td>
<td>wp4-four-4</td>
</tr>
</tbody>
</table>